二噁英及类二噁英污染物致免疫毒性作用机制研究进展

王鑫格1,2,3,4,李娜1,2,3,*,韩颖楠1,2,3,马梅1,2,3,4,吴兴华5,李翀5,王殿常5

1.中国科学院生态环境研究中心,中国科学院饮用水科学与技术重点实验室,北京 100085 2.中国科学院生态环境研究中心,环境水质学国家重点实验室,北京 100085 3.工业废水无害化与资源化国家工程研究中心,北京 100085 4.中国科学院大学,北京 100049 5.中国长江三峡集团公司,北京 100038

摘要:二噁英是芳烃受体(aryl hydrocarbon receptor, AHR)的高效外源配体,已知可以通过AHR发挥免疫毒性作用。经典的AHR毒性通路是指AHR由配体激活后进入细胞核,并与芳烃受体核转运蛋白(AHR nuclear translocator, ARNT)形成复合物,诱导二噁英反应元件(dioxin response element, DRE)控制的下游免疫相关基因的表达。但新的研究表明二噁英诱导免疫毒性还存在多种非经典的AHR通路,即激活后的AHR与其他信号通路(如炎症反应、细胞周期和信号转导)中的关键蛋白之间发生相互串扰,影响细胞功能。该过程中,AHR直接或以AHR-ARNT复合物的形式与其他转录因子相互作用,协同募集到共识或非共识DRE位点并与之结合,进而影响关键分子的转录和表达。目前已有许多与二噁英结构相似的物质被证明具有类二噁英的AHR激活活性,包括部分多氯联苯、多环芳烃和多溴联苯醚等,被称为类二噁英物质(dioxin-like compounds, DLCs)。DLCs可以通过激活AHR影响免疫系统,但一些研究表明,部分DLCs的免疫毒性可通过非AHR依赖的途径产生,这些途径可能包括导致细胞氧化应激、影响细胞呼吸爆发反应、促进细胞凋亡和干扰线粒体功能等。总之,与二噁英相比,DLCs的免疫毒性作用机制并不清晰,还需要更为系统的研究。

关键词:二噁英;类二噁英物质;芳烃受体;免疫毒性

二噁英类物质(简称二噁英)是由二氧杂芑或呋喃与2个苯环相连而形成的平面三环芳烃类化合物,分别称为多氯二苯并-对-二噁英(polychlorodibenzo-p-dioxins, PCDDs)和多氯二苯并呋喃(polychloro-dibenzofurans, PCDFs)[1]。这些物质由于其持久性和复杂的生物毒性而受到广泛的关注。研究表明,二噁英主要通过激活芳烃受体(aryl hydrocarbon receptor, AHR)产生一系列相似的毒性作用,包括致癌性、生殖毒性、内分泌干扰作用和神经毒性等[2]。近年来越来越多的卤代多环类化合物被发现具有AHR活性,并表现出与二噁英相似的生物毒性,被称为类二噁英物质(dioxin-like compounds, DLCs),主要包括多氯联苯(polychlorinated biphenyls, PCBs)、多环芳烃(polycyclic aromatic hydrocarbons, PAHs)[3]和多溴联苯醚(polybrominated diphenyl ethers, PBDEs)[4]等。AHR是一种配体激活的转录因子,调节着内、外源代谢及细胞增殖和分化[5]。未与配体结合时,AHR位于细胞质,与伴侣蛋白形成无活性复合物;当AHR与配体结合后,将释放伴侣蛋白,AHR易位到细胞核并与AHR核转位因子(AHR nuclear translocator, ARNT)形成异源二聚体,并与AHR靶基因上游调节区域的二噁英反应元件(dioxin response element, DRE)结合,以控制下游基因的转录[5]。研究表明,免疫系统的大多数细胞都表达有AHR蛋白,且大量的免疫相关基因在其起始位点上游含有多个AHR-ARNT异源二聚体结合位点(即DRE),使得免疫系统成为AHR转录调控的敏感靶点[6-7]

二噁英及DLCs由AHR介导的免疫干扰效应已被证明是其生物毒性最早和最敏感的指标之一[8],但也有研究表明二噁英及DLCs还可通过非AHR依赖的途径干扰生物的免疫功能。因此,免疫毒性可能是二噁英和DLCs危害识别和风险评价的重要终点。目前,免疫毒性的定义并不明确。在美国环境保护局(United States Environmental Protection Agency, US EPA)的定义中,外源物质的免疫毒性不仅包括对生物体免疫反应的抑制,还包括诱导免疫毒性的不适当刺激,前者增加患感染性或肿瘤性疾病的风险,后者可导致过敏反应和自身免疫病(OPPTS 870.78, 1998)。但实际上,免疫反应是一个依赖于各类免疫细胞高度协作和多种免疫活性物质共同作用的复杂的过程,任一阶段的任一分子或细胞发生异常均有可能导致免疫紊乱。在相关研究中,免疫细胞和免疫相关分子的显著改变均被视为免疫毒性,这使得研究中的免疫毒性效应更加多样,作用机制更加复杂。为了深入认识和了解二噁英及DLCs的免疫毒性效应和作用机制,本文对其进行了综述,以期为这些环境污染物危害识别和风险评价的研究提供借鉴。

1 二噁英的免疫毒性及作用机制(Immunotoxicity and mechanism of dioxins)

1.1 二噁英的免疫毒性效应

2,3,7,8-四氯二苯并-对-二噁英(2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD),是人类已知毒性最强的污染物,有“世纪之毒”之称[7],也是研究AHR激活影响免疫功能机制的代表性化合物[9]。研究表明TCDD可能通过激活AHR诱导免疫抑制,主要表现为胸腺萎缩、T细胞介导的免疫反应受损、抗体分泌受阻、炎症反应加剧和抗感染能力减弱等[10]。事实上,AHR存在内源性配体,其激活在皮肤、肠道和肺等屏障器官中可调节多种免疫功能,例如促进皮肤屏障的形成、维持肠道稳态和调节炎症反应等[11],AHR缺乏会导致小鼠免疫细胞功能受损、炎症反应加剧和银屑病样症状恶化等[12]。但内源性配体可以被AHR诱导的CYP1酶快速有效地代谢,相比而言,TCDD的持久性和难降解性是导致其AHR依赖的强毒性效应的关键因素。

首先,TCDD深刻影响特异性免疫。TCDD暴露后,小鼠免疫器官细胞数量显著减少,基于人淋巴母细胞T细胞系L-MAT的实验佐证了这一结论[13]。TCDD还可诱导小鼠初级成熟T细胞AHR的功能性激活[14],从而影响T细胞分化,导致Th1和Th2细胞的失衡、Treg细胞的分化以及Th17细胞的极化,其中Treg细胞的诱导被认为与TCDD的免疫抑制有关[9]。然而,TCDD对Treg细胞的调节受物种的影响,例如TCDD暴露可导致鸡胚胎Treg细胞显著增加[15],而小鼠原代脾细胞中Treg亚群下降[16]。TCDD激活AHR还会改变T细胞的功能,如抑制卵白蛋白(OVA)免疫小鼠的脾细胞产生Th2型细胞因子白介素(IL)-4、IL-5和IL-6等[17],诱导CD8+T细胞反应[18]。除T细胞外,B细胞介导的体液免疫也已被证明是TCDD免疫毒性的敏感靶点之一。TCDD抑制小鼠B细胞活化以及向浆细胞的分化,进而抑制免疫球蛋白M(IgM)的分泌[19]。在Lu等[20]采用人原代B细胞的研究中,TCDD对IgM生成的抑制并没有表现出与小鼠相似的敏感性,但研究表明TCDD确实会通过靶向B细胞进而损害人类的体液免疫。

其次,TCDD还会影响先天性免疫细胞的功能。中性粒细胞的增多是TCDD暴露后小鼠的突出特征,同时还可能伴随氧化爆发(oxidative burst)的增强和肿瘤杀伤能力的降低[21]。但是,Xu等[22]发现TCDD对斑马鱼中性粒细胞的影响与小鼠不同,TCDD的暴露显著降低了斑马鱼幼鱼中性粒细胞的数量,该差异可能与测试物种不同有关。体外实验也证实,TCDD可以抑制先天性免疫关键细胞巨噬细胞(macrophages, Mφs)的黏附并影响其吞噬功能依赖的细胞形态变化[23],这些影响极有可能损害Mφs清除病原菌的能力。对于树突状细胞(dendritic cells, DCs),TCDD可以影响其对不同抗原的摄取能力、IL-6和TNF-α等细胞因子的产生、细胞内诱导型一氧化氮合酶水平以及NO的产生[24]。与此同时,TCDD还显著影响DCs的成熟表型。DCs作为最重要的专职抗原提呈细胞,其成熟表型与T细胞的激活紧密相关。TCDD可增加DCs表面共刺激因子CD86和黏附分子CD54(ICAM-1)的表达,两者均为抗原提呈功能激活的标志性分子[25];因此有学者将TCDD对特异性免疫的抑制归咎于DCs的功能损伤。在Vorderstrasse和Kerkvliet[26]的研究中,除CD86和CD54外,TCDD暴露还导致小鼠DCs其他多种辅助分子表达水平的改变,例如诱导CD24、CD40等表达水平上调。当同种异体T细胞与TCDD暴露小鼠的DCs共培养时,可增强T细胞的增殖反应,增加IL-2和干扰素(IFN)-γ,证实了TCDD对DCs的激活,Lee等[27]的研究也佐证了这一结论。然而,在正常的免疫反应中,DCs一旦被激活,就会发生凋亡[28]。在Vorderstrasse和Kerkvliet[26]的体内研究中,TCDD显著减少了小鼠DCs数量,这可能是由于TCDD对DCs的激活导致其过早缺失。

1.2 二噁英的免疫毒性作用机制

上述TCDD的多种免疫毒性效应都被证明与AHR的功能性激活有关,包括先天性免疫细胞功能改变、T细胞的分化改变、免疫细胞细胞因子的紊乱和抗体生成的抑制等,这些效应的发生依赖于多种AHR途径,包括众所周知的经典的AHR通路和一些新发现的非经典的AHR通路。在经典的AHR通路中,未与配体结合的AHR与伴侣蛋白形成复合物,存在于细胞质。配体结合时,AHR发生构象变化,使得伴侣蛋白解离并通过输入蛋白-β进入细胞核与ARNT异二聚化,形成的复合物特异性结合于二噁英反应元件(DRE),并影响下游基因的转录[29],包括控制AHRR、IDO1、IL-22、CCL20和IL-6等表达的基因[30-32],从而直接或间接影响细胞因子的表达。

尽管AHR-ARNT复合物与DRE的结合被证明是TCDD发挥免疫毒性的重要途径,但有研究表明一些AHR控制的基因的转录起始位点并不包含DRE或AHR,并非以AHR-ARNT复合物的形式结合于DRE,即存在非经典的AHR通路。非经典的AHR的通路实际上是AHR与其他细胞内重要信号通路之间发生了串扰,包括炎症反应、细胞周期和信号转导等。AHR可以直接作用于其他信号通路的关键蛋白,如核因子-κB(NF-κB)。NF-κB是参与机体炎症反应和免疫应答、调节细胞凋亡和应激反应的重要核转录因子,其亚基RelA和RelB均可以结合AHR形成复合物,进而影响免疫细胞内多种细胞因子或趋化因子的表达[33-34],如肿瘤坏死因子家族的B细胞激活因子(BAFF)、B淋巴细胞趋化因子(BLC)、CC趋化因子配体1(CCL1)和干扰素调节因子3(IFR3)等。同时,该过程还可以抑制Cyp1A1基因的表达[31]。除了NF-κB,孤儿相关受体γ(RORγt)也被提出可以与AHR形成复合物,该复合物与ARNT共同募集到IL-22基因位点,促进IL-22的表达[30]

由于吲哚胺2,3-双加氧酶(indoleamine 2,3-dioxygenase, IDO)是内源AHR配体前体色氨酸的催化酶,许多研究探索了IDO与TCDD诱导的AHR通路之间的关系。Vogel等[35]的研究发现TCDD对AHR的激活可以诱导DCs产生IDO1和IDO2,这是通过经典AHR通路完成的。在TCDD处理的小鼠体内,IDO1和IDO2的诱导与脾脏中Treg标志物Foxp3的增加相关,这表明AHR激活可能通过诱导IDO1和IDO2导致Treg产生并介导免疫抑制。事实上,IDO的表达调节与多种细胞因子有关,如TGF-β、TNF-α、IFN-γ和IL-6,这种调节作用通过SHP-1/2、NF-κB和STAT1/3介导[36]。SHP-1调控的STAT3丝氨酸磷酸化降低被证明与TCDD诱导的IgM分泌抑制有关,这一效应同样是由激活的AHR介导的[37-38],更为详细的过程已在Sulentic和Kaminski[39]的综述中被阐述。

胸腺萎缩是TCDD免疫抑制的重要效应之一,这是由胸腺中免疫细胞的缺乏导致的。Kobayashi等[13]指出Ca2+/CaM(钙调蛋白)信号可能参与了TCDD对T细胞凋亡的调节。Camacho等[40]的研究也证实外周T细胞的减少可能与活化诱导的细胞死亡(activation induced cell death, AICD)有关,这可能是通过Fas-FasL相互作用实现的。而AHR依赖性的NF-κB核易位调控了FasL启动子的活性[41]。另有研究表明,TCDD激活AHR导致发育中的胸腺细胞KLF2(Krüppel-like factor 2)在三阴性T细胞(CD4-、CD8-和CD3-)中过早表达。KLF2在多种细胞类型表达,是影响细胞激活、分化、迁移和炎症因子表达的关键调节因子[42],其过早表达将导致T细胞的增殖停滞和过早迁移[43]。但Kimura等[44]指出AHR可以通过诱导抗凋亡因子防止李斯特菌(Listeria monocytogenes)感染导致的Mφs死亡,并促进其产生ROS以清除细菌。这表明TCDD对细胞凋亡的影响可能与细胞类型有关。

总之,越来越多的非经典AHR通路被发现,表明TCDD的致免疫毒性机制远比以往的认知更为复杂,还需要更深入的研究。

2 DLCs的免疫毒性及作用机制(Immunotoxicity and mechanism of DLCs)

多种DLCs被证明具有AHR激活活性。但与TCDD相比,涉及AHR的DLCs免疫毒性研究并不多。实际上,这些物质的AHR活性远不如TCDD,AHR依赖的途径可能并不是这些物质主要的作用机制。

2.1 多氯联苯

多氯联苯(PCBs)被认为与海洋哺乳动物传染病的暴发以及大规模死亡有关,因此目前针对PCBs免疫毒性的研究多集中于海洋哺乳动物。Hammond等[45]研究发现,PCBs混合物(Aroclors 1242和Aroclors 1260)暴露抑制港海豹的单个核细胞(PBMC)呼吸爆发和中性粒细胞(PMNC)的吞噬活性。Ross等[46]分别采用未受污染的大西洋鲱鱼以及受PBCs污染的波罗的海鲱鱼喂食港海豹,发现污染暴露导致海豹自然杀伤细胞(NK)活性、体外T淋巴细胞功能、抗原特异性体外淋巴细胞增殖反应、体内延迟型超敏反应和对卵清蛋白的抗体反应损伤。除高等哺乳动物,现有证据支持PCBs对其他低等水生生物同样具有免疫调节作用。如Sawyna等[47]的研究证实PCBs可能是黄貂鱼白细胞吞噬功能增强的原因,PCBs暴露对黄貂鱼表现出免疫刺激作用,这与其对海洋哺乳动物的免疫抑制作用(如降低吞噬活性)不同,提示PCBs对于海洋生物的免疫毒性具有物种差异性。因此,开展PCBs暴露对泥蟹免疫调节的研究,发现PCBs暴露显著降低抗氧化酶活性和提高活性氧含量,增强血细胞吞噬功能,但降低了泥蟹抗溶藻弧菌的能力和存活率[48]

PCBs也可诱导人和其他哺乳动物的免疫毒性。例如Schulze Stack等[49]的研究指出PCBs混合物抑制LPS诱导的小鼠脾细胞增殖,但PCB单体的这种抑制作用并不总是发生。PCBs暴露亦可下调山羊幼崽对植物血凝素(PHA)和刀豆蛋白A(Con A)的淋巴细胞反应[50]。此外,邻位取代的PCBs被证实能够诱导人粒细胞呼吸爆发并提升细胞内钙离子水平[51-52],呼吸爆发是已知的粒细胞攻击入侵微生物的重要方式,是非特异性免疫的关键过程,但长期处于呼吸爆发状态会导致粒细胞功能受损[51, 53],使得宿主对于入侵微生物更敏感,以及引起不适当的炎症反应和组织损伤[52]

研究表明PCBs的免疫毒性效应很大程度上依赖其不同的分子结构。Voie等[54]测定了33种PCBs对人粒细胞呼吸爆发的激活并在此基础上开展结构效应分析,结果表明只有邻位取代的联苯激活呼吸爆发,影响因素包括分子的总表面积、体积和邻位取代基的数目等。一般认为只有类二噁英的共平面PCBs具有AHR的结合活性,非共平面PCBs不能激活AHR,前者因为具有AHR的结合活性表现出更强的毒性效应,而毒性效应受到PCBs氯取代基的数量和位置的影响。类二噁英PCBs主要包括非邻位取代PCBs及单邻位取代PCBs。许多研究侧重于2类PCBs的免疫毒性差异。Sørmo等[55]检测了来自受PCBs污染的波罗的海灰海豹幼崽和未受污染的大西洋灰海豹幼崽脂肪中的PCBs含量,同时测定有丝分裂原诱导的淋巴细胞增殖反应,通过回归分析得出结论:类二噁英单邻位取代的PCBs抑制淋巴细胞增殖反应,这与相关的文献报道一致。Levin等[56]就港海豹幼崽开展了类似研究,发现有丝分裂原诱导的T细胞和B细胞增殖变化的25%和30%归咎于双邻位PCBs。在许多PCBs毒性效应研究中,非共平面PCBs表现出了更强的免疫调节作用。例如,Levin等[57]通过体外实验证实,非共平面PCBs(PCB 138、PCB 153和PCB 180),而不是共平面PCBs(PCB 169),显著降低了环斑海豹淋巴细胞增殖。在宽吻海豚和白鲸体内,非共平面PCBs(PCB 138、PCB 153和PCB 180)表现出比共平面PCBs(PCB 169)对中性粒细胞和单核细胞更强的吞噬抑制作用[58]。PCBs对人体白细胞吞噬功能影响的研究佐证了上述结论[59]。此外,非共平面PCBs(PCB 105和PCB 138)能显著降低红海龟幼崽NKCs活性,而共平面PCB 169对NKCs并没有明显影响[60]。蝌蚪变态发育期暴露于非共平面PCB 126降低了总IgY和IgM水平,特别是青蛙钥孔血蓝蛋白(keyhole limpet hemocyanin, KLH)特异性的IgY的表达量[61]。总之,大量研究表明非共平面PCBs同样显著影响人和动物的免疫功能,甚至比共平面PCBs的影响更强,这就需要进一步深入研究非共平面PCBs免疫毒性的制毒机理。

非共平面PCBs的免疫毒性具有多重机制。以PCB 126为例,PCB 126可通过线粒体内部和外部凋亡途径以诱导淋巴细胞凋亡,引起免疫器官萎缩及氧化损伤[62]。在PCB 126引发淋巴细胞凋亡过程中,控制Nrf2和Keap1蛋白表达的基因转录水平及Bax、Caspase-3、Caspase-8和Caspase-9蛋白表达水平上调,Bcl-2蛋白下调,同时伴随细胞因子,如肿瘤坏死因子(TNF)-α、IFN-γ和IL-2等的分泌抑制[63]。众所周知,神经-免疫-内分泌调节网络对维持人体稳态发挥着重要作用,目前从神经系统的角度探究环境污染物免疫致毒机理的研究还非常少。在Duffy-Whritenour等[64]的研究中,蓝鳃太阳鱼腹腔暴露非共平面PCB 153可导致鱼脑5-羟色胺(5-HT)水平降低,同时肾脏吞噬细胞氧自由基含量增加,脾脏淋巴细胞增殖减少,添加5-HT的前体,5-羟基-L-色氨酸(5-HTP),可以显著改善PCBs导致的免疫毒性,证实神经免疫轴参与PCBs诱导的免疫调节。

2.2 多环芳烃

多环芳烃(PAHs)是一类重要的环境致癌物,包括苯并(a)芘(B[a]P)、3-甲基胆蒽(3-MC)和7,12-二甲基苯并[a]蒽(DMBA)等多种稠环类物质。PAHs的致癌机理与其在细胞色素P450(CYP)作用下转变为DNA反应性代谢产物的过程密不可分,然而,PAHs与AHR的结合促进CYP的转录加剧了这一过程[65]。已知AHR的激活可以诱导免疫抑制,事实上大量的PAHs也的确被证实可以作为免疫抑制剂。其中,B[a]P的免疫毒性效应相对较强。研究表明,B[a]P可明显抑制刀豆球蛋白A(ConA)诱导的小鼠T淋巴细胞增殖,抑制细胞因子IFN-γ、IL-2和IL-4的产生[66]。虹鳟鱼腹腔注射B[a]P可导致血液、脾脏和头肾B细胞或T细胞数量的减少,并表现出剂量和时间相关性,高浓度慢性B[a]P暴露还可导致循环抗体浓度显著下降[67]

多种PAHs表现出显著的获得性免疫抑制作用。早期研究中,Davila等[68]分析了9种不同PAHs对人外周血T细胞有丝分裂的毒作用,按照毒性效应强度的不同,将其分为高度免疫毒性(B[a]P、3-MC和DMBA)、中度免疫毒性(二苯并(a,c)蒽(DAC)和二苯并(a,h)蒽(DAH))、轻度免疫毒性(9,10-二甲基蒽(DMA)、苯并(e)芘(B[e]P)和苯并(a)蒽(BA))和无可测量毒性(蒽)的化合物。考虑到AHR的拮抗剂以及CYP的抑制剂α-萘黄酮可以阻断B[a]P和DMBA的抑制作用,但不能影响3-MC的免疫毒性,该研究还指出3-MC的免疫致毒机理可能不同于B[a]P及DMBA[68]。事实上,典型PAHs苯并[k]荧蒽(B[k]F)和DMBA除影响T细胞有丝分裂外,还不同程度地降低了小鼠脾脏或胸腺重量,抑制甚至消除LPS诱导的B淋巴细胞增殖,降低抗体形成细胞的数量,并表现出剂量相关性[65,69]。二苯并(A,L)芘(DBC)也被发现抑制T依赖性抗体反应(TDAR),改变脾细胞亚群[70]。Smith等[71]开展了对DAH免疫抑制更为全面的研究:采用单次咽吸法暴露小鼠,并检测了多种常见的免疫毒性指标,结果表明DAH不影响NKC活性、抗CD3抗体介导的T淋巴细胞增殖、混合淋巴细胞反应(MLR)和B淋巴细胞增殖,但抑制了ConA刺激的T淋巴细胞增殖,减弱了对白色念珠菌的迟发性超敏反应(DTH)和抗体形成细胞反应(AFC),其中DTH和AFC对DAH的响应最为敏感。

PAHs同样影响先天性免疫。B[a]P明显抑制单核细胞向DCs的分化,表现为抑制CD1a、CD80和CD40等标记物上调。B[a]P还影响了DCs的成熟特征,如抑制CD83的上调,进而抑制IL-12的分泌,损害其刺激T细胞增殖的能力[72]。van Grevenynghe等[73]开展PAHs对人血单核-巨噬细胞Mφs分化影响的研究,发现PAHs降低了Mφs表型标记物如CD71和CD64的表达,显著改变了Mφs内吞、吞噬、TNF-α产生以及刺激淋巴细胞增殖等功能,这些发现支持PAHs对先天性免疫的影响。上述2项研究中,B[a]P相比于其他PAHs(如DMBA、MC、B[e]P和苯并蒽(BA)),表现出较强的毒性效应,包括抑制CD1a的上调和减少黏附Mφs的形成,而这些毒性效应多由AHR介导[73]。PAHs除了通过免疫毒性危害人体健康外,还可能通过对海洋动物的免疫干扰作用产生潜在的生态风险,如PAHs可导致双壳类动物血细胞总数下降、膜稳定性降低、氧化应激反应发生以及吞噬活性的下降[74-75]

PAHs可能通过多种途径调控免疫反应。Davila[76]的研究指出,具有免疫毒性的PAHs,如DMBA和B[a]P,导致淋巴细胞内Ca2+浓度的持续增加,无免疫毒性的B[e]P和蒽不会影响Ca2+浓度,初步表明蛋白酪氨酸激酶(PTK)激活引起Ca2+浓度的增加可能与PAHs的免疫毒性有关。Guan等[66]开展了进一步的研究,指出B[a]P抑制了ConA诱导的[Ca2+]/CaM/NF-κB和[Ca2+]/CaM/CaN/NFAT信号通路的活化,进而对小鼠T细胞产生毒害作用。除此之外,已有研究证实PAHs暴露可诱导活性氧(ROS),引发氧化应激反应[74],显著上调炎症标志物;例如苯并蒽酮暴露可上调诱导型一氧化氮合酶(iNOS)和环氧化酶(COX)-2的表达,显著诱导参与炎症的重要蛋白的表达(如ERK1/2、p38和JNK MAPKs)及其下游转录因子AP-1、NF-κB和Nrf2的活化[77]。ROS的上调经常发生在双壳贝类的血细胞中,伴随着吞噬活性的下降和细胞凋亡[74-75],表明PAHs对海洋无脊椎动物同样存在潜在的免疫毒性风险。此外,一项新的研究指出外周血淋巴细胞暴露于B[a]P会扰乱线粒体氧化还原机制并引发级联的表观遗传修饰,同时显著改变线粒体microRNA及其基因靶点(如NF-κβ、MYC和p53)的表达[78],表明表观遗传也可能是介导免疫毒性的机制之一。

2.3 多溴联苯(醚)

虽然多溴联苯(polybrominated biphenyls, PBBs)或PBDEs与PCBs结构相似,但PBBs与PBDEs并没有表现出较强的免疫毒性效应。有研究指出邻位取代的PBBs表现出与PCBs类似的效应和机制,即通过激活磷脂酶C,产生肌醇三磷酸酯(IP3),随后动员细胞内Ca2+浓度[51-53]。部分研究表明PBDEs具有一定的免疫调节作用,但在不同的动物体内的效应存在差异。在Fowles等[79]的研究中,商业化的五溴联苯醚混合物(DE-71)暴露仅在最高浓度(1 000 mg·kg-1)亚慢性暴露时抑制空斑形成细胞(PFC)反应,而对NKC活性并无影响。同样地,Bondy等[80]在围产期以DE-71暴露大鼠,并未发现KLH诱导的细胞和体液免疫应答受到影响。另有研究表明DE-71显著增加水貂钥孔血蓝蛋白特异性抗体,但对植物凝集素(phytohemagglutinin, PHA)诱导的皮肤反应没有明显影响[81]。Fernie等[82]报道了相反的结果,指出PBDEs暴露增强美洲红隼T细胞介导的PHA反应,但降低了抗体介导的免疫反应。结果的差异可能归咎于模式动物的不同。对于非特异性免疫反应的主力Mφs,非细胞毒性浓度的BDE-47和BDE-209并不影响其吞噬功能,但的确以浓度依赖的方式抑制其激活T细胞增殖的功能,导致T细胞增殖异常[83]。多项研究表明PBDEs影响免疫细胞分泌细胞因子,如抑制猪肺泡Mφs促炎因子(TNF-α和IL-6)的释放[84],促进热带斑海豚的成纤维细胞系细胞因子(IL-6、IL-1β和IL-8)的表达[85]等。此外,BDEs可以增加细胞内ROS的形成,激活细胞内和外部凋亡通路,促进免疫细胞凋亡[83],这亦可能是BDEs免疫毒性的机制之一。此外,还有一项较新的研究将环氧合酶(COX-2)激活的前列腺素信号转导与BDEs的免疫毒性效应联系起来[86],因为有研究证实前列腺素E2(prostaglandin E2, PGE2)及其受体在疾病早期通过调节细胞因子(如IL-1β、IL-6)的产生来促进炎症反应,调节免疫应答[87-88]。该研究证实部分BDEs(如BDE-47和BDE-209)确实可以通过降低PGE2受体EP4的表达水平而表现出免疫抑制[86]

3 总结(Summary)

二噁英及DLCs对生物体免疫系统均有一定程度的干扰作用,涉及了多种不同的机制。其中,具有强AHR激活活性的二噁英物质主要依赖AHR产生免疫毒性,不仅可以通过激活经典的AHR通路从而影响免疫相关基因表达,还可以通过非经典AHR通路发挥作用,如AHR与其他细胞信号通路(炎症反应、细胞周期和信号转导等)相互串扰,调节细胞因子的分泌和细胞凋亡的发生。DLCs导致免疫毒性的作用机制并不明晰,但由于低AHR活性,其免疫毒性效应极有可能主要通过非AHR依赖的机制产生的,包括改变免疫细胞呼吸爆发反应、促进细胞凋亡、影响线粒体功能等。此外,由于生物机体各系统关系密切,通过内分泌系统或神经系统影响免疫反应也可能是二噁英及DLCs产生免疫毒性的机制之一。总体上,与二噁英物质相比,DLCs导致免疫毒性的作用机制相关研究并不深入,其对不同免疫细胞及其生成的不同分子所产生的影响之间缺乏必要的联系,使得DLCs作用机制的理解存在较大的障碍,还需深入研究。

参考文献(References):

[1] 马德金.二恶英类化学物质的分类及其危害分析[J].科技传播, 2011, 3(5): 72-73

Ma D J.Classification and hazard analysis of dioxins-class chemicals[J].Public Communication of Science &Technology, 2011, 3(5): 72-73(in Chinese)

[2] Mandal P K.Dioxin: A review of its environmental effects and its aryl hydrocarbon receptor biology[J].Journal of Comparative Physiology B, 2005, 175(4): 221-230

[3] 吴明红, 李刚, 马静, 等.新型有机污染物氯代多环芳烃的研究进展[J].自然杂志, 2010, 32(4): 217-223

Wu M H, Li G, Ma J, et al.Research progress on new type organic contaminants—Chlorinated polycyclic aromatic hydrocarbons[J].Chinese Journal of Nature, 2010, 32(4): 217-223(in Chinese)

[4] Su G Y, Xia J, Liu H L, et al.Dioxin-like potency of HO-and MeO-analogues of PBDEs’ the potential risk through consumption of fish from Eastern China[J].Environmental Science &Technology, 2012, 46(19): 10781-10788

[5] Bock K W, Köhle C.Ah receptor: Dioxin-mediated toxic responses as hints to deregulated physiologic functions[J].Biochemical Pharmacology, 2006, 72(4): 393-404

[6] Sun Y V, Boverhof D R, Burgoon L D, et al.Comparative analysis of dioxin response elements in human, mouse and rat genomic sequences[J].Nucleic Acids Research, 2004, 32(15): 4512-4523

[7] 夏洁.二恶英类污染物的高通量生物检测技术研究及其在在环境监测中的应用[D].南京: 南京大学, 2013: 1-5, 12-13

Xia J.Development of a high throughput bio-analytical method of dioxin-like compounds and its application in environmental monitoring[D].Nanjing: Nanjing University, 2013: 1-5, 12-13(in Chinese)

[8] Holsapple M P, Snyder N K, Wood S C, et al.A review of 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced changes in immunocompetence: 1991 update[J].Toxicology, 1991, 69(3): 219-255

[9] Kerkvliet N I.AHR-mediated immunomodulation: The role of altered gene transcription[J].Biochemical Pharmacology, 2009, 77(4): 746-760

[10] Vorderstrasse B A, Bohn A A, Lawrence B P.Examining the relationship between impaired host resistance and altered immune function in mice treated with TCDD[J].Toxicology, 2003, 188(1): 15-28

[11] Stockinger B, Shah K, Wincent E.AHR in the intestinal microenvironment: Safeguarding barrier function[J].Nature Reviews Gastroenterology &Hepatology, 2021, 18(8): 559-570

[12] Stockinger B, di Meglio P, Gialitakis M, et al.The aryl hydrocarbon receptor: Multitasking in the immune system[J].Annual Review of Immunology, 2014, 32: 403-432

[13] Kobayashi D, Ahmed S, Ishida M, et al.Calcium/calmodulin signaling elicits release of cytochrome c during 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced apoptosis in the human lymphoblastic T-cell line, L-MAT[J].Toxicology, 2009, 258(1): 25-32

[14] Doi H, Baba T, Tohyama C, et al.Functional activation of arylhydrocarbon receptor(AhR)in primary T cells by 2,3,7,8-tetrachlorodibenzo-p-dioxin[J].Chemosphere, 2003, 52(4): 655-662

[15] Cho M K, Park J G, Iwata H, et al.2,3,7,8-tetrachlorodibenzo-p-dioxin prompted differentiation to CD4+CD8-CD25+and CD4+CD8+CD25+Tregs and altered expression of immune-related genes in the thymus of chicken embryos[J].Ecotoxicology and Environmental Safety, 2021, 211: 111947

[16] Pang C F, Zhu C H, Zhang Y Y, et al.2,3,7,8-tetrachloodibenzo-p-dioxin affects the differentiation of CD4 helper T cell[J].Toxicology Letters, 2019, 311: 49-57

[17] Ito T, Inouye K, Fujimaki H, et al.Mechanism of TCDD-induced suppression of antibody production: Effect on T cell-derived cytokine production in the primary immune reaction of mice[J].Toxicological Sciences, 2002, 70(1): 46-54

[18] Mitchell K A, Lawrence B.T cell receptor transgenic mice provide novel insights into understanding cellular targets of TCDD: Suppression of antibody production, but not the response of CD8+T cells, during infection with influenza virus[J].Toxicology and Applied Pharmacology, 2003, 192(3): 275-286

[19] Sulentic C E, Holsapple M P, Kaminski N E.Putative link between transcriptional regulation of IgM expression by 2,3,7,8-tetrachlorodibenzo-p-dioxin and the aryl hydrocarbon receptor/dioxin-responsive enhancer signaling pathway[J].The Journal of Pharmacology and Experimental Therapeutics, 2000, 295(2): 705-716

[20] Lu H T, Crawford R B, Suarez-Martinez J E, et al.Induction of the aryl hydrocarbon receptor-responsive genes and modulation of the immunoglobulin M response by 2,3,7,8-tetrachlorodibenzo-p-dioxin in primary human B cells[J].Toxicological Sciences, 2010, 118(1): 86-97

[21] Choi J Y, Oughton J A, Kerkvliet N I.Functional alterations in CD11b(+)Gr-1(+)cells in mice injected with allogeneic tumor cells and treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin[J].International Immunopharmacology, 2003, 3(4): 553-570

[22] Xu H Y, Zhang X Y, Li H K, et al.Immune response induced by major environmental pollutants through altering neutrophils in zebrafish larvae[J].Aquatic Toxicology, 2018, 201: 99-108

[23] Li X Y, Li N, Han Y N, et al.2,3,7,8-tetrachlorodibenzo-p-dioxin(TCDD)-induced suppression of immunity in THP-1-derived macrophages and the possible mechanisms[J].Environmental Pollution, 2021, 287: 117302

[24] Bankoti J, Rase B, Simones T, et al.Functional and phenotypic effects of AhR activation in inflammatory dendritic cells[J].Toxicology and Applied Pharmacology, 2010, 246(1-2): 18-28

[25] Bankoti J, Burnett A, Navarro S, et al.Effects of TCDD on the fate of naive dendritic cells[J].Toxicological Sciences, 2010, 115(2): 422-434

[26] Vorderstrasse B A, Kerkvliet N I.2,3,7,8-tetrachlorodibenzo-p-dioxin affects the number and function of murine splenic dendritic cells and their expression of accessory molecules[J].Toxicology and Applied Pharmacology, 2001, 171(2): 117-125

[27] Lee J A, Hwang J A, Sung H N, et al.2,3,7,8-tetrachlorodibenzo-p-dioxin modulates functional differentiation of mouse bone marrow-derived dendritic cells downregulation of RelB by 2,3,7,8-tetrachlorodibenzo-p-dioxin[J].Toxicology Letters, 2007, 173(1): 31-40

[28] Winzler C, Rovere P, Rescigno M, et al.Maturation stages of mouse dendritic cells in growth factor-dependent long-term cultures[J].The Journal of Experimental Medicine, 1997, 185(2): 317-328

[29] Wright E J, De Castro K P, Joshi A D, et al.Canonical and non-canonical aryl hydrocarbon receptor signaling pathways[J].Current Opinion in Toxicology, 2017, 2: 87-92

[30] Tang J S, Cait A, Li Y Y, et al.Practical approach to explore the effects of polyphenols on aryl hydrocarbon receptor regulated immune function[J].Journal of Agricultural and Food Chemistry, 2021, 69(31): 8625-8633

[31] Lahoti T S, Boyer J A, Kusnadi A, et al.Aryl hydrocarbon receptor activation synergistically induces lipopolysaccharide-mediated expression of proinflammatory chemokine(c-c motif)ligand 20[J].Toxicological Sciences, 2015, 148(1): 229-240

[32] DiNatale B C, Schroeder J C, Francey L J, et al.Mechanistic insights into the events that lead to synergistic induction of interleukin 6 transcription upon activation of the aryl hydrocarbon receptor and inflammatory signaling[J].The Journal of Biological Chemistry, 2010, 285(32): 24388-24397

[33] Vogel C F A, Matsumura F.A new cross-talk between the aryl hydrocarbon receptor and RelB, a member of the NF-kappaB family[J].Biochemical Pharmacology, 2009, 77(4): 734-745

[34] Vogel C F A, Sciullo E, Matsumura F.Involvement of RelB in aryl hydrocarbon receptor-mediated induction of chemokines[J].Biochemical and Biophysical Research Communications, 2007, 363(3): 722-726

[35] Vogel C F A, Goth S R, Dong B, et al.Aryl hydrocarbon receptor signaling mediates expression of indoleamine 2,3-dioxygenase[J].Biochemical and Biophysical Research Communications, 2008, 375(3): 331-335

[36] Li Q S, Harden J L, Anderson C D, et al.Tolerogenic phenotype of IFN-γ-induced IDO+dendritic cells is maintained via an autocrine IDO-kynurenine/AhR-IDO loop[J].Journal of Immunology, 2016, 197(3): 962-970

[37] Blevins L K, Zhou J J, Crawford R, et al.TCDD-mediated suppression of naïve human B cell IgM secretion involves aryl hydrocarbon receptor-mediated reduction in STAT3 serine 727 phosphorylation and is restored by interferon-γ[J].Cellular Signalling, 2020, 65: 109447

[38] Phadnis-Moghe A S, Li J P, Crawford R B, et al.SHP-1 is directly activated by the aryl hydrocarbon receptor and regulates BCL-6 in the presence of 2,3,7,8-tetrachlorodibenzo-p-dioxin(TCDD)[J].Toxicology and Applied Pharmacology, 2016, 310: 41-50

[39] Sulentic C E W, Kaminski N E.The long winding road toward understanding the molecular mechanisms for B-cell suppression by2,3,7,8-tetrachlorodibenzo-p-dioxin[J].Toxicological Sciences, 2011, 120(suppl.1): S171-S191

[40] Camacho I A, Hassuneh M R, Nagarkatti M, et al.Enhanced activation-induced cell death as a mechanism of 2,3,7,8-tetrachlorodibenzo-p-dioxin(TCDD)-induced immunotoxicity in peripheral T cells[J].Toxicology, 2001, 165(1): 51-63

[41] Camacho I A, Singh N, Hegde V L, et al.Treatment of mice with 2,3,7,8-tetrachlorodibenzo-p-dioxin leads to aryl hydrocarbon receptor-dependent nuclear translocation of NF-kappaB and expression of Fas ligand in thymic stromal cells and consequent apoptosis in T cells[J].Journal of Immunology, 2005, 175(1): 90-103

[42] Wittner J, Schuh W.Krüppel-like factor 2(KLF2)in immune cell migration[J].Vaccines, 2021, 9(10): 1171

[43] McMillan B J, McMillan S N, Glover E, et al.2,3,7,8-tetrachlorodibenzo-p-dioxin induces premature activation of the KLF2regulon during thymocyte development[J].Journal of Biological Chemistry, 2007, 282(17): 12590-12597

[44] Kimura A, Abe H, Tsuruta S, et al.Aryl hydrocarbon receptor protects against bacterial infection by promoting macrophage survival and reactive oxygen species production[J].International Immunology, 2014, 26(4): 209-220

[45] Hammond J A, Hall A J, Dyrynda E A.Comparison of polychlorinated biphenyl(PCB)induced effects on innate immune functions in harbour and grey seals[J].Aquatic Toxicology, 2005, 74(2): 126-138

[46] Ross P, De Swart R, Addison R, et al.Contaminant-induced immunotoxicity in harbour seals: Wildlife at risk?[J].Toxicology, 1996, 112(2): 157-169

[47] Sawyna J M, Spivia W R, Radecki K, et al.Association between chronic organochlorine exposure and immunotoxicity in the round stingray(Urobatis halleri)[J].Environmental Pollution, 2017, 223: 42-50

[48] Xiao C Y, Zhang Y F, Zhu F.Immunotoxicity of polychlorinated biphenyls(PCBs)to the marine crustacean species, Scylla paramamosain[J].Environmental Pollution, 2021, 291: 118229

[49] Schulze Stack A, Altman-Hamamdzic S, Morris P J, et al.Polychlorinated biphenyl mixtures(Aroclors)inhibit LPS-induced murine splenocyte proliferation in vitro[J].Toxicology, 1999, 139(1-2): 137-154

[50] Lyche J, Larsen H, Skaare J U, et al.Effects of perinatal exposure to low doses of PCB 153 and PCB 126 on lymphocyte proliferation and hematology in goat kids[J].Journal of Toxicology and Environmental Health Part A, 2004, 67(11): 889-904

[51] Voie Ø A, Fonnum F.Orthosubstituted polychlorinated biphenyls elevate intracellular[Ca2+]in human granulocytes[J].Environmental Toxicology and Pharmacology, 1998, 5(2): 105-112

[52] Voie Ø A, Wiik P, Fonnum F.Ortho-substituted polychlorinated biphenyls activate respiratory burst measured as luminol-amplified chemoluminescence in human granulocytes[J].Toxicology and Applied Pharmacology, 1998, 150(2): 369-375

[53] Kristoffersen A, Voie Ø A, Fonnum F.Ortho-substituted polybrominated biphenyls activate respiratory burst in granulocytes from humans[J].Toxicology Letters, 2002, 129(1-2): 161-166

[54] Voie Ø A, Tysklind M, Andersson P L, et al.Activation of respiratory burst in human granulocytes by polychlorinated biphenyls: A structure-activity study[J].Toxicology and Applied Pharmacology, 2000, 167(2): 118-124

[55] Sørmo E G, Larsen H J S, Johansen G M, et al.Immunotoxicity of polychlorinated biphenyls(PCB)in free-ranging gray seal pups with special emphasis on dioxin-like congeners[J].Journal of Toxicology and Environmental Health, Part A, 2009, 72(3-4): 266-276

[56] Levin M, De Guise S, Ross P S.Association between lymphocyte proliferation and polychlorinated biphenyls in free-ranging harbor seal(Phoca vitulina)pups from British Columbia, Canada[J].Environmental Toxicology and Chemistry, 2005, 24(5): 1247-1252

[57] Levin M, Gebhard E, Jasperse L, et al.Immunomodulatory effects of exposure to polychlorinated biphenyls and perfluoroalkyl acids in East Greenland ringed seals(Pusa hispida)[J].Environmental Research, 2016, 151: 244-250

[58] Levin M, Morsey B, Mori C, et al.Specific non-coplanar PCB-mediated modulation of bottlenose dolphin and beluga whale phagocytosis upon in vitroexposure[J].Journal of Toxicology and Environmental Health Part A, 2004, 67(19): 1517-1535

[59] Levin M, Morsey B, Mori C, et al.Non-coplanar PCB-mediated modulation of human leukocyte phagocytosis: A new mechanism for immunotoxicity[J].Journal of Toxicology and Environmental Health Part A, 2005, 68(22): 1977-1993

[60] Rousselet E, Levin M, Gebhard E, et al.Polychlorinated biphenyls(PCBs)modulate both phagocytosis and NK cell activity in vitroin juvenile loggerhead sea turtles(Caretta caretta)[J].Journal of Toxicology and Environmental Health Part A, 2017, 80(10-12): 556-561

[61] Cary T L, Karasov W H.Larval exposure to polychlorinated biphenyl-126 led to a long-lasting decrease in immune function in postmetamorphic juvenile northern leopard frogs, Lithobates pipiens[J].Environmental Toxicology and Chemistry, 2022, 41(1): 81-94

[62] 赵婷, 茆广华, 冯伟伟, 等.类二噁英多氯联苯致成年小鼠免疫毒性效应及机制研究[C].中国毒理学会计算毒理专业委员会.第二次全国计算毒理学学术会议暨中国毒理学会第一届计算毒理专业委员会第二次会议会议摘要.兰州: 中国毒理学会计算毒理专业委员会, 2018: 94-95

[63] Du F, Zhao T, Ji H C, et al.Dioxin-like(DL-)polychlorinated biphenyls induced immunotoxicity through apoptosis in mice splenocytes via the AhR mediated mitochondria dependent signaling pathways[J].Food and Chemical Toxicology, 2019, 134: 110803

[64] Duffy-Whritenour J E, Kurtzman R Z, Kennedy S, et al.Non-coplanar polychlorinated biphenyl(PCB)-induced immunotoxicity is coincident with alterations in the serotonergic system[J].Journal of Immunotoxicology, 2010, 7(4): 318-326

[65] Miyata M, Furukawa M, Takahashi K, et al.Mechanism of 7,12-dimethylbenz[a]anthracene-induced immunotoxicity: Role of metabolic activation at the target organ[J].Japanese Journal of Pharmacology, 2001, 86(3): 302-309

[66] Guan S, Huang Y X, Feng Z, et al.The toxic effects of benzo[a]pyrene on activated mouse T cells in vitro[J].Immunopharmacology and Immunotoxicology, 2017, 39(3): 117-123

[67] Phalen L J, Köllner B, Leclair L A, et al.The effects of benzo[a]pyrene on leucocyte distribution and antibody response in rainbow trout(Oncorhynchus mykiss)[J].Aquatic Toxicology, 2014, 147: 121-128

[68] Davila D R, Romero D L, Burchiel S W.Human T cells are highly sensitive to suppression of mitogenesis by polycyclic aromatic hydrocarbons and this effect is differentially reversed by α-naphthoflavone[J].Toxicology and Applied Pharmacology, 1996, 139(2): 333-341

[69] Jeon T W, Jin C H, Lee S K, et al.In vivoand in vitroimmunosuppressive effects of benzo[k]fluoranthene in female Balb/c mice[J].Journal of Toxicology and Environmental Health, Part A, 2005, 68(23-24): 2033-2050

[70] Lauer F T, Walker M K, Burchiel S W.Dibenzo[def, p]chrysene(DBC)suppresses antibody formation in spleen cells following oral exposures of mice[J].Journal of Toxicology and Environmental Health, Part A, 2013, 76(1): 16-24

[71] Smith D C, Smith M J, White K L.Systemic immunosuppression following a single pharyngeal aspiration of 1,2:5,6-dibenzanthracene in female B6C3F1mice[J].Journal of Immunotoxicology, 2010, 7(3): 219-231

[72] Laupeze B, Amiot L, Sparfel L, et al.Polycyclic aromatic hydrocarbons affect functional differentiation and maturation of human monocyte-derived dendritic cells[J].Journal of Immunology, 2002, 168(6): 2652-2658

[73] van Grevenynghe J, Rion S, Le Ferrec E, et al.Polycyclic aromatic hydrocarbons inhibit differentiation of human monocytes into macrophages[J].Journal of Immunology, 2003, 170(5): 2374-2381

[74] Xie J, Zhao C F, Han Q, et al.Effects of pyrene exposure on immune response and oxidative stress in the pearl oyster, Pinctada martensii[J].Fish &Shellfish Immunology, 2017, 63: 237-244

[75] Tian Y M, Pan L Q, Miao J J, et al.The mechanism of apoptosis of Chlamys farrerihemocytes under benzopyrene stress in vitro[J].Science of the Total Environment, 2021, 794: 148731

[76] Davila D R.Protein tyrosine kinase activation by polycyclic aromatic hydrocarbons in human HPB-ALL T cells[J].Journal of Toxicology and Environmental Health, Part A, 1999, 56(4): 249-261

[77] Tewari P, Roy R, Mishra S, et al.Benzanthrone induced immunotoxicity via oxidative stress and inflammatory mediators in Balb/c mice[J].Immunobiology, 2015, 220(3): 369-381

[78] Bhargava A, Kumari R, Khare S, et al.Mapping the mitochondrial regulation of epigenetic modifications in association with carcinogenic and noncarcinogenic polycyclic aromatic hydrocarbon exposure[J].International Journal of Toxicology, 2020, 39(5): 465-476

[79] Fowles J R, Fairbrother A, Baecher-Steppan L, et al.Immunologic and endocrine effects of the flame-retardant pentabromodiphenyl ether(DE-71)in C57BL/6J mice[J].Toxicology, 1994, 86(1-2): 49-61

[80] Bondy G S, Lefebvre D E, Aziz S, et al.Toxicologic and immunologic effects of perinatal exposure to the brominated diphenyl ether(BDE)mixture DE-71 in the Sprague-Dawley rat[J].Environmental Toxicology, 2013, 28(4): 215-228

[81] Martin P A, Mayne G J, Bursian F S J, et al.Immunotoxicity of the commercial polybrominated diphenyl ether mixture DE-71 in ranch mink(Mustela vison)[J].Environmental Toxicology and Chemistry, 2007, 26(5): 988-997

[82] Fernie K J, Mayne G, Laird Shutt J, et al.Evidence of immunomodulation in nestling American kestrels(Falco sparverius)exposed to environmentally relevant PBDEs[J].Environmental Pollution, 2005, 138(3): 485-493

[83] Lv Q Y, Wan B, Guo L H, et al.In vitroimmune toxicity of polybrominated diphenyl ethers on murine peritoneal macrophages: Apoptosis and immune cell dysfunction[J].Chemosphere, 2015, 120: 621-630

[84] Hennigar S R, Myers J L, Tagliaferro A R.Exposure of alveolar macrophages to polybrominated diphenyl ethers suppresses the release of pro-inflammatory products in vitro[J].Experimental Biology and Medicine, 2012, 237(4): 429-434

[85] Rajput I R, Xiao Z Y, Sun Y J, et al.Establishment of pantropic spotted dolphin(Stenella attenuata)fibroblast cell line and potential influence of polybrominated diphenyl ethers(PBDEs)on cytokines response[J].Aquatic Toxicology, 2018, 203: 1-9

[86] Huang Y, Rajput I R, Sanganyado E, et al.Immune stimulation effect of PBDEs via prostaglandin pathway in pantropical spotted dolphin: An in vitrostudy[J].Chemosphere, 2020, 254: 126717

[87] Subbaramaiah K, Cole P A, Dannenberg A J.Retinoids and carnosol suppress cyclooxygenase-2 transcription by CREB-binding protein/p300-dependent and-independent mechanisms[J].Cancer Research, 2002, 62(9): 2522-2530

[88] Ricciotti E, FitzGerald G A.Prostaglandins and inflammation[J].Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31(5): 986-1000

Research Progress on Immunotoxic Mechanism of Dioxins and Dioxin-like Pollutants

Wang Xinge1,2,3,4, Li Na1,2,3,*, Han Yingnan1,2,3, Ma Mei1,2,3,4, Wu Xinghua5, Li Chong5, Wang Dianchang5

1.CAS Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China 2.State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China 3.National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China 4.University of Chinese Academy of Sciences, Beijing 100049, China 5.China Three Gorges Corporation, Beijing 100038, China

Abstract:Dioxins are highly potent exogenous ligands of aryl hydrocarbon receptor(AHR), which are known to exert immunotoxic effects through AHR.The canonical AHR toxicity pathway is that activated AHR enters the nucleus and forms a complex with AHR nuclear translocator(ARNT), inducing the expression of downstream immune-related genes controlled by dioxin response element(DRE).However, new studies have shown that non-canonical AHR pathways are responsible to dioxin-induced immunotoxicity to some extent.Non-canonical AHR pathways refer to that activated AHR cross-talk with key proteins in other signaling pathways(such as inflammation, cell cycle, signal transduction), affecting cell function.In this process, AHR directly or in the form of AhR-ARNT complex interacts with other transcription factors, and they are collaboratively recruited and bind to consensus or non-consensus DRE sites, then affecting the transcription and expression of key molecules.At present, many substances with similar structure to dioxins have been proved to have dioxin-like AHR activation activity, including some polychlorinated biphenyls(PCBs), polycyclic aromatic hydrocarbons(PAHs), polybrominated diphenyl ethers(PBDEs), which are called dioxin-like compounds(DLCs).DLCs can affect the immune system by activating AHR, but AHR-independent pathways have been also suggested in some research, which could include causing cells to oxidative stress, affecting respiratory burst response, interfering with mitochondrial function and promoting cell apoptosis, etc.In conclusion, compared with dioxins, the immunotoxic mechanism of DLCs is not clear, and more systematic studies are needed.

Keywords:dioxins; dioxin-like compounds; aryl hydrocarbon receptor; immunotoxicity

文章编号:1673-5897(2023)1-138-11

中图分类号:X171.5

文献标识码:A

收稿日期:2022-08-05

录用日期:2022-10-17

基金项目:国家重点研发计划课题(2021YFC3200803);中国长江三峡集团有限公司科研项目(201903139);场地土壤环境基准推导及表征关键技术(2019YFC1804604)

第一作者:王鑫格(1997—),女,博士研究生,研究方向为水生态毒理学,E-mail: xgwang_st@rcees.ac.cn

*通信作者(Corresponding author), E-mail: lina@rcees.ac.cn

DOI:10.7524/AJE.1673-5897.20220805003

王鑫格, 李娜, 韩颖楠, 等.二噁英及类二噁英污染物致免疫毒性作用机制研究进展[J].生态毒理学报,2023, 18(1): 138-148

Wang X G, Li N, Han Y N, et al.Research progress on immunotoxic mechanism of dioxins and dioxin-like pollutants[J].Asian Journal of Ecotoxicology, 2023, 18(1): 138-148(in Chinese)

Received 5 August 2022

accepted 17 October 2022

通信作者简介:李娜(1982—),女,博士,副研究员,主要研究方向为环境毒理学。