随着现代农业的发展,各类除草剂在农业生产中被广泛使用。根据其化学结构不同,目前常用的除草剂包括取代脲类(如敌草隆、丁噻隆、烟嘧磺隆和绿麦隆等)、氨基酸类(如草甘膦、草铵膦等)、苯甲酸类(如麦草畏、百草敌等)、环己烯酮类(如烯草酮、烯禾啶等)、酰胺类(如异丙甲草胺、乙草胺和甲草胺等)、咪唑啉酮类、磺酰脲类、嘧啶水杨酸类、联吡啶类(如百草枯、敌草快等)、苯氧羧酸类(如2,4-D等)和三嗪类(如阿特拉津、扑草净、伊尔加尔、特丁净和西玛津等)[1]。其中,咪唑啉酮类、磺酰脲类和三嗪类等除草剂[2]由于具有半衰期长、难降解等特点[3],因而在环境中残留时间较长。在防除杂草的同时,大量除草剂残留会通过地表径流、渗入地下水等进入水环境,对水生生物生存和生态系统健康造成严重危害。研究报道,我国莱州湾海域表层海水中阿特拉津、莠灭净和扑草净等含量分别达到31.3、12.4和6.49 ng·L-1[4];阿特拉津及其降解产物在我国东部胶州半岛南部河口和海湾浓度为80~550 ng·L-1[5];我国海南省槟榔园附近水域中草甘膦浓度达到0.67~0.91 μg·L-1[6];越南北部地区村庄地表水中百草枯浓度最高达到134.08 μg·L-1 [7]。我国《地表水环境质量标准》(GB 3838—2002)中三嗪类除草剂阿特拉津在集中式生活饮用水地表水源地特定项目标准限值为3 ng·L-1[8],国家《生活饮用水卫生标准》(GB 5749—2006)规定草甘膦限量为0.7 mg·L-1[9],《地下水质量标准》(GB/T 14848—2017)规定的Ⅰ类地下水草甘膦不超过0.1 mg·L-1[10]。然而,目前我国《海水水质标准》(GB 3097—1997)[11]并未对除草剂制定标准限值。鱼类作为水生生物中的主要物种,所受到的农药污染危害极为严重,尽管目前环境中常检出的除草剂如阿特拉津[12]、扑草净[13]和敌草隆[14]等按照农药毒性分级标准属于低毒农药,且环境浓度的除草剂可能并不会对鱼类造成急性毒性,但长期低剂量的除草剂可能会对鱼类产生慢性危害,如影响生殖机能和子代发育等,最终影响其生存和发展[15]。双壳贝类生活在受陆地污染较为严重的潮间带或近岸浅海,且大部分营固着生活,其配子多数是自由受精且受精过程在海水中,除草剂等环境污染物极易造成双壳贝类配子质量降低、改变遗传物质、影响幼虫变态和生长异常等。有研究发现,敌草隆在欧洲近海海域达到0.02~1.9 μg·L-1,与水温、盐度、病毒和养殖污染等其他环境因素结合后可造成法国40%~100%的牡蛎在夏季大量死亡[16]。乔丹[17]2016年在山东乳山湾海域西草净检出值范围在7.90~170 ng·L-1,扑草净检出值范围为22~342 ng·L-1,太平洋牡蛎(Crassostrea gigas)中扑草净和西草净的含量分别为1.7 μg·kg-1和4.18 μg·kg-1。2012年4—8月,日本多次检测出从中国进口的活蛤蜊中扑草净含量超过水产品残留限量标准0.01 mg·kg-1[18]。因此,本文综述了近20年关于除草剂对鱼类和双壳贝类生殖能力、早期发育的影响以及机制方面的研究,以期为评估除草剂对水生生物的健康风险提供理论参考。
精子质膜的脂质组成可以影响鱼类精子移动性、冷敏感性、整体存活率和膜完整性。精子膜脂构成的渗透性微区域可以促进精子与卵母细胞结合[19];精子脂质中含有的大量不饱和脂肪酸,还可以调节精子流动性以及顶体反应[20],脂质在受精过程中具有不可或缺的作用。除草剂暴露后可造成生物体发生氧化损伤,生物体内大量的氧自由基活性氧(reactive oxygen species, ROS)可以攻击精子质膜和卵母细胞膜上的不饱和脂肪酸发生脂质过氧化,从而减弱精子的移动性和与卵母细胞的结合能力。阿特拉津作为典型的三嗪类除草剂,由于其使用量大,半衰期长(244 d),被认定为持久性有机污染物[21]。2、10和100 μg·L-1阿特拉津暴露能够抑制斑马鱼(Brachydanio rerio var)性腺中抗氧化防御相关超氧化物歧化酶2(superoxide dismutase 2, SOD2)基因和谷胱甘肽过氧化物酶4b(glutathione peroxidase 4b)基因的表达,抗氧化防御能力的降低导致ROS增多,导致其精子细胞膜的完整性显著降低,进而影响精子活力、降低精子运动能力和运动周期[22]。草甘膦又称农达,为广谱氨基酸类除草剂,具有高水溶性,是目前应用最广、生产量最大的农业除草剂。研究发现,草甘膦(10 mg·L-1)暴露雄性斑马鱼96 h,导致性腺内发生氧化损伤,精子细胞内脂质过氧化水平增加,精子膜完整性下降57.7%[23]。配子的结合和精子鞭毛运动还需要利用线粒体所提供的大量能量,以保证精子与卵母细胞的结合,ROS攻击线粒体后导致腺嘌呤核苷三磷酸(adenosine triphosphate, ATP)产生不足,也能减弱精子的运动能力。阿特拉津也可以降低斑马鱼精子的线粒体功能,精子活动力降低与精子内ATP含量不足有关[22]。10 mg·L-1草甘膦暴露成年雄性斑马鱼96 h,其精子活动力和精子活动周期的降低也与线粒体功能下降有关[23]。当鱼类长时间或接触高浓度除草剂时,其有害影响超过机体抗氧化防御系统或激素的调控范围,则会导致生殖细胞发育停滞或凋亡。例如,500 μg·L-1的甲草胺和阿特拉津可以抑制鲫鱼(Carassius auratus)精巢精原细胞的发生,导致精巢结缔组织出现断裂、坏死现象[24]。
除草剂还可以通过干扰精卵识别、解毒酶活性、精子线粒体功能以及诱导精子DNA损伤等,影响双壳贝类的受精率和子代发育。异丙甲草胺是农业中常用的酰胺除草剂,研究发现其对双壳贝类具有毒性作用[25];敌草隆属于取代脲类除草剂,不仅用于防除陆地杂草,更被许多国家用于船艇防污剂[26],其半衰期为60 d[27];伊尔加尔是一种除草剂添加剂,据估计其在海洋系统中的残留时间可超过10 a[28]。异丙甲草胺、伊尔加尔和敌草隆(0.01~0.04 μg·L-1)暴露太平洋牡蛎精子30 min,可通过影响精子上的巯基而干扰精子对卵细胞的识别和附着,进而导致其受精率显著降低[29]。除草剂还可干扰主要解毒酶活性,影响双壳贝类抵抗氧化反应产物能力。例如3 118 ng·L-1阿特拉津暴露7 d导致翡翠贻贝(Perna viridis)性腺中谷胱甘肽S-转移酶(glutathione S-transferase, GST)活性显著增加[30]。线粒体膜表面富含蛋白质、脂质和核酸等,为线粒体的功能提供基础。除草剂可以诱导性腺内ROS含量增多,导致生殖细胞中线粒体结构或功能受损。2,4-二氯苯氧乙酸(2,4-dichlorophenoxyacetic acid, 2,4-D)属于典型的苯氧羧酸类除草剂,由于其具有较高的水溶性,极易进入地下水或地表水中[31],且其降解时间会因环境条件的不同,在20 d到312 d不等[32]。软壳蛤(Mya arenaria)暴露于除草剂混合物2,4-D、2,4-DP以及麦草畏中28 d,雌性个体性腺中天冬氨酸转氨甲酰酶活性受到抑制,一定程度上说明其性腺中ATP含量减少、线粒体功能受损[33]。除草剂导致机体内堆积大量ROS还可造成生殖细胞的遗传毒性,不仅降低受精率,更会通过跨代遗传对其子代发育产生不利影响。0.6 μg·L-1敌草隆暴露太平洋牡蛎7 d,导致亲本精子DNA损伤增加、子代D型幼虫发育迟缓,其中15%的子代个体为DNA亚二倍体,说明敌草隆对生殖细胞的基因毒性效应会随受损DNA传递给子代[34]。
关于不同类型的除草剂对鱼类或贝类生殖细胞的毒性效应机制,目前大部分观点认为除草剂可以造成机体的氧化损伤,例如通过脂质过氧化破坏生殖细胞细胞膜、影响抗氧化防御系统、干扰线粒体正常功能、造成DNA损伤影响受精和后代发育等,而有关生殖细胞损伤的特异性分子机制还需进一步探索。
很多研究报道,除草剂可以通过干扰生殖内分泌系统影响鱼类和贝类的生殖和发育过程,敌草隆、阿特拉津、乙草胺、丁噻隆和草甘膦等多种除草剂已被证实为内分泌干扰化合物[35]。敌草隆是一种广泛使用的取代脲类除草剂[36],用于防除陆生杂草和用作防污涂料[34],200 ng·L-1敌草隆及其代谢产物可以降低雄性尼罗罗非鱼(Oreochromis niloticus)血浆中睾酮(testosterone, T)含量、性腺指数(gonadosomatic index, GSI)以及精小管直径,最终导致雄性尼罗罗非鱼生殖障碍[37]。一方面,除草剂可以通过影响性激素合成酶活性和/或基因表达,导致性激素水平紊乱。丁噻隆为典型的取代脲类除草剂,在土壤中有着较长的半衰期(1~7 a)[38],并且水溶性很高(2 500 mg·L-1)[39],极易从土壤进入水环境中。200 ng·L-1丁噻隆暴露25 d后能够通过升高雄性尼罗罗非鱼脑中芳香化酶CYP19A1蛋白含量,使其血浆中T水平降低、雌二醇(estradiol, E2)水平高,导致雄鱼出现雌性化,精小管萎缩、精子释放率降低现象[40]。类固醇生成急性调节蛋白(steroid genic acute regulatory protein, STAR)是合成类固醇生成途径中的一种限速蛋白,50 μg·L-1的阿特拉津暴露日本青鳉(Oryzias latipes)自受精后一直至性成熟,发现其精巢内star基因与对照组相比下调3.25倍[41]。类固醇生成因子-1(steroidogenic factor-1, sf-1)可调节star基因表达,65 μg·L-1草甘膦暴露雌性斑马鱼15 d,导致其卵母细胞直径和GSI增加,sf-1基因在斑马鱼卵巢内表达升高[42]。80 μg·L-1 2,4-二氯苯酚(2,4-dichlorophenol, 2,4-DCP)暴露斑马鱼20 d,暴露组中雌性比例增加,研究发现2,4-DCP可通过上调斑马鱼全身性类固醇合成酶基因cyp19a1a、cyp19a1b和17β-羟基类固醇脱氢酶的表达,升高其体内E2和卵黄原蛋白(vitellogenin, VTG)含量,导致雄鱼发生雌性化[43]。另一方面除草剂还可以通过竞争性与受体或蛋白复合物结合,影响受体基因的表达,进而干扰性激素的功能。乙草胺是酰胺类除草剂中的代表种类,属于持久性有机污染物。研究发现0.3 mg·L-1乙草胺暴露成年雌性斑马鱼7 d,雌鱼卵巢中雄激素T的含量与对照组相比显著降低,卵巢中雄激素受体(androgen receptor, ar)基因表达量降低,很有可能是乙草胺竞争性抑制T与AR的结合而发挥抗雄激素效应所致[44]。通过对大西洋鲑(Salmo salar)成熟卵细胞的体外实验发现,0.1~1 mol·μL-1的阿特拉津可以抑制卵母细胞生发泡破裂,其作用机制主要是通过与黄体酮竞争性结合卵母细胞上卵巢膜黄体酮受体而发挥抑制作用[45]。
目前贝类性腺发育以及性别分化的调控机制尚不清楚,但已有大量研究对其进行了探索。发现太平洋牡蛎中cg-dml[46]、β(og-tcfβ)[47]、cyp356a1[48]和cg-nanos-like[49]等基因、黑唇珍珠贝中卵黄原蛋白特异性表达基因pmarg-fem1-like、pmarg-dmrt和pmarg-foxl2等参与了贝类性腺发育或生殖细胞的形成[50];虾夷扇贝成熟时期foxl2和tesk基因[50]、太平洋牡蛎中fem-1b和fem-1c基因[51]、sox9和sry基因[52]、soxe和β-catenin基因[53]已被证明参与了双壳贝类的性别分化。生殖相关蛋白TGF-β 蛋白也被证实能够影响太平洋牡蛎生殖细胞的正常发育[54]。软体动物中也存在性类固醇激素的合成、代谢途径,且与脊椎动物类似[55-57]。性激素合成后还需要与细胞内特定的性激素受体结合才能对双壳贝类生殖进行调控,目前研究发现双壳贝类中的一些雌激素受体基因虽然在性腺中表达量较高,但其受体蛋白与脊椎动物中的雌激素受体蛋白并不一致[58],因而可能存在其他的调控机制。双壳贝类如牡蛎可以快速富集污染水体中的雌激素类物质,例如48 h其体内E2的浓度便达到周围水环境浓度的几十倍以上[59]。2,2’,4,4’-四溴二苯醚[60]、苯并芘[61]、双酚A[62]和三丁基锡[63]等已被证实对双壳贝类的性腺发育和性别分化造成干扰。除草剂作为内分泌干扰物也发现具有雌激素活性,可以诱导雌性特异性蛋白VTG的表达。例如,1.5 μg·L-1阿特拉津暴露可导致淡水贻贝(Utterbackia imbecillis)雄性个体性腺内VTG含量显著升高,为对照组的180倍[64]。过量的卵黄原蛋白累积不仅会增加双壳贝类雌性化现象,最终可能会对雄性双壳贝类造成生殖损伤。
不同的除草剂对鱼类的生殖内分泌干扰机制不同,有的除草剂通过影响性激素合成酶活性和/或基因表达,导致性激素水平紊乱后干扰鱼类生殖内分泌,如取代脲类丁噻隆、氨基酸类草甘膦和苯氧羧酸类2,4-DCP除草剂等;有的除草剂则通过竞争性与受体或蛋白复合物结合,影响受体基因的表达,进而干扰性激素的功能,例如酰胺类除草剂乙草胺。另外,相同除草剂对不同生物的内分泌干扰机制也可能不同,比如阿特拉津通过影响性激素合成基因的表达干扰日本青鳉的生殖内分泌;而对于大西洋鲑,则发现阿特拉津可以竞争性结合激素受体,从而起到干扰生殖内分泌的作用。
一般来讲,鱼类胚胎不能游动,很难躲避污染物的毒性并且胚胎的绒毛膜也不能阻挡外源化学物质的毒害[65]。除草剂对鱼类的胚胎毒性主要表现在导致死亡、孵化率降低、心包水肿、胚胎水肿、脊柱侧弯、身体缩短、尾部畸形或发育迟缓等。除草剂可以造成鱼类胚胎体内明显的氧化损伤,脂质过氧化水平升高,抗氧化系统中过氧化氢酶、超氧化物歧化酶和谷胱甘肽S-转移酶活性发生变化,从而鱼类胚胎发育畸形甚至死亡。斑马鱼胚胎暴露于0.1 mg·mL-1 R型、S型以及RAC型3种构型的解草酮96 h,胚胎内过氧化氢酶(catalase, CAT)、SOD活性显著降低,GST活性显著升高,斑马鱼胚胎体内cat基因的表达发生下调,与该浓度组下酶活性变化保持一致,说明解草酮可以干扰斑马鱼胚胎抗氧化应激的能力[66]。在0.1 mol·mL-1的阿特拉津暴露96 h后,发现斑马鱼胚胎内脂质过氧化水平增加、谷胱甘肽水平和CAT活性下降,其水肿发生率达到15%,发育迟缓造成短尾发生率为15%,脊柱侧弯发生率为10%,证明阿特拉津可通过氧化损伤和影响抗氧化系统造成斑马鱼等发育异常[67]。5 mg·L-1阿特拉津暴露斑马鱼胚胎48 h,发现斑马鱼胚胎内可溶性谷胱甘肽S-转移酶和微粒谷胱甘肽S-转移酶活性显著升高[68]。100 mg·L-1草甘膦暴露斑马鱼胚胎96 h后,胚胎体内碳酸酐酶含量显著下降,鳃区ROS含量增多,从而影响血液通过鳃向外界排泄二氧化碳的能力,导致胚胎发育过程中出现显著身体畸形(尾部畸形、短尾以及头部畸形)和整体细胞凋亡增加现象[69]。扑草净为三嗪类除草剂,其在海水中半衰期达到55~70 d[70]。1 200 μg·L-1和4 000 μg·L-1扑草净暴露鲤鱼(Cyprinus carpio)5 d,其孵化率与对照组相比显著降低[71]。除草剂还可以影响神经或骨骼发育相关蛋白含量和基因的表达,干扰胚胎发育。α-微管蛋白(α-tubulin)的乙酰化修饰能够抑制神经元中微管正端的动态性,进而限制神经元轴突的过度分支与生长、维持中枢神经系统的正常功能。50 μg·mL-1草甘膦暴露96 h能够显著降低斑马鱼胚胎中乙酰化α-微管蛋白水平,干扰微管稳定性[72]。不同构象的解草酮(0.1 mg·mL-1)暴露斑马鱼胚胎96 h,通过降低角蛋白-17(keratin17)、t-box转录因子16 (t-box transcription factor16)、成骨细胞特异性转录因子(osterix)等形态发生相关基因表达量,导致斑马鱼胚胎骨基质蛋白合成受损,进而出现脊柱弯曲现象[66]。
除草剂还可以干扰仔鱼发育,造成肝、肾组织损伤、运动行为异常等[65]。5 mg·L-1的2,4-D暴露斑马鱼胚胎96 h可抑制斑马鱼仔鱼肝脏中GST和CAT活性,导致氧化损伤,造成肝细胞胞质空泡化、细胞核严重偏离、组织和细胞的边界消失等肝组织损伤[73]。除草剂可以影响细胞质内脂质的含量,从而导致组织学损伤。西玛津属于典型的三嗪类除草剂,其具有类似于苯环的三嗪环结构,因此在环境中较为稳定。金头鲷(Sparus aurata)受精3~5 h后,4.5 mg·L-1西玛津暴露72 h,发现其肝细胞形状丢失、细胞核发生萎缩和颜色加深、并且细胞质内脂质包涵体发生坏死,金鲷致死率达到58.3%[74]。特丁净属于三嗪类除草剂。2 mg·L-1特丁净暴露鲤鱼自受精后36 d,发现特丁净可以造成鲤鱼幼鱼组织学损伤,其肾小管上皮出现空泡化和肾小球解体、肝细胞内由于脂质包涵体损伤导致肝细胞形状丧失[75]。敌草快与百草枯同属联吡啶类除草剂[76],0.37 mg·L-1敌草快暴露虹鳟鱼(Oncorhynchus mykiss)仔鱼24 h,对身体形态(体质量、体长以及身体畸形)并无显著影响,但通过蛋白质组学分析发现敌草快可以显著增加仔鱼肝脏中降低活性氧所需的蛋白表达,转录组中肝脏内与电子传递链和ATP合成相关的基因水平显著增加[77]。除草剂还具有神经毒性,可以诱发神经炎症、干扰脑正常发育,导致仔鱼在发育过程中出现运动行为异常。例如,高浓度(1 000 μg·L-1和10 000 μg·L-1)草甘膦暴露斑马鱼仔鱼120 h,导致其运动距离、平均速度、旋转次数和身体移动率显著降低,排除对骨骼肌、脑中血管长度等因素的影响外,发现草甘膦可以诱导脑中小胶质细胞形态发生增大和短突起,并影响参与神经元功能和突触传递的基因家族或通路,从而造成斑马鱼运动行为异常[78]。另外,除草剂作为内分泌干扰物,还可能通过干扰鱼类内分泌系统,影响仔鱼生长发育。例如,100 μg·L-1丁草胺自斑马鱼胚胎2 h暴露至30 d,发现能够显著升高幼鱼体内甲状腺激素(T3、T4)含量,并上调促肾上腺皮质激素释放激素和促甲状腺激素基因mRNA的表达量,斑马鱼幼鱼在暴露结束后平均体质量与对照组相比显著增加[79]。
胚胎发育一般是指受精卵到胚胎出离卵膜的一段过程,而无脊椎动物的胚胎阶段通常指胎后发育至性成熟,甚至整个生活史,即双壳贝类的幼虫期仍属于胚胎期。部分双壳贝类胚胎较成体来说对环境污染物更为敏感,是良好的生物检测物种,可用于衡量持久性污染物对生物和环境的潜在风险[80]。目前除草剂对贝类早期发育的毒性效应研究主要聚焦于D型幼虫阶段,其对贝类胚胎的危害主要则表现为:造成幼虫畸形、发育迟缓和遗传物质损伤等。例如,10~40 μg·L-1敌草隆暴露太平洋牡蛎胚胎24 h后,D型幼虫畸形率与对照组相比增加了3倍~4倍[29]。5 μg·L-1草甘膦暴露牡蛎24 h,其胚胎畸形率显著增加[20]。100 μg·L-1的草甘膦暴露太平洋牡蛎自受精后至性腺发育期共35 d,导致个体壳长显著降低[81]。高浓度100 000 μg·L-1草甘膦自受精开始暴露太平洋牡蛎胚胎至D型幼虫,发现此浓度下草甘膦可以显著降低太平洋牡蛎D型幼虫的变态速率[82]。0.017~17 μg·L-1的烟嘧磺隆和0.015~15 μg·L-1的绿麦隆暴露太平洋牡蛎胚胎自受精3~24 h,发现2种取代脲类除草剂可以显著降低太平洋牡蛎D型幼虫的生长以及其运动能力[83]。现有的大多数研究认为除草剂可通过诱导氧化损伤影响贝类早期发育,这可能是由于目前调控双壳贝类早期发育的很多关键机制还有待进一步探究,如变态发育的分子机制、发育关键基因的作用通路等[84]。除草剂可以诱导生物体氧化应激,机体氧化和抗氧化状态失衡后,大量的ROS可以直接攻击DNA上的碱基或者氧化DNA分子中鸟嘌呤碱基的C-8位产生氧化产物8-羟基脱氧鸟苷(8-hydroxy-2’-deoxyguanosine, 8-OHdG)[85]。大量的活性氮和ROS可抑制细胞内抗氧化酶的活性,使胞内的一些大分子蛋白质和脂质出现结构和功能障碍,进而产生过量丙二醛(malondialdehyde, MDA)。MDA和8-OHdG可以使DNA双链发生断裂,最终导致遗传信息丢失或改变。0.5 μg·L-1敌草隆及其代谢产物暴露太平洋牡蛎胚胎24 h后,牡蛎D型幼虫体内ROS含量显著增加,造成显著的牡蛎D型幼虫畸形和DNA损伤,通过敌草隆和抗坏血酸共同暴露后发现抗坏血酸会使D型幼虫的畸形率和DNA损伤程度有所改善[16]。太平洋牡蛎受精卵暴露于0.05 μg·L-1敌草隆至D型幼虫,导致其DNA完整性下降,早期发育异常,5 μg·L-1草甘膦更是导致太平洋牡蛎D型幼虫中出现明显的DNA链断裂现象[20]。阿特拉津也具有类似的遗传毒性,阿特拉津暴露太平洋牡蛎2个月后,与对照组相比,其子代D型幼虫非整倍体水平显著上升,最高浓度组200 μg·L-1高达16.9%[86]。
综上,三嗪类、取代脲类、氨基酸类、酰胺类和苯氧羧酸类等常见除草剂种类可通过诱导氧化应激、干扰精卵识别和生殖内分泌等机制造成鱼类和双壳贝类生殖毒性;也可通过氧化损伤、神经毒性和导致遗传物质损伤等影响鱼类胚胎、仔鱼及双壳贝类幼虫的早期发育。相关机制总结详如表1所示。
水环境中的化学污染物往往以混合形式存在,当2种或2种以上污染物共存时会发生复杂的联合毒性效应,另外环境因子如温度、pH和盐度等也会与除草剂联合影响生物体。研究发现,除草剂与其代谢产物、重金属和双酚类等污染物联合暴露后产生的毒性往往高于单独除草剂暴露。例如,利用环境相关浓度的阿特拉津及其降解产物去异丙基拉嗪和去甲基拉嗪单独或联合暴露,发现暴露于最高浓度(10 000 μg·L-1)阿特拉津及其降解产物混合物96 h后,斑马鱼心包水肿高达17.6%;暴露于最高浓度阿特拉津(10 000 μg·L-1)相同时间,斑马鱼心包水肿仅为5.3%,并且与对照组相比并无显著差异;单独暴露于去异丙基拉嗪(10 000 μg·L-1)和去甲基拉嗪(10 000 μg·L-1)中斑马鱼胚胎心包水肿现象极少出现,表明联合暴露毒性高于阿特拉津单独暴露的毒性[65]。0.1 mol·mL-1阿特拉津和0.8 mol·mL-1砷混合暴露96 h,斑马鱼胚胎心包水肿、DNA损伤程度、脂质过氧化水平皆比单独暴露于0.1 mol·mL-1阿特拉津或者0.8 mol·mL-1砷高[67]。探究双酚A(9 857 μg·L-1)、阿特拉津(3 115 μg·L-1)及卡马西平(95 μg·L-1)暴露翡翠贻贝7 d后性腺内VTG含量变化,发现单一暴露双酚A、阿特拉津和卡马西平后翡翠贻贝性腺内VTG含量均升高,但皆低于3种化学物质混合暴露组翡翠贻贝性腺中的VTG含量[30]。环境因子温度可能通过影响鱼类或双壳贝类对除草剂的吸收和排泄过程,进而影响其在生物体内的毒性。例如,温度升高导致软壳蛤蜊雌性性腺内配子体发育延迟,但18 ℃时,0.01 mg·L-1 2,4-D与0.001 mg·L-1麦草畏混合暴露28 d,雌性性腺内配子体与低温(7 ℃)同等暴露条件相比发育加速,并且鳃内细胞色素C氧化酶、消化腺中CAT以及神经中枢中乙酰胆碱酯酶活性升高,因而温度升高可能加速了软壳蛤蜊对除草剂的解毒和排泄过程[33]。温度变化还可能增加双壳贝类对除草剂的敏感性。单独将温度由24 ℃降到20 ℃时,培育太平洋牡蛎受精卵至D型幼虫28 h,D型幼虫畸形率升高;但10、100和1 000 μg·L-1异丙甲草胺分别暴露太平洋牡蛎受精卵至D型幼虫28 h,温度降低后,低温条件下所有浓度组D型幼虫畸形率达到了100%[87]。草甘膦具有降低介质pH的特点,低pH条件和草甘膦联合会对生物造成更大的损伤。pH=3.4时,750 μmol·L-1草甘膦暴露96 h可造成斑马鱼胚胎死亡率为93.64%、孵化率33.33%、畸形率18.06%,与暴露于pH=7、750 μmol·L-1草甘膦条件和单独暴露在pH=3.4条件相比,低pH与草甘膦联合后可以导致更高的死亡率、畸形率以及最低的孵化率[88]。另外,盐度的降低可以增加生物体对除草剂的敏感性。太平洋牡蛎自受精开始培育至D型幼虫(24 h),仅盐度由27‰降低至24‰时,发现并未对太平洋牡蛎D型幼虫造成显著影响;但盐度降低(由24‰降低至27‰)结合1 000 μg·L-1 S-异丙甲草胺暴露后,与单独接触1 000 μg·L-1 S-异丙甲草胺相比,盐度的降低增加了D型幼虫对S-异丙甲草胺的敏感性,盐度越低,太平洋牡蛎D型幼虫畸形率越高[89]。
表1 除草剂对硬骨鱼类以及双壳贝类毒性机制总结
Table 1 Summary of toxicity mechanism of herbicides to bony fishes and bivalves
序号No.除草剂Herbicide物种Species毒性机制Toxic mechanism1阿特拉津Atrazine斑马鱼Brachydanio rerio var破坏性腺抗氧化系统,降低精子细胞膜完整性[22]Destroy the antioxidant system of gonad and reduce the integrity of sperm cell membrane[22]导致胚胎内发生脂质过氧化和干扰抗氧化系统[67]It leads to lipid peroxidation and interferes with antioxidant system in embryo[67]翡翠贻贝Perna viridis干扰性腺内解毒酶谷胱甘肽S-转移酶的活性[30]It interferes with the activity of glutathione S- transferase, a detoxification enzyme in gonad[30]鲫鱼Carassius auratus抑制精原细胞发生[24]Inhibit spermatogonia generation[24]日本青鳉Oryzias latipes抑制卵巢内star基因的表达[41]Inhibit the expression of star gene in ovary[41]大西洋鲑Salmo salar与黄体酮竞争性结合卵母细胞上卵巢膜黄体酮受体[45]Progesterone receptor on ovarian membrane of oocyte that competitively bind with progesterone[45]淡水贻贝Utterbackia imbecillis导致雄性性腺内卵黄原蛋白(vitellogenin, VTG)含量升高[64]The content of vitellogenin (VTG) in male gonad increased[64]2西玛津Simazine金头鲷Sparus aurata造成仔鱼肝细胞质内脂质包涵体坏死[74]The lipid inclusion bodies in the liver cytoplasm of larvae were necrotic[74]3特丁净Terbutryn鲤鱼Cyprinus carpio造成仔鱼肝细胞质内脂质包涵体损伤[75]The lipid inclusion bodies in the liver cytoplasm of young zebrafish were necrotic[75]4草甘膦Glyphosate斑马鱼Brachydanio rerio var发生脂质过氧化从而破坏精子质膜[23]The lipid peroxidation occurs and the sperm plasma membrane is destroyed[23]破坏精子线粒体功能[23]Destroy the mitochondrial function of sperm[23]降低胚胎体内碳酸酐酶含量和增加鳃区活性氧(reactive oxygen species, ROS)含量[69]Decrease carbonic anhydrase content in embryo and increase reactive oxygen species content in gill area[69]降低胚胎中乙酰化α-微管蛋白水平,从而干扰微管稳定性[72]Reduce the level of acetylated α -tubulin in embryos, thus interfering with microtubule stability[72]诱导仔鱼脑中小胶质细胞形态发生增大和短突起,并影响参与神经元功能和突触传递的基因家族或通路[78]It can induce the microglia in the brain of zebrafish larvae to grow bigger and shorter, and affect the gene family or pathway involved in neuron function and synaptic transmission[78]D型幼虫DNA链断裂[86]DNA strand breakage of type D larvae[86]5敌草隆Diuron太平洋牡蛎Crassostrea gigas造成精子内DNA损伤[34]It causes DNA damage in sperm[34]D型幼虫DNA损伤[16]DNA damage of type D larvae[16]
续表1序号No.除草剂Herbicide物种Species毒性机制Toxic mechanism6丁噻隆Tebuthiuron尼罗罗非鱼Oreochromis niloticus影响脑中性激素合成酶CYP19A1蛋白含量,导致性激素水平紊乱[40]It affects the protein content of CYP19A1, the brain neutral hormone synthase, and leads to the disorder of sex hormone level[40]7解草酮Benoxacor8乙草胺Acetochlor9丁草胺Butachlor斑马鱼Brachydanio rerio var干扰胚胎内过氧化氢酶(CAT)、超氧化物歧化酶(SOD)、谷胱甘肽-S-转移酶(GST)等抗氧化系统物质的活性[66]Interfere with the activities of antioxidant system substances such as catalase (CAT), superoxide dismutase (SOD) and glutathione -S- transferase (GST) in embryos[66]胚胎内降低角蛋白-17(keratin17)、t-box转录因子16(t-box transcription factor 16)、成骨细胞特异性转录因子(osterix)等形态发生相关基因表达量,导致骨基质蛋白合成受损[66]The expression of genes related to morphogenesis, such as Keratin 17, t-box transcription factor 16 and osterix, was decreased in embryo, which resulted in the damage of bone matrix protein synthesis[66]竞争性抑制卵巢内睾酮(testosterone, T)与雄激素受体(androgen receptor, AR)的结合而发挥抗雄激素效应[44]Competitively inhibiting the binding of testosterone (T) and androgen receptor (AR) in the ovary and exerting the anti-androgen effect[44]升高仔鱼体内甲状腺激素(T3、T4)含量,并上调促肾上腺皮质激素释放激素和促甲状腺激素基因mRNA的表达量[79]To increase the thyroid hormone (T3, T4) content in the zebrafish larvae and up-regulate the mRNA expression of corticotrophin releasing hormone and thyroid stimulating hormone genes[79]102,4-二氯苯氧乙酸、2,4-滴丙酸、麦草畏2,4-dichlorophenoxyacetic acid, 2-(2,4-dichlorophenoxy)propanoic acid, dicamba软壳蛤Mya arenaria抑制性腺内天冬氨酸转氨甲酰酶活性,从而影响线粒体功能[33]Inhibit aspartate aminotransferase activity in gonads, thereby affect mitochondrial function[33]112,4-二氯苯酚2,4-dichlorophenol122,4-二氯苯氧乙酸2,4-dichlorophenoxyacetic acid斑马鱼Brachydanio rerio var上调全身性类固醇合成酶基因cyp19a1a、cyp19a1b、17β-羟基类固醇脱氢酶的表达,升高体内雌二醇(estradiol, E2)和卵黄原蛋白(vitellogenin, VTG)的含量[43]Up-regulate the expression of systemic steroid synthase genes cyp19a1a, cyp19a1b and 17β- hydroxysteroid dehydrogenase, and increase the content of estradiol (E2) and vitellogenin (VTG) in boby[43]抑制仔鱼肝脏中GST和CAT活性,导致氧化损伤[73]It inhibited the activities of GST and CAT in the liver of zebrafish larvae resulting in oxidative damage[73]13敌草快Diquat虹鳟Oncorhynchus mykiss增加仔鱼肝脏中降低活性氧所需的蛋白表达、升高电子传递链和ATP合成相关的基因水平[77]Increases protein expression required to reduce ROS in the liver of the larvae fish, and increases gene levels associated with electron transport chains and ATP synthesis[77]
注:ROS为活性氧;CYP19A1为细胞色素P450超家族的成员之一;VTG是卵黄蛋白原;ATP为腺嘌呤核苷三磷酸;T3、T4分别为三碘甲状腺原氨酸和四碘甲状腺原氨酸,两者都为甲状腺激素。
Note: ROS is reactive oxygen species; CYP19A1 is a member of cytochrome P450 superfamily; VTG is vitellogenin; ATP is adenine nucleoside triphosphate; T3 and T4 are triiodothyronine and tetraiodothyronine respectively, both of which are thyroid hormones.
首先,鱼类作为实验动物在环境毒理学研究中已有广泛应用,其生殖及早期发育相关信号通路及关键基因已经研究相对透彻。但目前除草剂对鱼类与生殖发育相关的研究,多集中于对幼体或胚胎的致畸效应及其机制研究。除草剂影响鱼类亲本生殖能力的研究较少,有待进一步探索。双壳贝类作为污染环境的指示生物,但其生殖和早期发育生理学研究还有很多机制有待探索,如生殖内分泌系统调控机制、早期贝壳形成的分子机制等尚不明确,为研究除草剂对双壳贝类的毒性机制带来了许多阻碍,现有的大多数研究从氧化应激的角度探讨毒性机制,因此相关发育生物学研究将为更深入地探讨除草剂对双壳贝类的毒性机制提供理论支撑。
其次,目前对除草剂的研究仅仅聚焦于几种典型除草剂,但除草剂根据结构可以区分成不同种类,其结构、对作物的作用方式、是否具有安全剂[66]、代谢产物毒性[65]和对周围介质pH的影响[88]等有所差异,会造成不同的除草剂对鱼类和双壳贝类具有不同程度的毒性。同一种除草剂也可能因为构型不同而在生物体内的代谢、毒性和降解都存在差异,即除草剂对生物体的毒性作用具有对映选择性,比如3种酰胺类除草剂萘丙酰胺、乙草胺和异丙草胺具有手性构型,研究发现R-酰胺除草剂对非目标生物铜绿微囊单胞菌和人TRβ质粒转化的酵母毒性最低[90];但也有研究发现(+)-S-乙草胺对斑马鱼幼鱼体内甲状腺影响最大,并且通过分子对接发现(+)-S-乙草胺更容易与TR结合[91]。因此,需进一步扩展对构型不同的除草剂的毒理学研究,不仅有利于制定明确的除草剂使用标准,还有助于开发除目标生物外,对其他生物更低毒的除草剂。
最后,除草剂在水生系统中与环境因子、多种污染物同时存在,彼此之间可能出现协同、拮抗等多种作用关系。采用单一除草剂暴露方式并不能模拟复杂的水生环境,因此有必要将关注点转移到环境浓度下除草剂与多种因素联合暴露对鱼类或双壳贝类的毒理学研究。
[1] 张梦雪, 赵义良, 李云, 等. 浅谈除草剂类型、危害及防治补救方法[J]. 农业开发与装备, 2020(11): 106-107
[2] 滕春红. 氯嘧磺隆对土壤微生态的影响及其高效降解真菌的研究[D]. 哈尔滨: 东北农业大学, 2006: 2-3
Teng C H. Effects of chlorimuron-ethyl on the soil microecosystem and research of chlorimuron-ethyl degrading fungi [D]. Harbin: Northeast Agricultural University, 2006: 2-3 (in Chinese)
[3] 李松宇. 助剂对除草剂增效作用的研究[D]. 哈尔滨: 东北农业大学, 2020: 2-3
Li S Y. Study on synergistic effect of adjuvant on herbicide [D]. Harbin: Northeast Agricultural University, 2020: 2-3 (in Chinese)
[4] 徐英江, 刘慧慧, 任传博, 等. 莱州湾海域表层海水中三嗪类除草剂的分布特征[J]. 渔业科学进展, 2014, 35(3): 34-39
Xu Y J, Liu H H, Ren C B, et al. Distributions of the triazine herbicides in the surface seawater of Laizhou Bay [J]. Progress in Fishery Sciences, 2014, 35(3): 34-39 (in Chinese)
[5] Wang Z H, Ouyang W, Tysklind M, et al. Seasonal variations in atrazine degradation in a typical semienclosed bay of the northwest Pacific Ocean [J]. Environmental Pollution, 2021, 283: 117072
[6] 何书海, 曹小聪, 吴海军, 等. 直接进样超高效液相色谱-三重四极杆质谱法快速测定环境水样中草甘膦、氨甲基膦酸、草铵膦及乙烯利残留[J]. 色谱, 2019, 37(11): 1179-1184
He S H, Cao X C, Wu H J, et al. Rapid determination of glyphosate, aminomethyl phosphonic acid, glufosinate, and ethephon residues in environmental water by direct injection-ultra performance liquid chromatography-triple quadrupole mass spectrometry [J]. Chinese Journal of Chromatography, 2019, 37(11): 1179-1184 (in Chinese)
[7] Thi Hue N, Nguyen T P M, Nam H, et al. Paraquat in surface water of some streams in Mai chau Province, the northern Vietnam: Concentrations, profiles, and human risk assessments [J]. Journal of Chemistry, 2018, 2018: 8521012
[8] 中华人民共和国国家环境保护总局, 国家质量监督检验检疫总局. 地表水环境质量标准[S]. 北京: 中华人民共和国国家环境保护总局, 国家质量监督检验检疫总局, 2002
[9] 中华人民共和国卫生部, 中国国家标准化管理委员会. 生活饮用水卫生标准[S]. 北京: 中华人民共和国卫生部, 中国国家标准化管理委员会, 2006
[10] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 地下水质量标准[S]. 北京: 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2017
[11] 中华人民共和国国家环境保护局. 海水水质标准[S]. 北京: 中华人民共和国国家环境保护局, 1997
[12] 刘爱菊, 朱鲁生, 王军, 等. 除草剂阿特拉津的环境毒理研究进展[J]. 土壤与环境, 2002, 11(4): 405-408
Liu A J, Zhu L S, Wang J, et al. Progress of study on the environmental toxicology of the herbicide atrazine [J]. Soil and Environmental Sciences, 2002, 11(4): 405-408 (in Chinese)
[13] 付晓苹, 刘巧荣, 许玉艳, 等. 扑草净对人体健康及水生环境的安全性评价[J]. 中国农学通报, 2015, 31(35): 49-57
Fu X P, Liu Q R, Xu Y Y, et al. Safety assessment of prometryn on human health and aquatic environment [J]. Chinese Agricultural Science Bulletin, 2015, 31(35): 49-57 (in Chinese)
[14] 魏杰, 陈蓓蓓, 王波娜, 等. 6种除草剂对七星瓢虫的急性毒性与风险评价[J]. 生物化工, 2020, 6(5): 25-28
Wei J, Chen B B, Wang B N, et al. The acute toxicity and risk assessment of six herbicides to Coccinella septempunctata [J]. Biological Chemical Engineering, 2020, 6(5): 25-28 (in Chinese)
[15] 刘颖. 环境雌激素17β-E2对栉孔扇贝内分泌干扰的作用机制[D]. 大连: 大连海洋大学, 2014: 3-4
Liu Y. Mechanisms for endocrine disrupting effects of environmental estrogens: 17β-E2 in Chlamys farreri [D]. Dalian: Dalian Ocean University, 2014: 3-4 (in Chinese)
[16] Behrens D, Rouxel J, Burgeot T, et al. Comparative embryotoxicity and genotoxicity of the herbicide diuron and its metabolites in early life stages of Crassostrea gigas: Implication of reactive oxygen species production [J]. Aquatic Toxicology, 2016, 175: 249-259
[17] 乔丹. 山东沿海贝类中除草剂污染特征及风险评价[D]. 上海: 上海海洋大学, 2017: 23-34
Qiao D. Characteristics and risk assessment of herbicides residue in coastal shellfish in Shandong Province [D]. Shanghai: Shanghai Ocean University, 2017: 23-34 (in Chinese)
[18] 乔丹, 刘小静, 张华威, 等. 山东沿海贝类中除草剂污染特征及风险评价[J]. 中国渔业质量与标准, 2017, 7(3): 22-29
Qiao D, Liu X J, Zhang H W, et al. Pollution characteristics and risk assessment of herbicide residues in shellfish from Shandong coastal area [J]. Chinese Fishery Quality and Standards, 2017, 7(3): 22-29 (in Chinese)
[19] 母治平. 多不饱和脂肪酸在雄性反刍动物中的应用研究进展[J]. 中国饲料, 2020(4): 5-9
Mu Z P. Advances in the application of polyunsaturated fatty acids in male ruminants [J]. China Feed, 2020(4): 5-9 (in Chinese)
[20] Akcha F, Spagnol C, Rouxel J. Genotoxicity of diuron and glyphosate in oyster spermatozoa and embryos [J]. Aquatic Toxicology, 2012, 106-107: 104-113
[21] 张逸帆, 倪沙, 邓双丽, 等. 阿特拉津对动物生长发育影响的研究进展[J]. 中国农学通报, 2008, 24(11): 424-427
Zhang Y F, Ni S, Deng S L, et al. Advance in effect of atrazine on growth and development of animals [J]. Chinese Agricultural Science Bulletin, 2008, 24(11): 424-427 (in Chinese)
[22] Bautista F E A, Varela Junior A S, Corcini C D, et al. The herbicide atrazine affects sperm quality and the expression of antioxidant and spermatogenesis genes in zebrafish testes [J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology: CBP, 2018, 206-207: 17-22
[23] Lopes F M, Varela Junior A S, Corcini C D, et al. Effect of glyphosate on the sperm quality of zebrafish Danio rerio [J]. Aquatic Toxicology, 2014, 155: 322-326
[24] 伊雄海. 农药类环境激素低剂量暴露对鲫鱼内分泌干扰效应及生物标志物研究[D]. 上海: 上海交通大学, 2008: 35-58
Yi X H. Endocrine disrupting effects and biomarker research of low dose herbicide environmental hormones [D]. Shanghai: Shanghai Jiao Tong University, 2008: 35-58 (in Chinese)
[25] 彭中校, 黄会, 王玮云, 等. 异丙甲草胺对四角蛤蜊鳃和肝胰腺抗氧化酶系和组织结构的影响[J]. 中国水产科学, 2022, 29(4): 574-584
Peng Z X, Huang H, Wang W Y, et al. Effects of metolachlor on the antioxidant enzyme system and histological structure in the gills and hepatopancreas of Mactra veneriformis [J]. Journal of Fishery Sciences of China, 2022, 29(4): 574-584 (in Chinese)
[26] Martínez K, Ferrer I, Hernando M D, et al. Occurrence of antifouling biocides in the Spanish Mediterranean marine environment [J]. Environmental Technology, 2001, 22(5): 543-552
[27] Harino H, Kitano M, Mori Y, et al. Degradation of antifouling booster biocides in water [J]. Journal of the Marine Biological Association of the United Kingdom, 2005, 85(1): 33-38
[28] Ranke J. Persistence of antifouling agents in the marine biosphere [J]. Environmental Science & Technology, 2002, 36(7): 1539-1545
[29] Mai H, Morin B, Pardon P, et al. Environmental concentrations of irgarol, diuron and S-metolachlor induce deleterious effects on gametes and embryos of the Pacific oyster, Crassostrea gigas [J]. Marine Environmental Research, 2013, 89: 1-8
[30] Juhel G, Bayen S, Goh C, et al. Use of a suite of biomarkers to assess the effects of carbamazepine, bisphenol A, atrazine, and their mixtures on green mussels, Perna viridis [J]. Environmental Toxicology and Chemistry, 2017, 36(2): 429-441
[31] 石颖, Faisal Islam, 周伟军, 等. 激素类除草剂2,4-D的降解及对作物与环境的影响[J]. 浙江农业科学, 2021, 62(10): 2036-2043
Shi Y, Islam F, Zhou W J, et al. Degradation of auxin herbicide 2,4-D and its impact on crops and ecological environment [J]. Journal of Zhejiang Agricultural Sciences, 2021, 62(10): 2036-2043 (in Chinese)
[32] Ordaz-Guillén Y, Galíndez-Mayer C J, Ruiz-Ordaz N, et al. Evaluating the degradation of the herbicides picloram and 2,4-D in a compartmentalized reactive biobarrier with internal liquid recirculation [J].Environmental Science and Pollution Research, 2014, 21(14): 8765-8773
[33] Greco L, Pellerin J, Capri E, et al. Physiological effects of temperature and a herbicide mixture on the soft-shell clam Mya arenaria (Mollusca, Bivalvia) [J]. Environmental Toxicology and Chemistry, 2011, 30(1): 132-141
[34] Barranger A, Akcha F, Rouxel J, et al. Study of genetic damage in the Japanese oyster induced by an environmentally-relevant exposure to diuron: Evidence of vertical transmission of DNA damage [J]. Aquatic Toxicology, 2014, 146: 93-104
[35] Tian Y Y, Liu M X, Sang Y X, et al. Degradation of prometryn in Ruditapes philippinarum using ozonation: Influencing factors, degradation mechanism, pathway and toxicity assessment [J]. Chemosphere, 2020, 248: 126018
[36] 于嘉兴, 刘旭东, 韩磊, 等. 敌草隆土壤环境行为研究进展[J]. 世界农药, 2021, 43(12): 1-11
Yu J X, Liu X D, Han L, et al. Research progress on environmental behavior of diuron in soils [J]. World Pesticide, 2021, 43(12): 1-11 (in Chinese)
[37] Pereira T S, Boscolo C N, Silva D G, et al. Anti-androgenic activities of diuron and its metabolites in male Nile tilapia (Oreochromis niloticus) [J]. Aquatic Toxicology, 2015, 164: 10-15
[38] Johnsen T N Jr, Morton H L. Tebuthiuron persistence and distribution in some semiarid soils [J]. Journal of Environmental Quality, 1989, 18(4): 433-438
[39] Dam R A, Camilleri C, Bayliss P, et al. Ecological risk assessment of tebuthiuron following application on tropical Australian wetlands [J]. Human and Ecological Risk Assessment: An International Journal, 2004, 10(6): 1069-1097
[40] de Almeida M D, Pereira T S B, Batlouni S R, et al. Estrogenic and anti-androgenic effects of the herbicide tebuthiuron in male Nile tilapia (Oreochromis niloticus) [J]. Aquatic Toxicology, 2018, 194: 86-93
[41] Cleary J A, Tillitt D E, Vom Saal F S, et al. Atrazine induced transgenerational reproductive effects in medaka (Oryzias latipes) [J]. Environmental Pollution, 2019, 251: 639-650
[42] Armiliato N, Ammar D, Nezzi L, et al. Changes in ultrastructure and expression of steroidogenic factor-1 in ovaries of zebrafish Danio rerio exposed to glyphosate [J]. Journal of Toxicology and Environmental Health Part A, 2014, 77(7): 405-414
[43] Hu Y, Li D, Ma X, et al. Effects of 2,4-dichlorophenol exposure on zebrafish: Implications for the sex hormone synthesis [J]. Aquatic Toxicology, 2021, 236: 105868
[44] 杨梅. 乙草胺对斑马鱼的发育和生殖内分泌干扰机制研究[D]. 杭州: 浙江大学, 2015: 75-91
Yang M. The developmental and reproductive endocrine interference mechanism of acetochlor on zebrafish (Danio rerio) [D]. Hangzhou: Zhejiang University, 2015: 75-91 (in Chinese)
[45] Thomas P, Sweatman J. Interference by atrazine and bisphenol-A with progestin binding to the ovarian progestin membrane receptor and induction of oocyte maturation in Atlantic croaker [J]. Marine Environmental Research, 2008, 66(1): 1-2
[46] Naimi A, Martinez A S, Specq M L, et al. Identification and expression of a factor of the DM family in the oyster Crassostrea gigas [J]. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2009, 152(2): 189-196
[47] Huvet A, Béguel J P, Cavaleiro N P, et al. Disruption of amylase genes by RNA interference affects reproduction in the Pacific oyster Crassostrea gigas [J]. The Journal of Experimental Biology, 2015, 218(Pt 11): 1740-1747
[48] Rodrigues-Silva C, Flores-Nunes F, Vernal J I, et al. Expression and immunohistochemical localization of the cytochrome P450 isoform 356A1 (CYP356A1) in oyster Crassostrea gigas [J]. Aquatic Toxicology, 2015, 159: 267-275
[49] 许开航, 王梅芳, 余祥勇, 等. 企鹅珍珠贝Sox9基因的克隆及表达分析[J]. 广东海洋大学学报, 2018, 38(2): 15-22
Xu K H, Wang M F, Yu X Y, et al. Molecular cloning and expression analysis of Sox9 gene from Pteria penguin [J]. Journal of Guangdong Ocean University, 2018, 38(2): 15-22 (in Chinese)
[50] 周丽青, 赵丹, 吴宙, 等. 主要经济双壳贝类性别分化的分子机制概述[J]. 渔业科学进展, 2020, 41(5): 194-202
Zhou L Q, Zhao D, Wu Z, et al. Review: Molecular mechanism of sex differentiation in major economic bivalves [J]. Progress in Fishery Sciences, 2020, 41(5): 194-202 (in Chinese)
[51] 周祖阳, 李琪, 于红, 等. 长牡蛎Fem-1基因cDNA克隆和表达分析[J]. 中国海洋大学学报(自然科学版), 2018, 48(6): 45-54
Zhou Z Y, Li Q, Yu H, et al. Cloning and expression analysis of fem-1 gene of Pacific oyster(Crassostrea gigas) [J]. Periodical of Ocean University of China, 2018, 48(6): 45-54 (in Chinese)
[52] Xu F, Kong L, Zhang Y, et al. Complete genome sequencing and functional analysis of oyster [J]. Science & Technology Information, 2016: 162-163
[53] Santerre C, Sourdaine P, Adeline B, et al. Cg-SoxE and Cg-β-catenin, two new potential actors of the sex-determining pathway in a hermaphrodite lophotrochozoan, the Pacific oyster Crassostrea gigas [J]. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2014, 167: 68-76
[54] Corporeau C, Groisillier A, Jeudy A, et al. A functional study of transforming growth factor-beta from the gonad of Pacific oyster Crassostrea gigas [J]. Marine Biotechnology, 2011, 13(5): 971-980
[55] Croll R P, Wang C D. Possible roles of sex steroids in the control of reproduction in bivalve molluscs [J]. Aquaculture, 2007, 272(1-4): 76-86
[56] Janer G, Porte C. Sex steroids and potential mechanisms of non-genomic endocrine disruption in invertebrates [J]. Ecotoxicology, 2007, 16(1): 145-160
[57] Fernandes D, Loi B, Porte C. Biosynthesis and metabolism of steroids in molluscs [J]. The Journal of Steroid Biochemistry and Molecular Biology, 2011, 127(3-5): 189-195
[58] Bridgham J T, Keay J, Ortlund E A, et al. Vestigialization of an allosteric switch: Genetic and structural mechanisms for the evolution of constitutive activity in a steroid hormone receptor [J]. PLoS Genetics, 2014, 10(1): e1004058
[59] Le Curieux-Belfond O, Fievet B, Séralini G E, et al. Short-term bioaccumulation, circulation and metabolism of estradiol-17β in the oyster Crassostrea gigas [J]. Journal of Experimental Marine Biology and Ecology, 2005, 325(2): 125-133
[60] Liu P P, Miao J J, Song Y, et al. Effects of 2,2’,4,4’-tetrabromodipheny ether (BDE-47) on gonadogenesis of the Manila clam Ruditapes philippinarum [J]. Aquatic Toxicology, 2017, 193: 178-186
[61] Yang Y Y, Zhou Y Y, Pan L Q, et al. Benzo[a]pyrene exposure induced reproductive endocrine-disrupting effects via the steroidogenic pathway and estrogen signaling pathway in female scallop Chlamys farreri [J]. The Science of the Total Environment, 2020, 726: 138585
[62] Zhang Y Y, Wang Q, Ji Y L, et al. Identification and mRNA expression of two 17β-hydroxysteroid dehydrogenase genes in the marine mussel Mytilus galloprovincialis following exposure to endocrine disrupting chemicals [J]. Environmental Toxicology and Pharmacology, 2014, 37(3): 1243-1255
[63] Cuvillier-Hot V, Lenoir A. Invertebrates facing environmental contamination by endocrine disruptors: Novel evidences and recent insights [J]. Molecular and Cellular Endocrinology, 2020, 504: 110712
[64] Flynn K, Wedin M B, Bonventre J A, et al. Burrowing in the freshwater mussel Elliptio complanata is sexually dimorphic and feminized by low levels of atrazine [J]. Journal of Toxicology and Environmental Health Part A, 2013, 76(20): 1168-1181
[65] Iori S, Rovere G D, Ezzat L, et al. The effects of glyphosate and AMPA on the Mediterranean mussel Mytilus galloprovincialis and its microbiota [J]. Environmental Research, 2020, 182: 108984
[66] Liu S H, Deng X L, Bai L Y. Developmental toxicity and transcriptome analysis of zebrafish (Danio rerio) embryos following exposure to chiral herbicide safener benoxacor [J]. The Science of the Total Environment, 2021, 761: 143273
[67] Adeyemi J A, da Cunha Martins- A Jr, Barbosa F Jr. Teratogenicity, genotoxicity and oxidative stress in zebrafish embryos (Danio rerio) co-exposed to arsenic and atrazine [J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2015, 172-173: 7-12
[68] Wiegand C, Pflugmacher S, Giese M, et al. Uptake, toxicity, and effects on detoxication enzymes of atrazine and trifluoroacetate in embryos of zebrafish [J]. Ecotoxicology and Environmental Safety, 2000, 45(2): 122-131
[69] Sulukan E, Köktürk M, Ceylan H, et al. An approach to clarify the effect mechanism of glyphosate on body malformations during embryonic development of zebrafish (Daino rerio) [J]. Chemosphere, 2017, 180: 77-85
[70] 桂英爱, 葛祥武, 孙程鹏, 等. 扑草净在环境和生物体内的降解代谢、毒性及安全性评价研究进展[J]. 大连海洋大学学报, 2019, 34(6): 846-852
Gui Y G, Ge X W, Sun C P, et al. Research progress: Degradation, metabolism, toxicity and safety evaluation of prometryne in environment and organisms [J]. Journal of Dalian Ocean University, 2019, 34(6): 846-852 (in Chinese)
[71] Velisek J, Lidová J, Stara A, et al. Effects of prometryne on early life stages of common carp [J]. Toxicology Letters, 2014, 229: S117
[72] Díaz-Martín R D, Valencia-Hernández J D, Betancourt-Lozano M, et al. Changes in microtubule stability in zebrafish (Danio rerio) embryos after glyphosate exposure [J]. Heliyon, 2021, 7(1): e06027
[73] Martins R X, Vieira L, Souza J A C R, et al. Exposure to 2,4-D herbicide induces hepatotoxicity in zebrafish larvae [J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology: CBP, 2021, 248: 109110
[74] Arufe M I, Arellano J, Moreno M J, et al. Comparative toxic effects of formulated simazine on Vibrio fischeri and gilthead seabream (Sparus aurata L.) larvae [J]. Chemosphere, 2004, 57(11): 1725-1732
[75] Velisek J, Stara A, Machova J, et al. Effect of terbutryn at environmental concentrations on early life stages of common carp (Cyprinus carpio L.) [J]. Pesticide Biochemistry and Physiology, 2012, 102(1): 102-108
[76] 鲜亚斌, 杨梅. 急性敌草快中毒研究及治疗现状[J]. 中外医疗, 2021, 40(27): 195-198
Xian Y B, Yang M. Research and treatment status of acute diquat poisoning [J]. China & Foreign Medical Treatment, 2021, 40(27): 195-198 (in Chinese)
[77] McCuaig L M, Martyniuk C J, Marlatt V L. Morphometric and proteomic responses of early-life stage rainbow trout (Oncorhynchus mykiss) to the aquatic herbicide diquat dibromide [J]. Aquatic Toxicology, 2020, 222: 105446
[78] Forner-Piquer I, Faucherre A, Byram J, et al. Differential impact of dose-range glyphosate on locomotor behavior, neuronal activity, glio-cerebrovascular structures, and transcript regulations in zebrafish larvae [J]. Chemosphere, 2021, 267: 128986
[79] 常菊花. 丁草胺对斑马鱼的内分泌干扰效应研究[D]. 南京: 南京农业大学, 2012: 33-66
Chang J H. Endocrine disruping effects of butachlor on zebrafish (Danio rerio)[D]. Nanjing: Nanjing Agricultural University, 2012: 33-66 (in Chinese)
[80] His E, Beiras R, Seaman M N L. The assessment of marine pollution - bioassays with bivalve embryos and larvae [J]. Advances in Marine Biology, 1999, 37: 1-178
[81] Séguin A, Mottier A, Perron C, et al. Sub-lethal effects of a glyphosate-based commercial formulation and adjuvants on juvenile oysters (Crassostrea gigas) exposed for 35 days [J]. Marine Pollution Bulletin, 2017, 117(1-2): 348-358
[82] Mottier A, Kientz-Bouchart V, Serpentini A, et al. Effects of glyphosate-based herbicides on embryo-larval development and metamorphosis in the Pacific oyster, Crassostrea gigas [J]. Aquatic Toxicology, 2013, 128-129: 67-78
[83] Bringer A, Thomas H, Prunier G, et al. Toxicity and risk assessment of six widely used pesticides on embryo-larval development of the Pacific oyster, Crassostrea gigas [J]. The Science of the Total Environment, 2021, 779: 146343
[84] 宋浩. 脉红螺幼虫变态过程多组学解析及关键基因的调控作用[D]. 北京: 中国科学院大学, 2018: 1-12
Song H. Understanding the metamorphosis in veined Rapa whelk Rapana venosa from omics insight and the regulation role of key genes on its metamorphosis [D]. Beijing: University of Chinese Academy of Sciences, 2018: 1-12 (in Chinese)
[85] 张立敏, 顾超, 安红梅. 氧化应激介导的细胞凋亡在阿尔茨海默病中的作用[J]. 医学综述, 2021, 27(9): 1685-1690
Zhang L M, Gu C, An H M. Role of oxidative stress-mediated apoptosis in Alzheimer’s disease [J]. Medical Recapitulate, 2021, 27(9): 1685-1690 (in Chinese)
[86] Bouilly K, McCombie H, Leitão A, et al. Persistence of atrazine impact on aneuploidy in Pacific oysters, Crassostrea gigas [J].Marine Biology, 2004, 145(4): 699-705
[87] Gamain P, Gonzalez P, Cachot J, et al. Combined effects of temperature and copper and S-metolachlor on embryo-larval development of the Pacific oyster, Crassostrea gigas [J]. Marine Pollution Bulletin, 2017, 115(1-2): 201-210
[88] Schweizer M, Brilisauer K, Triebskorn R, et al. How glyphosate and its associated acidity affect early development in zebrafish (Danio rerio) [J]. PeerJ, 2019, 7: e7094
[89] Gamain P, Gonzalez P, Cachot J, et al. Combined effects of pollutants and salinity on embryo-larval development of the Pacific oyster, Crassostrea gigas [J]. Marine Environmental Research, 2016, 113: 31-38
[90] Xie J Q, Zhao L, Liu K, et al. Enantioselective effects of chiral amide herbicides napropamide, acetochlor and propisochlor: The more efficient R-enantiomer and its environmental friendly [J]. The Science of the Total Environment, 2018, 626: 860-866
[91] Xu C, Sun X H, Niu L L, et al. Enantioselective thyroid disruption in zebrafish embryo-larvae via exposure to environmental concentrations of the chloroacetamide herbicide acetochlor [J]. The Science of the Total Environment, 2019, 653: 1140-1148