阿奇霉素与人体肠道菌群体外相互作用的初步研究

赵昌会,陈华海,胡云霏,李百元,曹林艳,蒋琼凤,尹业师*

湖南科技学院化学与生物工程学院,湘南优势植物资源综合利用湖南省重点实验室,湖南南岭地区植物资源研究开发湖南省工程研究中心,永州 425199

摘要:研究阿奇霉素对肠道菌群结构及其代谢产物的影响,为阿奇霉素的临床应用提供人体肠道菌群方面的理论依据。通过体外分批发酵、宏基因组测序及气相色谱等技术探讨阿奇霉素与人体肠道菌群的相互作用。结果表明,阿奇霉素暴露后与对照组相比,益生菌双歧杆菌属(Bifidobacterium)、片球菌属(Pediococcus)、拟杆菌属(Bacteroides)、小杆菌属(Dialister)、理研菌属(Petrimonas)和乳酸杆菌属(Lactobacillus)等的相对丰度显著降低,条件致病菌罗尔斯顿氏菌属(Ralstonia)和果胶杆菌属(Pectobacterium)的相对丰度显著提高(P<0.05);种水平上,长双歧杆菌(Bifidobacterium longum)、乳酸片球菌(Pediococcus acidilactici)、德氏乳杆菌(Lactobacillus delbrueckii)、Limosilactobacillus fermentum和链状双歧杆菌(Bifidobacterium catenulatum)等的相对丰度显著降低,小肠结肠炎耶尔森菌(Yersinia enterocolitica)和皮氏罗尔斯顿菌(Ralstonia pickettii)的相对丰度显著提高(P<0.05)。阿奇霉素还改变肠道菌群的新生霉素生物合成和核黄素代谢等途径及抗性基因的丰度,并降低乙酸含量,而肠道菌群对阿奇霉素的降解率较低。总之,阿奇霉素在体外发酵过程中影响人体肠道微生物群的细菌群落、代谢途径、耐药基因和乙酸含量。本文将为阿奇霉素与人体肠道菌群相互作用的研究提供参考。

关键词:阿奇霉素;人体肠道菌群;体外发酵;宏基组测序;短链脂肪酸

抗生素对人类或动物疾病的预防和治疗起着至关重要的作用,但抗生素在全球范围内的大量应用对生态系统产生的负面影响令人担忧。大量研究表明,长期服用或接触抗生素会扰乱肠道微生物的群落结构和宿主的新陈代谢等。据报道抗生素治疗会显著改变肠道菌群结构[1],且造成的菌群多样性变化难以恢复[2]。Olekhnovich等[3]发现经抗生素等药物在根治了幽门螺杆菌诱发的疾病后,肠道内青春双歧杆菌的丰度显著降低,粪肠球菌丰度增加的同时其耐药性也明显增强。Elvers等[4]调查发现强力霉素显著降低人体肠道内双歧杆菌属的多样性,克拉霉素降低肠杆菌科细菌、双歧杆菌和乳酸杆菌的丰度和多样性,而苯氧甲基青霉素、呋喃妥因和阿莫西林对人体肠道菌群结构影响较小。此外,McDonnell等[5]也发现儿童期使用抗生素会诱发哮喘、青少年关节炎、糖尿病、克罗恩病和精神疾病等,而这些疾病的发生都与肠道菌群失调密切相关。

阿奇霉素是一种具有免疫调节作用的大环内酯类抗生素,它通过与细菌核糖体大亚基结合而抑制蛋白质合成,广泛用于感染性疾病的治疗。阿奇霉素对分枝杆菌感染有良好的疗效[6],特别是鸟分枝杆菌,在相同疗效下阿奇霉素导致不良事件的机率要比克拉霉素的低[7]。随着阿奇霉素的广泛应用,它已成为环境中的常见污染物[8]。从长期来看,大量接触或使用阿奇霉素可能会对人体健康产生较强的毒副作用。例如,阿奇霉素在治疗支原体感染的过程中会增加其他病原菌的丰度[9],它还会影响T细胞对肿瘤细胞的抑制[10]、诱发小鼠饮食性肥胖[11]、增加儿童肠道菌群的耐药性[12]、以及加速耐药基因在病原菌间的传播[13];也有研究表明阿奇霉素能增加动物脂肪量和胰岛素抵抗[14],并导致小鼠血脂异常、肠道菌群紊乱及焦虑行为[15]。另外,阿奇霉素还会显著提高人体肠道中机会病原菌的相对丰度[16],以及改变口腔细菌的菌群结构[17]。鉴于阿奇霉素在临床应用中存在一定的毒副作用,而阿奇霉素对青年人肠道菌群结构的影响研究较少。本文拟通过体外分批发酵、宏基因组测序及气相色谱技术等,探究阿奇霉素暴露对人体肠道菌群结构的影响,以期为全面认识阿奇霉素暴露对人体肠道菌群产生的毒理作用提供参考。

1 材料与方法(Materials and methods)

1.1 志愿者招募

本试验共招募12名志愿者(男女各半,年龄20至22岁,签署知情同意书)。所有参与者身体健康、不吸烟、不酗酒、饮食习惯基本相同,提供粪便样品前3个月内未服用任何药物或益生菌。

1.2 发酵培养基配制

对照组(Con)为Ⅵ培养液[18],实验组为含阿奇霉素(azithromycin, AZM,CAS# 83905-01-5,纯度98%,上海源叶生物科技有限公司)的Ⅵ培养液。根据阿奇霉素口服剂量500 mg[19],约47%经肠道排出体外[20],结肠溶液体积约为0.3 L[21],计算出结肠内阿奇霉素的实际浓度约为800 mg·L-1,以此浓度作为本实验浓度。

1.3 肠道菌群悬液制备

收集到新鲜粪样后,立即送回实验室,按照粪样与无菌PBS缓冲液(pH 7.0,0.1 mol·L-1)为1∶10(g∶mL)的比例混匀,用4层无菌纱布过滤获得肠道菌群悬液,整个过程严格无菌操作。

1.4 体外模拟发酵、收集与测序

在超净工作台中,将粪便悬液分别接种于对照组和实验组培养液,每4.75 mL培养液接种0.25 mL粪菌悬液,置于37 ℃厌氧工作站(V(N2)∶V(CO2)∶V(H2)=80∶10∶10)混匀,发酵48 h。分别取1.6 mL发酵液,12 000 r·min-1离心4 min,上清液和沉淀分别暂存于-80 ℃冰箱。沉淀样本送至深圳微客盟科技集团有限公司,采用CTAB法提取样品的总DNA并进行质检。合格后将每组样品分别按同一方式、每4份样品按照等物质的量混合后[22],采用Covaris超声波破碎仪将DNA随机打断;经末端修复、加A尾、加测序接头、纯化、PCR扩增等步骤,完成整个文库的制备。再用Qubit 3.0荧光定量仪进行初步定量,稀释文库,随后采用Agilent 5400检测文库的插入片段,符合预期后采用Q-PCR方法对文库的有效浓度进行准确定量,最后用Illumina Novaseq平台进行宏基因组测序,模式为PE150,原始数据保存于NCBI数据库(登录号是PRJNA561660)。

1.5 短链脂肪酸分析

按照5∶1将上述上清液与偏磷酸巴豆酸溶液混匀,置于-20 ℃过夜后,室温溶解,12 000 r·min-1离心30 min,获得的上清液用气相色谱仪(日本岛津公司,GC 2010 PLUS),INTERCAP-FFAP色谱柱和火焰离子化检测器进行短链脂肪酸测定[18]

1.6 阿奇霉素含量检测

采用分光光度法[23]检测阿奇霉素含量,方法如下:1 mL发酵液中加入0.2 mL乙醇混匀,12 000 r·min-1离心10 min;取1 mL混合液,加入2 mL蒸馏水;再于冰水浴中缓慢加入9.76 mol·L-1硫酸溶液7 mL,混匀;60 ℃水浴加热30 min,482 nm检测吸光值。

1.7 宏基因组测序及数据统计分析

将获得的原始数据用KneedData软件进行质控和去宿主,合格后采用Kraken2软件和微科盟自建数据库分析有效序列的物种序列数,用Bracken软件估算其实际丰度,并用UMAnN2软件将样本序列与UniRef90数据库比对,获得注释信息和相对丰度表;再将有效序列与抗性基因数据库CARD比对获得注释信息表。基于物种、功能及抗性基因的丰度表,分析人体肠道菌群结构及功能等。采用IBM SPSS Statistics 20.0软件实验数据进行差异显著性和相关性分析,P<0.05有统计学意义,并用Graphpad prism 5.0和HemI 1.0软件绘图。

2 结果(Results)

2.1 数据质量分析

将Con组和AZM组的24份DNA样品,按照相同分组方式每4份混合为一组,对获得的6份混合样品进行宏基因组测序。每个样品平均获得原始序列2.3×107条,质控后获得有效序列2.2×107条,有效序列占比、Q20Q30及GC含量均符合要求,数据可信(表1),可进行后续分析。

表1 人体肠道菌群宏基因组测序数据
Table 1 Data of human gut microbiota by metagenome sequencing

SamplesRaw DataClean DataReads(107)Base/GbReads(107)Base/GbClean/%Q20/%Q30/%GC/%Con1Con2Con32.47.22.36.895.098.494.4442.36.92.26.594.298.494.5492.37.02.26.694.598.494.546AZM12.36.82.16.893.498.494.554AZM22.27.22.26.494.198.494.343AZM32.27.02.26.793.998.494.447

注:Con表示对照,AZM表示阿奇霉素。
Note: Con means control, and AZM means azithromycin.

2.2 人体肠道菌群组成分析

总体来看,阿奇霉素对肠道菌群的Chao1、辛普森、香浓等指数影响不明显,Venn分析显示Con组特有微生物为310种,AZM组特有微生物为214种,2组共有微生物1 052种。对全部样本有效序列进行注释分类,并分析相对丰度前20的类群。结果显示,发酵液中优势菌门为变形菌门(Proteobacteria)、厚壁菌门(Firmicutes)、放线菌门(Actinobacteria)和拟杆菌门(Bacteroidetes),这些菌门在Con组分别占46.7%、26.1%、16%和8.8%,在AZM组分别占66.5%、24.5%、3.5%和4.2%(图1(a))。与Con组的厚壁菌门和拟杆菌门比率相比,该比率在AZM组提高了约一倍。优势菌科为肠杆菌科(Enterobacteriaceae)、新月形单胞菌科(Selenomonadaceae)、双歧杆菌科(Bifidobacteriaceae)和乳酸菌科(Lactobacillaceae)等,它们在Con组分别占46.7%、16.8%、15.7%和6.2%,在AZM组分别为66.4%、19.9%、3.5%和3%(图1(b))。优势菌属为埃希氏菌属(Escherichia),巨单胞菌属(Megamonas)、双歧杆菌属(Bifidobacterium)、克雷伯氏菌属(Klebsiella)、Phocaeicola、未定义细菌属(unclassified)、拟杆菌属(Bacteroides)和Ligilactobacillus等,其中前4种菌属在Con组分别占38%、16.8%、15.7%和7.5%,在AZM组分别占56.1%、19.9%、3.5%和9.3%(图1(c))。优势种为大肠杆菌(Escherichia coli)、单形巨单胞菌(Megamonas funiformis)、肺炎克雷伯氏菌(Klebsiella pneumonia)、青春双歧杆菌(Bifidobacterium adolescentis)、假小链双歧杆菌(Bifidobacterium pseudocatenulatum)、Phocaeicola vulgatus、瘤胃乳酸杆菌(Ligilactobacillus ruminis)、Prevotella copri、长双歧杆菌(Bifidobacterium longum)和超巨巨单胞菌(Megamonas hypermegale),其中前4种菌种在Con组分别占38%、15.9%、6.3%和0.2%,在AZM组分别占56.1%、18.8%、8.1%和2.7%(图1(d))。

图1 发酵液中肠道菌群的相对丰度
注:(a) 门水平组成,(b) 科水平组成,(c) 属水平组成,(d) 种水平组成。
Fig. 1 Relative abundances of intestinal microbiota in fermentation broth
Note: (a), (b), (c), and (d) means the composition of the microbiota in each group at the phylum, family, genus, and species level.

对发酵液中的古菌、真菌和病毒进行分析,结果显示优势古菌为甲烷球形菌属(Methanosphaera)和甲烷短杆菌属(Methanobrevibacter)等,它们在Con组分别占77.7%和11.1%,在AZM组分别占75.5%和13.3%(图2(a))。优势真菌为酵母菌属(Saccharomyces)、未分类真菌属(unclassified)、马拉色菌属(Malassezia)、念珠菌属(Candida)、假尾孢属(Pseudocercospora)、葡萄孢属(Botrytis)、Capronia和德巴氏酵母菌(Debaryomyces),其中前4种菌属在Con组分别占45.9%、39.8%、低于1%、13.4%,在AZM组分别占2.6%、低于1%、36.1%和16.7%(图2(b))。除去99%以上未分类病毒属后,优势病毒为JiaodavirusWebervirusShamshuipovirusWanchaivirusUetakevirus等(图2(c))。总之,阿奇霉素降低盐红菌属、酵母菌属和Webervirus等的相对丰度,提高甲烷八叠球菌属、念珠菌属、马拉色菌属、假尾孢属、葡萄孢属和Jiaodavirus等的相对丰度。

图2 发酵液中微生物在属水平上的相对丰度
注:(a) 古菌,(b) 真菌,(c) 病毒。
Fig. 2 Relative abundances of intestinal microbiota in fermentation broth at the genus level
Note: (a) Archaea, (b) Fungi, (c) Virus.

2.3 人体肠道菌群差异性分析

菌群差异性分析显示,阿奇霉素显著降低双歧杆菌属(Bifidobacterium)、片球菌属(Pediococcus)、拟杆菌属(Bacteroides)、小杆菌属(Dialister)、理研菌属(Petrimonas)、乳酸杆菌属(Lactobacillus)、棒杆菌属(Corynebacterium)、乏养菌属(Abiotrophia)、Mixta和欧文氏菌属(Erwinia)等的相对丰度;显著提高罗尔斯顿氏菌属(Ralstonia)和果胶杆菌属(Pectobacterium)的相对丰度(P<0.05)(图3(a))。种水平上阿奇霉素显著降低长双歧杆菌(Bifidobacterium longum)、乳酸片球菌(Pediococcus acidilactici)、德氏乳杆菌(Lactobacillus delbrueckii)、Limosilactobacillus fermentum和链状双歧杆菌(Bifidobacterium catenulatum)等的相对丰度;显著提高小肠结肠炎耶尔森菌(Yersinia enterocolitica)和皮氏罗尔斯顿菌(Ralstonia pickettii)的相对丰度(P<0.05)(图3(b))。

图3 LEfSe分析肠道菌群的差异显著性
注:(a) 属水平,(b) 种水平。
Fig. 3 Differential abundance of intestinal microbiota taxa analyzed by LEfSe
Note: (a) Genus level, (b) Species level.

2.4 人体肠道菌群KEGG差异性分析

肠道菌群生物学功能注释和分析结果显示,1级水平上新陈代谢途径丰度最高(接近75%);2级水平上前20代谢途径差异不明显;3级水平上有6条代谢途径差异显著(P<0.05),它们分别是新生霉素生物合成(novobiocin biosynthesis)、核黄素代谢(riboflavin metabolism)、昆虫激素生物合成(insect hormone biosynthesis)、长寿调节途径-蠕虫(longevity regulating pathway-worm)、蛋白质消化和吸收(protein digestion and absorption)及脂肪细胞因子信号通路(adipocytokine signaling pathway)(图4)。与对照组相比,AZM组昆虫激素生物合成降低了92.9%,蛋白质消化和吸收降低了88.6%,其余代谢途径变化幅度在10%~20%之间。

图4 基于HUMAnN2对宏基因序列进行KEGG功能预测
注:代谢途径在KEGG分类水平1(a)和水平2(b)上的相对丰度;水平3上显著差异代谢途径的相对丰度(c)。
Fig. 4 Predicted KEGG function differences based on metagenomic sequences using HUMAnN2
Note: Relative abundance of metabolic pathways on KEGG categories at level 1 (a) and level 2 (b), relative abundances of the significantly different pathways at level 3 (c).

2.5 人体肠道菌群抗性基因差异性分析

宏基因组测序结果显示,阿奇霉素显著降低ARO 3003730(isoleucyl-tRNA synthetase,异亮氨酰tRNA合成酶)和ARO 3003318(aminocoumarin resistance,香豆素抗性)的丰度(P<0.05);显著提高ARO 3002079、ARO 3002117、ARO 3002085和ARO 3002059(分别为CMY-66、CMY-105、CMY-72和CMY-48 β-内酰胺酶)的丰度(P<0.05)(图5)。

图5 抗性基因差异分析
Fig. 5 The analysis of different antimicrobial resistance genes

2.6 短链脂肪酸和阿奇霉素含量分析

气相色谱检测及统计分析结果显示,阿奇霉素发酵液中的乙酸含量显著低于对照组(P<0.05),短链脂肪酸和丙酸的含量变化不明显(图6(a))。分光光度法检测结果显示,发酵液中阿奇霉素含量约为其初始含量的97%(图6(b)),仅降解了3%,说明人体肠道菌群对阿奇霉素的降解效率较低。

图6 发酵液中的短链脂肪酸(SCFAs)(a)和阿奇霉素(AZM)(b)含量
Fig. 6 Contents of short-chain fatty acids (SCFAs ) (a) and azithromycin (AZM) (b) in the fermentation broth

2.7 肠道菌群与代谢途径、乙酸及抗性基因的相关性分析

相关性分析结果(图7)显示,乙酸含量与双歧杆菌属、小杆菌属和Mixta等正相关,与罗尔斯顿氏菌属和果胶菌属负相关。ARO 3003730(异亮氨酰tRNA合成酶)和ARO 3003318(香豆素抗性)与放线菌属、双歧杆菌属、理研菌属、乏养菌属和厌氧丁酸菌属等正相关。ARO 3002079等β-内酰胺酶类抗性基因与放线菌属和厌氧丁酸菌属等负相关、与罗尔斯顿氏菌属和果胶菌属正相关。在代谢途径方面,核黄素代谢途径与放线菌属、双歧杆菌属和小杆菌属等负相关,而其余代谢途径与放线菌属、双歧杆菌属和小杆菌属等正相关。

图7 肠道菌群与代谢途径、乙酸和抗性基因的相关性分析
注:*r>0.8,P<0.05。
Fig. 7 The correlation of gut microbiota with KEGG pathway, acetic acid and antibiotic resistance genes
Note: *r>0.8, P<0.05.

3 讨论(Discussion)

体外模拟发酵表明阿奇霉素对人体肠道菌群结构影响显著。在门水平上,阿奇霉素与氯霉素[24]都提高变形菌门的相对丰度,不同之处是阿奇霉素还显著降低放线菌门的相对丰度,但与阿奇霉素降低婴幼儿肠道中变形菌门的相对丰度不同[25],可能是阿奇霉素对肠道菌群结构的影响存在年龄差异。本文发现阿奇霉素提高厚壁菌门与拟杆菌门的比率,降低乳酸杆菌、放线菌门和双歧杆菌属的相对丰度,这分别与动物实验[26]及临床实践[27]的结果类似。据报道阿奇霉素可改变小鼠肠道内Papillibacter、普氏杆菌属及梭菌属等的相对丰度[28],本文未发现此类情况,可能与人和小鼠间的肠道菌群差异有关。种水平上,阿奇霉素显著降低长双歧杆菌和单形巨单胞菌的相对丰度会提高患直肠癌风险[29],降低假小链双歧杆菌的相对丰度会诱发肠道炎症[30];阿奇霉素显著提高病原菌小肠结肠炎耶尔森菌和皮氏罗尔斯顿菌的相对丰度等也值得关注。特别是阿奇霉素对COVID-19感染治疗效果不佳[31],极有可能与其降低肠道益生菌的相对丰度有关,如重症新冠病毒患者肠道内益生菌的相对丰度显著降低[32],这提示我们使用阿奇霉素时需要注意其对人体肠道菌群结构的影响。此外,本文发现的阿奇霉素对肠道古菌、真菌及病毒群落结构的影响还需要进一步研究。总之,从肠道菌群结构变化看,长期服用阿奇霉素可能会对人体健康产生一定的毒副作用。

药物影响肠道菌群结构的同时也会改变菌群的代谢产物和代谢途径。阿奇霉素显著降低乙酸含量,而乙酸含量与双歧杆菌属和小杆菌属的相对丰度正相关、与果胶杆菌属和罗尔斯顿氏菌属的相对丰度负相关,其中双歧杆菌属和小杆菌属与乙酸的相关性分别与临床实践[33]及模拟发酵结果相似[34],乙酸与其他微生物的相关性还要进一步验证。在代谢途径方面,总体上与前期研究结果类似[18],但阿奇霉素仅显著影响到6条代谢途径。其中阿奇霉素上调核黄素代谢途径可能有利于核黄素的合成,该途径在结直肠癌患者的肠道菌群中显著上调,主要涉及到脆弱拟杆菌(Bacteroides fragilis)和具核梭杆菌(Fusobacterium nucleatum)等[35],阿奇霉素上调核黄素代谢途径而降低双歧杆菌属和小杆菌属等的相对丰度可能会影响人体健康。阿奇霉素下调长寿调节途径-蠕虫可能会影响人类寿命,如Xi等[36]发现晚期非小细胞肺癌患者的寿命就与这条代谢途径正相关,该代谢途径还与双歧杆菌属和小杆菌属等正相关,这反映出阿奇霉素可能通过下调益生菌的丰度而影响人类寿命。阿奇霉素还下调脂肪信号因子途径、蛋白质消化和吸收途径、新生霉素生物合成途径及昆虫激素生物合成途径。其中脂肪信号因子途径上调可能有利于癌症的治疗,该途径与拟杆菌属及Tyzzerella等正相关[37],除拟杆菌属外,本文还发现脂肪信号因子途径与Pauljensenia、小杆菌属及Mixta等正相关。蛋白质消化和吸收途径主要涉及到宿主代谢,该代谢途径下调会导致体质量减轻[38],Wen等[39]发现鞘脂单胞菌属(Sphingomonas)与蛋白质消化和吸收途径正相关,这与本文发现Pauljensenia、棒杆菌属和双歧杆菌属等与该途径正相关的结果有所不同。新生霉素生物合成下调有益健康[40],与该代谢途径相关的微生物,以及昆虫激素生物合成途径在人体健康中的作用等还有待深入研究。

抗性基因分析发现阿奇霉素提高肠道菌群的β-内酰胺酶抗性基因,该类基因主要存在于大肠杆菌和肺炎克雷伯氏菌等革兰氏阴性菌中。本文发现阿奇霉素提高这些微生物的相对丰度,可能是它们的细胞中同时含有多种抗性基因,如β-内酰胺酶抗性基因和阿奇霉素抗性基因[41],推测同属于革兰氏阴性菌的罗尔斯顿氏菌属和果胶杆菌属的细胞中可能也含有这2种抗性基因,而Pauljensenia、双歧杆菌属、理研菌属和小杆菌属等细菌中可能缺乏相关抗性基因。异亮氨酰tRNA合成酶和香豆素抗性基因与放线菌属、双歧杆菌属、理研菌属、乏养菌属和厌氧丁酸菌属等正相关。其中异亮氨酰tRNA合成酶基因与双歧杆菌的耐药性相关[42],双歧杆菌属的丰度降低可能是双歧杆菌中的该酶对阿奇霉素敏感,而放线菌属和理研菌属等与异亮氨酰tRNA合成酶和香豆素抗性基因的相关性可能是其他抗性基因赋予的[43]。本文还发现高效液相色谱法无法定量检测发酵液中的阿奇霉素,用分光光度法[23]检测显示菌群的阿奇霉素降解率约为3%,这符合阿奇霉素不易被降解的特性[44]

综上所述,阿奇霉素显著降低双歧杆菌属、小杆菌属和乳酸杆菌属等益生菌的相对丰度,提高果胶杆菌属和罗尔斯顿氏菌属等条件致病菌的相对丰度,并显著降低乙酸含量,阿奇霉素这种导致肠道菌群结构及其代谢的紊乱可能有损于人体健康。另外,阿奇霉素也会影响肠道古菌、真菌和病毒的群落结构。我们还注意到体外实验与临床实践存在一定差异,加上实验样本较少,因此,阿奇霉素暴露对人体肠道菌群的负面影响还需要进一步临床验证。

参考文献(References):

[1] Wang J Y, Xiong K, Zhao S L, et al. Long-term effects of multi-drug-resistant tuberculosis treatment on gut microbiota and its health consequences [J]. Frontiers in Microbiology, 2020, 11: 53

[2] Mulder M, Radjabzadeh D, Kiefte-de Jong J C, et al. Long-term effects of antimicrobial drugs on the composition of the human gut microbiota [J]. Gut Microbes, 2020, 12(1): 1795492

[3] Olekhnovich E I, Manolov A I, Samoilov A E, et al. Shifts in the human gut microbiota structure caused by quadruple Helicobacter pylori eradication therapy [J]. Frontiers in Microbiology, 2019, 10: 1902

[4] Elvers K T, Wilson V J, Hammond A, et al. Antibiotic-induced changes in the human gut microbiota for the most commonly prescribed antibiotics in primary care in the UK: A systematic review [J]. BMJ Open, 2020, 10(9): e035677

[5] McDonnell L, Gilkes A, Ashworth M, et al. Association between antibiotics and gut microbiome dysbiosis in children: Systematic review and meta-analysis [J]. Gut Microbes, 2021, 13(1): 1-18

[6] Kobayashi T, Tsuyuguchi K, Yoshida S, et al. Resumption/efficacy and safety of an azithromycin-containing regimen against Mycobacterium avium complex lung disease in patients who experienced adverse effects with a clarithromycin-containing regimen [J]. Respiratory Investigation, 2021, 59(2): 212-217

[7] Kwon Y S, Han M, Kwon B S, et al. Discontinuation rates attributed to adverse events and treatment outcomes between clarithromycin and azithromycin in Mycobacterium avium complex lung disease: A propensity score analysis [J]. Journal of Global Antimicrobial Resistance, 2020, 22: 106-112

[8] Llorens E, Ginebreda A, la Farré M, et al. Occurrence of regulated pollutants in populated Mediterranean Basins: Ecotoxicological risk and effects on biological quality [J]. The Science of the Total Environment, 2020, 747: 141224

[9] Oldenburg C E, Sié A L, Coulibaly B, et al. Effect of commonly used pediatric antibiotics on gut microbial diversity in preschool children in Burkina Faso: A randomized clinical trial [J]. Open Forum Infectious Diseases, 2018, 5(11): ofy289

[10] Vallet N, Le Grand S, Bondeelle L, et al. Azithromycin promotes relapse by disrupting immune and metabolic networks after allogeneic stem cell transplantation [J]. Blood, 2022, 140(23): 2500-2513

[11] Yu J, Chen X, Zhang Y J, et al. Antibiotic Azithromycin inhibits brown/beige fat functionality and promotes obesity in human and rodents [J]. Theranostics, 2022, 12(3): 1187-1203

[12] Doan T, Hinterwirth A, Worden L, et al. Gut microbiome alteration in MORDOR I: A community-randomized trial of mass azithromycin distribution [J]. Nature Medicine, 2019, 25(9): 1370-1376

[13] Yang X M, Liu X X, Yang C, et al. A conjugative IncI1 plasmid carrying erm(B) and blaCTX-M-104 that mediates resistance to azithromycin and cephalosporins [J]. Microbiology Spectrum, 2021, 9(2): e0028621

[14] Klancic T, Laforest-Lapointe I, Wong J, et al. Concurrent prebiotic intake reverses insulin resistance induced by early-life pulsed antibiotic in rats [J]. Biomedicines, 2021, 9(1): 66

[15] Tang Q, Li S Q, Fang C J, et al. Evaluating the reparative effects and the mechanism of action of docosahexaenoic acid on azithromycin-induced lipid metabolism dysfunction [J]. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 2022, 159: 112699

[16] Nikolaou E, Kamilari E, Savkov D, et al. Intestinal microbiome analysis demonstrates azithromycin post-treatment effects improve when combined with lactulose [J]. World Journal of Pediatrics, 2020, 16(2): 168-176

[17] Raju S C, Viljakainen H, Figueiredo R A O, et al. Antimicrobial drug use in the first decade of life influences saliva microbiota diversity and composition [J]. Microbiome, 2020, 8(1): 121

[18] Zhao C H, Hu Y F, Chen H H, et al. An in vitro evaluation of the effects of different statins on the structure and function of human gut bacterial community [J]. PLoS One, 2020, 15(3): e0230200

[19] Guler S A, Clarenbach C, Brutsche M, et al. Azithromycin for the treatment of chronic cough in idiopathic pulmonary fibrosis: A randomized controlled crossover trial [J]. Annals of the American Thoracic Society, 2021, 18(12): 2018-2026

[20] Luke D R, Foulds G. Disposition of oral azithromycin in humans [J]. Clinical Pharmacology and Therapeutics, 1997, 61(6): 641-648

[21] Maier L S, Pruteanu M, Kuhn M, et al. Extensive impact of non-antibiotic drugs on human gut bacteria [J]. Nature, 2018, 555(7698): 623-628

[22] Rousta E, Oka A, Liu B, et al. The emulsifier carboxymethylcellulose induces more aggressive colitis in humanized mice with inflammatory bowel disease microbiota than polysorbate-80 [J]. Nutrients, 2021, 13(10): 3565

[23] 胡芳, 刘莉, 孟卫. 分光光度法测定阿奇霉素的改进[J]. 光谱实验室, 2011, 28(3): 1499-1502

Hu F, Liu L, Meng W. Determination of azithromycin by modified spectrophotometry [J]. Chinese Journal of Spectroscopy Laboratory, 2011, 28(3): 1499-1502 (in Chinese)

[24] 赵昌会, 陈华海, 胡云霏, 等. 氯霉素对体外模拟人体肠道菌群的影响[J]. 应用与环境生物学报, 2023, 29(4): 1-10

Zhao C H, Chen H H, Hu Y F, et al. Effect of chloramphenicol on simulated human intestinal microbiota in vitro [J]. Chinese Journal of Applied and Environmental Biology, 2023, 29(4): 1-10 (in Chinese)

[25] Parker E P K, Praharaj I, John J, et al. Changes in the intestinal microbiota following the administration of azithromycin in a randomised placebo-controlled trial among infants in South India [J]. Scientific Reports, 2017, 7(1): 9168

[26] Li R, Wang H X, Shi Q F, et al. Effects of oral florfenicol and azithromycin on gut microbiota and adipogenesis in mice [J]. PLoS One, 2017, 12(7): e0181690

[27] Chaima D, Pickering H, Hart J D, et al. Biannual administrations of azithromycin and the gastrointestinal microbiome of Malawian children: A nested cohort study within a randomized controlled trial [J]. Frontiers in Public Health, 2022, 10: 756318

[28] Yin J, Prabhakar M, Wang S, et al. Different dynamic patterns of β-lactams, quinolones, glycopeptides and macrolides on mouse gut microbial diversity [J]. PLoS One, 2015, 10(5): e0126712

[29] Ren X H, Xu J, Zhang Y Y, et al. Bacterial alterations in post-cholecystectomy patients are associated with colorectal cancer [J]. Frontiers in Oncology, 2020, 10: 1418

[30] Chung The H, Nguyen Ngoc Minh C, Tran Thi Hong C, et al. Exploring the genomic diversity and antimicrobial susceptibility of Bifidobacterium pseudocatenulatum in a Vietnamese population [J]. Microbiology Spectrum, 2021, 9(2): e0052621

[31] Ayerbe L, Risco-Risco C, Forgnone I, et al. Azithromycin in patients with COVID-19: A systematic review and meta-analysis [J]. The Journal of Antimicrobial Chemotherapy, 2022, 77(2): 303-309

[32] Hazan S. Microbiome-based hypothesis on ivermectin’s mechanism in COVID-19: Ivermectin feeds bifidobacteria to boost immunity [J]. Frontiers in Microbiology, 2022, 13: 952321

[33] Fan S N, Zhang K, Zhang J H, et al. Analysis of the effect of phototherapy on intestinal probiotics and metabolism in newborns with jaundice [J]. Frontiers in Pediatrics, 2022, 10: 878473

[34] Li X Y, Feng R, Zhou P, et al. Construction and characterization of Juglans regia L. polyphenols nanoparticles based on bovine serum albumin and Hohenbuehelia serotina polysaccharides, and their gastrointestinal digestion and colonic fermentation in vitro [J]. Food &Function, 2021, 12(21): 10397-10410

[35] Wang H H, Zhang K B, Wu L, et al. Prediction of pathogenic factors in dysbiotic gut microbiomes of colorectal cancer patients using reverse microbiomics [J]. Frontiers in Oncology, 2022, 12: 882874

[36] Xi Y, Liu F, Qiu B, et al. Analysis of gut microbiota signature and microbe-disease progression associations in locally advanced non-small cell lung cancer patients treated with concurrent chemoradiotherapy [J]. Frontiers in Cellular and Infection Microbiology, 2022, 12: 892401

[37] Huang R, He K, Duan X P, et al. Changes of intestinal microflora in colorectal cancer patients after surgical resection and chemotherapy [J]. Computational and Mathematical Methods in Medicine, 2022, 2022: 1940846

[38] Yang X, Tang T, Wen J, et al. Effects of S24-7 on the weight of progeny rats after exposure to ceftriaxone sodium during pregnancy [J]. BMC Microbiology, 2021, 21(1): 166

[39] Wen M, Liu T H, Zhao M Y, et al. Correlation analysis between gut microbiota and metabolites in children with systemic lupus erythematosus [J]. Journal of Immunology Research, 2021, 2021: 5579608

[40] Chen G L, Zhang Y, Wang W Y, et al. Partners of patients with ulcerative colitis exhibit a biologically relevant dysbiosis in fecal microbial metacommunities [J]. World Journal of Gastroenterology, 2017, 23(25): 4624-4631

[41] Kim S W, Van Kessel J A S, Haley B J. Genome sequences of antibiotic-resistant Escherichia coli isolated from veal calves in the USA [J]. Journal of Global Antimicrobial Resistance, 2021, 26: 69-73

[42] Serafini F, Bottacini F, Viappiani A, et al. Insights into physiological and genetic mupirocin susceptibility in bifidobacteria [J]. Applied and Environmental Microbiology, 2011, 77(9): 3141-3146

[43] Tóth A G, Csabai I, Maróti G, et al. A glimpse of antimicrobial resistance gene diversity in kefir and yoghurt [J]. Scientific Reports, 2020, 10: 22458

[44] Zhang X, Zhao H X, Du J, et al. Occurrence, removal, and risk assessment of antibiotics in 12 wastewater treatment plants from Dalian, China [J]. Environmental Science and Pollution Research International, 2017, 24(19): 16478-16487

Preliminary Study of Interaction between Azithromycin and Human Gut Microbiota in vitro

Zhao Changhui, Chen Huahai, Hu Yunfei, Li Baiyuan, Cao Linyan, Jiang Qiongfeng, Yin Yeshi*

Hunan Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, Hunan Engineering Research Center for Research and Development of Plant Resources in Nanling Area, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China

Abstract:To understand the effect of azithromycin on the human gut bacterial community and its metabolites, and provide a theoretical basis for the clinical application of azithromycin in human intestines, the interaction between azithromycin and human gut microbiota was studied using batch in vitro fermentation, metagenome sequencing, and gas chromatography. Results showed that azithromycin significantly reduced the relative abundance of Bifidobacterium, Pediococcus, Bacteroides, Dialister, Petrimonas, and Lactobacillus, and significantly increased the relative abundance of Ralstonia and Pectobacterium (P<0.05). At the species level, azithromycin significantly reduced the relative abundance of Bifidobacterium longum, Pediococcus acidilactici, Lactobacillus delbrueckii, Limosillactobacillus fermentum, and Bifidobacterium catenatum, while significantly increased the relative abundance of Yersinia enterocolitica and Ralstonia picettii (P<0.05). Azithromycin also changed the metabolic pathways and the abundance of resistance genes, such as novobiocin biosynthesis and riboflavin metabolism of gut microbiota, and reduced the content of acetic acid. However, the degradation rate of azithromycin by human gut microbiota is slight. In summary, azithromycin affects the bacterial community, metabolic pathway, drug resistance gene, and acetic acid content of human gut microbiota during in vitro fermentation. This paper provides reference for the study of the interaction between azithromycin and human gut microbiota.

Keywords:azithromycin; human gut microbiota; in vitro fermentation; metagenome sequencing; short-chain fatty acids

收稿日期:2022-10-17

录用日期:2022-12-31

文章编号:1673-5897(2023)4-439-11

中图分类号:X171.5

文献标识码:A

基金项目:国家自然科学基金区域创新发展联合基金重点支持项目(U21A20411);湖南省自然科学基金资助项目(2020JJ2016)

第一作者:赵昌会(1980—),男,博士,研究方向为微生物生态学,E-mail: zchui112@163.com

*通信作者(Corresponding author), E-mail: yinyeshi@126.com

DOI: 10.7524/AJE.1673-5897.20221017002

赵昌会, 陈华海, 胡云霏, 等. 阿奇霉素与人体肠道菌群体外相互作用的初步研究[J]. 生态毒理学报,2023, 18(4): 439-449

Zhao C H, Chen H H, Hu Y F, et al. Preliminary study of interaction between azithromycin and human gut microbiota in vitro [J]. Asian Journal of Ecotoxicology, 2023, 18(4): 439-449 (in Chinese)

Received 17 October 2022

accepted 31 December 2022

通信作者简介:尹业师(1982—),男,博士,教授,主要研究方向为微生物生态学。