塑料的出现已有100多年的历史,并已广泛应用于工业、农业和人类日常生活中[1]。2016年全球生产了约3.35亿t的塑料制品,比2015年的塑料产量多出1 300万t;这些塑料里39.9%用于商业包装,19.7%用于建筑行业,10%用于汽车行业[2]。塑料有许多好处,但它们的废弃物也会对环境造成大量污染。截止2015年,人类社会累计已产生约63亿t塑料废弃物,其中79%堆积在垃圾填埋场和自然环境中,到2050年,这一数字将达到120亿t[3]。紫外线、机械和水解作用均会破坏环境中的塑料,形成微小的塑料碎片[4],即微塑料(microplastics, MPs)。微塑料是直径<5 mm的塑料碎片,分为初生微塑料和次生微塑料。初生微塑料特意以小尺寸制造,例如用于化妆品、家用清洁剂和其他产品的塑料微珠;而次生微塑料则是由较大的塑料分解而来的小碎片。微塑料已被证实普遍存在于水生和土壤系统中,甚至在极地地区也有发现[5]。微塑料污染已成为全球密切关注的环境问题。
微塑料可通过农用地膜降解、废水灌溉以及污泥和有机肥料的施用等途径进入土壤,并改变土壤的性质、功能和生物多样性[6]。据报道,土壤中88%的微塑料尺寸在125~500 μm,51%的微塑料由聚丙烯(PP)组成[7]。由于塑料的持久性和耐生物降解性,微塑料可以在环境中保存多年[8]。与较大的塑料颗粒相比,微塑料更容易被生物体摄入,影响它们的健康和生存[9]。暴露途径是土壤动物摄入微塑料的主要方式,暴露浓度与土壤动物代谢紊乱的物理化学作用直接相关[10]。目前,弹尾目、蚯蚓、等足类和线虫已被用于模拟微塑料暴露[11-14]。研究表明,微塑料对土壤动物的不良影响包括免疫功能异常、行为固定化、肠道损伤和氧化应激等[13, 15-17]。此外,微塑料可通过食物链从低营养级转移到高营养级,并最终威胁人类的食品安全和公众健康[18]。
微塑料正成为陆地生态系统的一种新威胁,据估计,土壤中微塑料的储量可能已超过海洋[19]。每年有4.4×104~3×105 t和6.3×104~4.3×105 t塑料颗粒分别被排放到北美和欧洲农田[20];而在中国华北地区,大量塑料地膜被遗弃在地里,很少回收利用,造成“白色污染”[21]。因此,迫切需要进一步研究微塑料对土壤生态系统的影响。本文对土壤中微塑料的来源、分布特征和对土壤生态系统的影响进行了综述,以加深微塑料引发土壤生态系统风险的理解。
地膜覆盖和温室栽培能有效改善作物质量和产量而被广泛用于农业生产[22-23],因此农用地膜可能是土壤微塑料的主要来源[24]。传统地膜的主要成分是聚乙烯(PE)和聚氯乙烯(PVC)[25]。极薄地膜的厚度仅为8~50 μm,很难从土壤中有效回收,这就不可避免地导致农田中塑料残留物的大量积累[26]。这些残留物在耕作、紫外线辐射和微生物降解的作用下,缓慢分解成微塑料和纳米塑料的混合物[27-28],最终造成严重的土壤污染问题。在高集约化农业生产中,有机固废常被回收以提供有机肥和养分闭环。但是,有机固废物中除了含有重金属和持久性有机污染物外,也包含了大量的微塑料[29]。污水污泥在农田中的重复施用导致微塑料在土壤中大量积累[30]。尽管污泥基肥料的使用有助于土地养分和有机肥的循环利用,但也应考虑到微塑料和相关有害物质从污水处理厂向农田的大量转移,对农业发展的可持续性和粮食安全所造成的潜在后果。
纺织业是土壤微塑料的主要工业来源。Belzagui等[31]报道了含有微纤维的纺织外套和人造毛皮,其浓度高达175~560 items·g-1;这种人造服装会在室内环境中发生不同程度的微纤维沉积,其释放和扩散与纺织品数量和空气气流的湍流度有关[32]。织物结构、纱线类型、捻度和服装切边模式等纺织品特性也是影响微纤维从纺织品释放的重要因素[33]。因此,改变纺织品的设计,从源头采取有效干预措施,将有助于减少微塑料纤维的排放。非法倾倒、塑料涂层脱落、工业过程中的塑料喷砂和轮胎磨损也可能会直接导致土壤中微塑料水平的增加[34]。汽车轮胎的磨损多发生在刹车和加速期间,这些机械磨损会导致微塑料释放到环境中。船舶业使用的保护性塑料涂层或喷漆,在使用过程中会遭受风化、刮擦和打磨等作用而产生微塑料[35]。塑料树脂颗粒是塑料制品的工业原料,一般呈球型或圆柱形,直径几毫米,是打印机墨水、注塑模具和磨料的成分之一。工业用树脂颗粒在运输过程或操作管理不当而丢失也会产生微塑料污染[36]。总之,工业微塑料的来源多种多样,需从生产源头规范和控制微塑料树脂或纤维的使用,以减少微塑料进入土壤的可能途径。
塑料微珠常被添加进个人护理品(例如洗面奶、牙膏、沐浴露和指甲油等)中做清洁剂或去角质剂。个人护理品被使用后,大多数会洗掉当做废水来处理,其余的则被直接丢弃到环境中,是环境中次生微塑料的贡献来源。Cheung和Fok[37]估算,中国大陆每年约有209万亿颗塑料微珠排放到环境中,总质量约306.9 t。日常生活中塑料包装的运输和破损,尤其是聚苯乙烯(PS)泡沫容器,在日常使用中会释放微塑料[38]。个人衣物的洗涤也会制造大量的微塑料纤维或颗粒,这是因为洗涤过程中塑料纤维会从衣物上脱落,随废水进入环境[39]。人造草坪是微塑料的间接来源,平均每年可向环境排放2 630 t微塑料[40]。城市生活垃圾填埋场是土壤微塑料污染(2×104~9.1×104 items·kg-1)的另一个重要来源,其垃圾渗滤液中微塑料含量偏少,平均约13 items·kg-1,也属于陆地生态系统微塑料污染的一部分[41]。未来,社会上使用的塑料总量仍会持续增加。考虑到塑料已经应用到人类生活的方方面面,需量化并控制微塑料的生活来源,加强塑料管理与回收,以减少塑料使用对环境和人类健康的有害影响。
不同土壤环境中微塑料的分布特征如表1所示。在中国上海郊区菜园土中,浅层土(0~3 cm)和深层土(3~6 cm)中微塑料丰度分别为(78±12.9) items·kg-1和(62.5±12.97) items·kg-1,说明微塑料的分布具有一定的空间特性[7]。在杭州湾,采用地膜覆盖耕作的土壤微塑料含量远高于未使用地膜的农田(571 pieces·kg-1 vs 263 pieces·kg-1);根据地膜覆盖土壤中的聚合物组成和形状,其微塑料来源除了地膜,还可能与灌溉用水、塑料垃圾或堆肥有关[42]。在毛乌素沙地,沙土、草地和林地土中的微塑料丰度存在显著差异;不同林地中微塑料浓度依次为柳树林>杨树林>油松林>樟子松>枣树林;随着植被恢复程度越高,微塑料粒径逐步减小,说明植被可能会干扰微塑料的分布[43]。与农田土不同,在广东贵屿镇的电子拆解园土壤中,微塑料主要以工程塑料和改性塑料组成,88.61%的微塑料尺寸< 1 mm,表面老化迹象明显,且不同程度的吸附了Pb、Cd、Cr、Ba、Cu和Co等金属污染物[44]。
在国外,土壤被微塑料污染的情况也同样严峻。瑞士洪泛区90%的土壤中存在微塑料污染[45]。孟加拉科克斯巴扎尔港口的海滩土内微塑料平均丰度为(8.1±2.9) particles·kg-1,尺寸约300~4 500 μm[46]。在智利,施用污泥的农业土壤中微塑料浓度较低,约为0.6~10.4 items·g-1,其土壤微塑料浓度主要取决于污泥的施用量[47];类似地,在西班牙农田中施用污水污泥会造成土壤中微塑料的连续积累[29]。在智利中部山谷,耕地和牧场的微塑料浓度分别为(306±360) particles·kg-1和(184±266) particles·kg-1,而在天然草地中未发现微塑料污染的证据,且对微塑料的来源问题没有定论[48]。考虑到人类在土地上的频繁农业活动(耕作、施肥和灌溉等),量化土壤中微塑料的传输和再移动,仍是一项困难的任务。
显然,根据环境、时空和人类活动等因素的不同,不同土壤中的微塑料分布特征差异很大。土壤微塑料的丰度与土壤团聚体、土地利用方式和灌溉方式有关。农业活动是农业土微塑料污染的主要来源,这是因为农业活动中废弃物的管理不善会影响微塑料的分配,而农地的特征又促进了微塑料的积累和分布。工业类土壤中的微塑料种类较多,潜在危险也更大。但是,微塑料的丰度单位尚未标准化且不同的调查采用的方法有区别,相关标准化工作亟待开展。
微塑料会改变土壤的理化性质和养分循环,而土壤性质又影响微塑料的迁移。微塑料对土壤的影响有可能会转化为对土壤生物的潜在风险,引起食品质量和安全问题,最终威胁到人类健康。
当土壤中存在大量塑料时,通常会引起土壤结构的丧失。塑料减少了水分向土壤的渗透,对土壤的持水能力产生负面影响,并可能导致土壤缺氧[40]。有报道称残留的地膜会破坏土壤团聚体的结构并降低土壤通气性和透水性,从而降低植物根系生长和整体生产力[52]。微塑料可以与土壤结合形成各种团聚体,如松散的团聚体由微塑料碎片形成,而紧密的团聚体则由微塑料纤维形成[53]。de Souza Machado等[54]的研究表明,被聚对苯二甲酸乙二醇酯(PET)纤维污染的土壤,其容重和水稳定性团聚体随着PET浓度的增加而显著降低,而聚丙烯(PP)纤维、PE碎片则没有类似的作用;而Zhang等[55]指出,PET超细纤维对土壤容重和饱和水电导率没有影响,但对持水量有不利影响。说明微塑料对土壤的影响可能与微塑料暴露剂量以及土壤性质有关。微塑料还会改变土壤水循环,加剧土壤缺水,并影响污染物沿裂缝向深层土壤的迁移[56]。
微塑料属于高碳聚合物,材料内部的C元素可伪装为土壤有机碳池的成分之一[57]。Hegan等[58]报道,高浓度的膜残留物显著影响了土壤pH值、有机质、碱解氮、速效磷和钾,使土壤质量恶化。微塑料能够吸附土壤中的污染物(如农药、重金属、多氯联苯和多环芳烃等),使土壤中有机碳和有机磷含量下降,间接影响了土壤化学环境[59]。微塑料内通常还含有抗氧化剂、阻燃剂和增塑剂等添加物,这些物质会在微塑料降解过程中被释放出来,改变土壤化学环境。研究表明,土壤中的高密度聚乙烯(HDPE)塑料显著降低了土壤的pH值[60];而以碳酸钙做填充剂的PVC在老化过程中,碳酸根离子的释放导致了羟基离子的形成,进而导致土壤pH值的增加[61]。由此可见,微塑料残留物、毒素的释放和土壤pH值的改变对土壤化学环境的威胁不容忽视。
土壤酶与多种土壤生化过程密切相关,具有很高的催化能力,在调节土壤养分循环(如C、N和P)方面发挥着重要作用,是评估土壤肥力的指标[62]。研究表明,微塑料对土壤有机碳氮循环、微生物活性和养分转移也具有负面影响[63]。Liu等[64]报道,微塑料的存在可促进土壤酶活性和土壤中可溶性养分的积累。Hodson等[12]发现微塑料可以提高锌的生物利用度并增加蚯蚓与锌的接触,但对蚯蚓的潜在风险知之甚少,并且,这种导致微量营养素生物利用度增加的潜在机制仍然未知。由于目前还没有完整的土壤质量评估系统,因此很难确定地膜的好处是否大于潜在的风险[65]。这使得评估问题的空间尺度、微塑料的负载率和预测农业生态系统的承载能力变得非常困难。此外,微塑料对脲酶、过氧化氢酶、荧光素二乙酸酯(FDA)水解酶和酚氧化酶的活性也有显著影响[66],短期内改变了土壤质量[67]。
研究表明,微塑料对土壤动物具有一定的毒性效应(表2)。
3.4.1 蚯蚓
蚯蚓是土壤中广泛分布的环节动物之一,由于其独特的生活习性,蚯蚓对微塑料的吸收和生物迁移使得微塑料在土壤内部逐渐扩散[68]。Rodriguez-Seijo等[73]发现,暴露于PE微塑料(250~1 000 μm)28 d后,微塑料对蚯蚓(Eisenia andrei)繁殖率、幼体数量和成年蚯蚓的最终体质量均无显著影响,但组织病理学分析则显示微塑料造成了蚯蚓肠道损伤和免疫反应。与大尺寸微塑料颗粒相比,小尺寸微塑料在高暴露剂量下对蚯蚓更具毒性[69]。除了引起肠道损伤和氧化应激反应[85],微塑料还会引起蚯蚓DNA损伤[71];影响体腔细胞活性,损害雄性生殖器官但对雌性生殖器官无影响[74]。此外,Prendergast-Miller等[86]报道,暴露和摄入聚酯纤维(polyester)对正蚓(Lumbricus terrestris)没有致死性,但筑洞量降低了60%,与生物应激标志物有关的金属硫蛋白-2(mt-2)的表达增加了24.3倍,热休克蛋白(hsp70)的表达减少了90.8%。
在自然环境下,微塑料由于比表面积大,可以吸附、浓缩和运输土壤中的各种污染物。并且,塑料生产过程中往往会添加某些化学物质以提升其使用性能,一旦这些化学物从塑料内部泄露也会对环境造成影响。研究发现,膨胀PS泡沫塑料内部的六溴环十二烷(HBCDDs)可释放到土壤环境,然后被蚯蚓积累[87];微米级PS微塑料(10 μm和100 μm)还促进了菲在蚯蚓体内的积累,其后纳米级PS微塑料(100 nm)抑制了蚯蚓对菲的消除,具有较高的遗传毒性和DNA毒性[72]。此外,微塑料还被证实具有增强土壤中残留农药[88-90]、金属有毒物[91-92]和非金属有毒物[93]毒性的潜在能力,研究人员观察到微塑料可提高这些污染物的暴露有效性,导致蚯蚓生长繁殖降低、产生氧化应激、诱导基因表达、肠道损伤和菌群紊乱乃至DNA损伤。但是,Wang等[70]通过生物动力学模型分析认为,在与环境有关的条件下,微塑料未对蚯蚓产生明显的毒性作用,且微塑料对污染物生物积累的贡献可忽略不计,这可能是由微塑料种类、尺寸、暴露剂量以及污染物不同所造成的差异。
3.4.2 弹尾目
弹尾目(Collembola)是属于内口纲的小型节肢动物,提供了27%的土壤生物总量和33%的土壤呼吸总量,在土壤生态系统中扮演着重要的角色[94]。通过比较2种弹尾虫Folsomia candida和Proisotoma minuta对尿素甲醛树脂颗粒和PET微塑料的运输行为,研究发现F. candida比P. minuta能负载更大的微塑料颗粒,且更快更远;虽然未观察到微塑料的摄食行为,但土壤节肢动物可能促成了土壤食物网中微塑料的积累[11]。暴露于PVC微塑料56 d后显著抑制了F. candida生长率和繁殖率(分别降低16.8%和28.8%),并改变了肠道微生物群[75]。Kim和An[15]观察到微塑料会在几秒内进入土壤孔隙,干扰弹尾虫(Lobella sokamensis)的运动;弹尾虫为避免被微塑料困住而进行的运动会在土壤中留下孔隙,而这些孔隙会被微塑料继续填埋,导致弹尾虫被固定于孔隙内;进一步的研究表明,弹尾虫(F. candida)可摄入的微塑料尺寸< (66±10.9) μm;与对照组相比,摄入小于该尺寸的微塑料导致弹尾虫的运动速度和距离显著降低了(74±38)%[77]。Ju等[76]发现,暴露于0.5%和1% (质量比)浓度微塑料下的弹尾虫(F. candida)表现出躲避行为,躲避率分别为59%和69%;与对照组相比,1%浓度微塑料使其繁殖率降低了70.2%;微塑料显著降低了弹尾虫肠道微生物多样性,具有明显的毒性作用。
3.4.3 线虫
线虫是一个非常丰富的生物类群,连接着食物链较低和较高的营养级,在底栖食物网中占有重要地位。研究表明,暴露于微塑料(5 mg·m-2)2 d,秀丽隐杆线虫(Caenorhabditis elegans)生存率、体长和繁殖率显著被抑制,肠道钙化水平降低、谷胱甘肽S-转移酶的表达增加[17]。Fueser等[82]发现,线虫对微塑料的摄入主要由它们的进食习惯决定,这是因为微塑料尺寸和线虫口腔形状影响了它们的摄食行为;微塑料暴露时间和浓度与线虫微塑料的摄入量呈正相关[95];进一步的研究表明,在食物充足的前提下,线虫摄入的PS微珠在20~40 min完全排出体外,但1 μm微珠的排出时间较0.5 μm微珠慢[80]。因此,在环境中已知微塑性大小分布的情况下,可以根据摄食类型、口腔形态和习性来预测线虫群落对微塑料的摄入。Mueller等[96]研究了长时间暴露(21~49 d)下,PS微珠(1 μm,107 beads·mL-1)对3种线虫(C. elegans、Acrobeloides nanus、Plectus acuminatus)生活史特征的影响,发现A. nanus的种群增长显著加快;而秀丽隐杆线虫(C. elegans)作为一种快速繁殖、营养需求高的线虫,比生长缓慢的线虫更容易受到微塑料暴露的影响。Shang等[79]报道,低浓度暴露组(2.4×107 particles·m-2和2.4×108 particles·m-2,PS微珠)的线虫寿命下降比高浓度暴露组(2.4×109 particles·m-2和2.4×1010 particles·m-2,PS微珠)更显著;同时,在较低微塑料浓度下,参与排毒和寿命调节的skn-1基因的表达发生显著变化,说明微塑料对线虫具有双相剂量效应。
3.4.4 其他物种
研究发现,PS微珠(110 particles·g-1)对海蚯蚓(Arenicola marina)的能量收支没有显著影响[97]。Zhu等[84]构建了捕食性螨虫和猎物(弹尾虫)食物链模型,测试捕食者与猎物之间的关系在微塑料迁移中的作用;结果表明,与单一物种相比,捕食者与猎物模型促使PVC微塑料(80~250 μm)的迁移增加了40%(P<0.05)。Selonen等[98]研究了聚酯纤维(2种长度:12 μm~2.87 mm和4~24 mm)对白色蚯蚓(Enchytraeus crypticus)、弹尾虫(F. candida)、鼠妇(Porcellio scaber)和甲螨(Oppia nitens)的影响;他们发现2种纤维整体上对无脊椎动物危害不大;但对鼠妇的能量存储有轻微影响,随着微塑料浓度增加,蚯蚓的繁殖率降低了30%(仅限于长纤维)。此外,暴露于PET微纤维(0.14~0.71 g·kg-1)会导致蜗牛(Achatina fulica)食物摄入量平均减少24.7%~34.9%,排泄量减少46.6%~67.7%,引起胃肠壁绒毛损伤和氧化应激[99];进一步的研究指出,蜗牛可将PS泡沫塑料部分降解成微塑料,通过排泄将微塑料排到土壤中,即使用抗生素抑制肠内微生物也不会影响降解反应[83],这些发现将有利于加深土壤动物塑料生物降解的理解。
综上所述,土壤动物暴露于微塑料后,可观察到肠道损伤、氧化应激、DNA损伤和生长繁殖抑制等一系列不良影响。受试土壤动物对微塑料尺寸有明显偏好,多数为微米级(蜗牛为毫米级),这些生物吸收的微塑料均可进入胃肠道。在一些蚯蚓、弹尾虫和线虫的实验中,微塑料存在被动物附着、拖曳和推动行为,表明生物能影响微塑料的环境迁移。但是,以上研究仍存在以下不足:大多数研究是基于微塑料浓度和颗粒大小的情况下进行的,而存在于食物源中的微塑料对生物体的影响仍是一项空白;已有研究表明部分蚯蚓和弹尾虫对微塑料存在躲避和排泄活动,导致微塑料在肠道内的保留量可能不多,不足以定量证明微塑料在体内的生物积累;不同试验使用的暴露剂量单位差异很大,不利于不同土壤动物之间的横向对比。为了更好地理解微塑料对土壤动物的潜在影响过程,可引入摄入率、肠道停留时间、生物降解和消化率等动态指标。
微塑料暴露引起的生态和健康风险是土壤微塑料研究中最受关注的问题[100]。Rillig等[101]对4种不同尺寸的微塑料进行了析因试验,结果表明蚯蚓的活动大大增加了土壤深处微塑料的存在,而小PE微球在土壤中被输送得更深。除蚯蚓外,微塑料还存在于其他小型土壤无脊椎动物中,这些动物可通过挖洞、排泄和依附于宿主外部等方式,将微塑料掺入土壤,暗示了微塑料的天然营养转移。同时,这些动物活动对其他土壤生物暴露于微塑料、微塑料在土壤中的停留时间以及是否进入地下水的可能性都具有潜在影响[102-103]。食物链模拟和实地研究证明:在食物链中,微塑料可从猎物(低营养水平)转移给捕食者(高营养水平)[104]。一项关于墨西哥东南部传统玛雅家庭花园的研究指出,微塑料丰度从土壤(0.87±1.9) items·g-1、蚯蚓粪(14.8±28.8) items·g-1到鸡粪(129.8±82.3) items·g-1都有所增加,证实了微塑料可从土壤转移到鸡体内[105]。目前,研究发现在成人粪便和结肠切除标本中均检测到了微塑料,证实了人类消化道中存在微塑料[106]。受限于研究的有限性,微塑料对人类的健康风险尚不明确。然而,综合上述微塑料对土壤动物毒性效应的研究结果,土壤动物摄入微塑料会产生诸如颗粒毒性、DNA损伤和氧化应激等健康风险。因此,建立微塑料通过土壤食物链进入人体的健康风险评估体系,研究微塑料对人类的危害迫在眉睫。
作为一个新兴研究领域,微塑料对农业生态系统、粮食安全和人类健康的长期污染问题正日益受到科学界的关注。本文指出,土壤中微塑料的来源与人类活动息息相关,主要分为农业源、工业源和生活源三大类;其在土壤中的分布特征复杂多变,往往受各种自然和人为因素的驱动,故而造就了各土壤环境中微塑料分布的差异性;微塑料对土壤的影响表现在破坏土壤结构、降低土壤有机质含量和引起肥力下降等方面,还可与其他土壤因素(如吸附污染物)相互作用,影响土壤健康和功能,加剧土壤污染;由于微生物体积小,很容易被土壤动物吸收,给生物体带来机械和生理上的损伤;最后,微塑料还会通过食物链传递,给人类带来潜在健康风险。当前,土壤微塑料研究所面临的问题和挑战如下:(1)土壤成分复杂多样,微塑料的提取和分离难度大,给微塑料的来源和鉴定带来困难。(2)微塑料在土壤表层和底土团聚体的空间分布和行为调查还不够深入,而关于土壤剖面微塑料与微生物、土壤功能和肥力的相互作用的研究依然有限。(3)土壤动物生态毒性实验用的微塑料多购自试剂网站,对微塑料的化学性质的记录是零碎的,也缺乏对已风化微塑料的研究。(4)微塑料比表面积大、吸附性和疏水性较强,但微塑料与污染物对土壤受试动物的研究比较单一(主要为蚯蚓),研究空间依然很大。
微塑料影响土壤生态毒理的未来研究可在以下几个方面进行:开发新的微塑料筛选鉴定方法,以便定量分析微塑料的分布、运输和降解,并全面揭示它们在环境中的长期命运。人类农业生产活动中产生的微塑料来源(如农具机械磨损、农用车轮胎磨损等)仍需细化。挖掘微塑料种类、结构和性质对土壤潜在影响的可能性,以拓展对微塑料影响土壤健康与功能的认知。实验室生态毒理学试验需对微塑料种类、用途、来源和老化程度要加以考虑,并建立统一的土壤微塑料污染评估标准,使不同研究具有可比性。梳理微塑料的化学成分、添加剂和对其他污染物的吸附脱附关系,为联合毒性效应研究奠定好基础。关于微塑料对蚯蚓、弹尾目和线虫的不良影响已经得到了较好的调查,今后的实验应重点研究鞘翅目、蚁科、蜱螨目、等足目和腹足纲等生态相关类群,并拓展对多种检测器官的研究,以促进人们对微塑料参与食物链传递风险的理解。这些资料的补充有助于说明微塑料在土壤中的长期积累、生物转化和生物积累的环境风险。
[1] 孙小东, 曹鼎, 胡倩倩, 等. 废弃塑料的化学回收资源化利用研究进展[J]. 中国塑料, 2021, 35(8): 44-54
Sun X D, Cao D, Hu Q Q, et al. Progress in chemical recovery and resource utilization of waste plastics [J]. China Plastics, 2021, 35(8): 44-54 (in Chinese)
[2] Hatti-Kaul R, Nilsson L J, Zhang B Z, et al. Designing biobased recyclable polymers for plastics [J]. Trends in Biotechnology, 2020, 38(1): 50-67
[3] Geyer R, Jambeck J R, Law K L. Production, use, and fate of all plastics ever made [J]. Science Advances, 2017, 3(7): e1700782
[4] Song Y K, Hong S H, Jang M, et al. Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type [J]. Environmental Science & Technology, 2017, 51(8): 4368-4376
[5] 高春梅, 曹樟, 严晨冰, 等. 南极南设得兰群岛周边水域侧纹南极鱼胃肠含物微塑料特征及其分布[J]. 水产学报, 2021, 45(7): 1-9
Gao C M, Cao Z, Yan C B, et al. Traits and distribution of microplastics in stomach and intestinal tract of Pleuragramma antarcticum around the South Shetland Islands [J]. Journal of Fisheries of China, 2021, 45(7): 1-9 (in Chinese)
[6] 杨扬, 何文清. 农田土壤微塑料污染现状与进展[J]. 环境工程, 2021, 39(5): 156-164, 15
Yang Y, He W Q. Research status and progress of microplastic pollution in farmland soil [J]. Environmental Engineering, 2021, 39(5): 156-164, 15 (in Chinese)
[7] Liu M T, Lu S B, Song Y, et al. Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China [J]. Environmental Pollution, 2018, 242(Pt A): 855-862
[8] Fan Y J, Zheng K, Zhu Z W, et al. Distribution, sedimentary record, and persistence of microplastics in the Pearl River Catchment, China [J]. Environmental Pollution, 2019, 251: 862-870
[9] Jms I B, Windsor F M, Poudevigne-Durance T, et al. Estimating the size distribution of plastics ingested by animals [J]. Nature Communications, 2020, 11(1): 1594
[10] Helmberger M S, Tiemann L K, Grieshop M J. Towards an ecology of soil microplastics [J]. Functional Ecology, 2020, 34(3): 550-560
[11] Maaß S, Daphi D, Lehmann A, et al. Transport of microplastics by two collembolan species [J]. Environmental Pollution, 2017, 225: 456-459
[12] Hodson M E, Duffus-Hodson C A, Clark A, et al. Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrates [J]. Environmental Science & Technology, 2017, 51(8): 4714-4721
[13] Zhao L, Qu M, Wong G, et al. Transgenerational toxicity of nanopolystyrene particles in the range of μg L-1 in the nematode Caenorhabditis elegans [J]. Environmental Science: Nano, 2017, 4(12): 2356-2366
[14] Jemec Kokalj A, Horvat P, Skalar T, et al. Plastic bag and facial cleanser derived microplastic do not affect feeding behaviour and energy reserves of terrestrial isopods [J]. Science of the Total Environment, 2018, 615: 761-766
[15] Kim S W, An Y J. Soil microplastics inhibit the movement of springtail species [J]. Environment International, 2019, 126: 699-706
[16] Hirt N, Body-Malapel M. Immunotoxicity and intestinal effects of nano- and microplastics: A review of the literature [J]. Particle and Fibre Toxicology, 2020, 17(1): 57
[17] Colpaert R, Petit dit Grézériat L, Louzon M, et al. Polyethylene microplastic toxicity to the terrestrial snail Cantareus aspersus: Size matters [J].Environmental Science and Pollution Research, 2022, 29(20): 29258-29267
[18] Kim S W, Kim D, Chae Y, et al. Dietary uptake, biodistribution, and depuration of microplastics in the freshwater diving beetle Cybister japonicus: Effects on predacious behavior [J]. Environmental Pollution, 2018, 242(Pt A): 839-844
[19] He D F, Luo Y M, Lu S B, et al. Microplastics in soils: Analytical methods, pollution characteristics and ecological risks [J]. TrAC Trends in Analytical Chemistry, 2018, 109: 163-172
[20] Boyle K, Örmeci B. Microplastics and nanoplastics in the freshwater and terrestrial environment: A review [J]. Water, 2020, 12(9): 2633
[21] 王瑞波, 王久臣, 尹建锋, 等. 加快农用地膜污染防治立法推进乡村振兴生态宜居[J]. 中国农业资源与区划, 2019, 40(2): 13-20
Wang R B, Wang J C, Yin J F, et al. Study on the legislation of agricultural plastic film pollution prevention to promote pleasant living environment of rural vitalization [J]. Chinese Journal of Agricultural Resources and Regional Planning, 2019, 40(2): 13-20 (in Chinese)
[22] Gao H H, Yan C R, Liu Q, et al. Effects of plastic mulching and plastic residue on agricultural production: A meta-analysis [J]. The Science of the Total Environment, 2019, 651(Pt 1): 484-492
[23] Zhang D, Ng E L, Hu W L, et al. Plastic pollution in croplands threatens long-term food security [J]. Global Change Biology, 2020, 26(6): 3356-3367
[24] Huang Y, Liu Q, Jia W Q, et al. Agricultural plastic mulching as a source of microplastics in the terrestrial environment [J]. Environmental Pollution, 2020, 260: 114096
[25] Sander M. Biodegradation of polymeric mulch films in agricultural soils: Concepts, knowledge gaps, and future research directions [J]. Environmental Science & Technology, 2019, 53(5): 2304-2315
[26] Abduwaiti A, Liu X W, Yan C R, et al. Testing biodegradable films as alternatives to plastic-film mulching for enhancing the yield and economic benefits of processed tomato in Xinjiang region [J]. Sustainability, 2021, 13(6): 3093
[27] Li J, Song Y, Cai Y B. Focus topics on microplastics in soil: Analytical methods, occurrence, transport, and ecological risks [J]. Environmental Pollution, 2020, 257: 113570
[28] Li Y Q, Zhao C X, Yan C R, et al. Effects of agricultural plastic film residues on transportation and distribution of water and nitrate in soil [J]. Chemosphere, 2020, 242: 125131
[29] van den Berg P, Huerta-Lwanga E, Corradini F, et al. Sewage sludge application as a vehicle for microplastics in eastern Spanish agricultural soils [J]. Environmental Pollution, 2020, 261: 114198
[30] Fakour H, Lo S L, Yoashi N T, et al. Quantification and analysis of microplastics in farmland soils: Characterization, sources, and pathways [J]. Agriculture, 2021, 11(4): 330
[31] Belzagui F, Crespi M, lvarez A, et al. Microplastics’ emissions: Microfibers’ detachment from textile garments [J]. Environmental Pollution, 2019, 248: 1028-1035
[32] Zhang L S, Xie Y S, Liu J Y, et al. An overlooked entry pathway of microplastics into agricultural soils from application of sludge-based fertilizers [J]. Environmental Science & Technology, 2020, 54(7): 4248-4255
[33] Cai Y P, Yang T, Mitrano D M, et al. Systematic study of microplastic fiber release from 12 different polyester textiles during washing [J]. Environmental Science & Technology, 2020, 54(8): 4847-4855
[34] Karbalaei S, Hanachi P, Walker T R, et al. Occurrence, sources, human health impacts and mitigation of microplastic pollution [J]. Environmental Science and Pollution Research, 2018, 25(36): 36046-36063
[35] Dibke C, Fischer M, Scholz-Böttcher B M. Microplastic mass concentrations and distribution in German bight waters by pyrolysis-gas chromatography-mass spectrometry/thermochemolysis reveal potential impact of marine coatings: Do ships leave skid marks? [J]. Environmental Science & Technology, 2021, 55(4): 2285-2295
[36] Sobhani Z, Lei Y J, Tang Y H, et al. Microplastics generated when opening plastic packaging [J]. Scientific Reports, 2020, 10(1): 4841
[37] Cheung P K, Fok L. Characterisation of plastic microbeads in facial scrubs and their estimated emissions in Mainland China [J]. Water Research, 2017, 122: 53-61
[38] Guan Q F, Yang H B, Zhao Y X, et al. Microplastics release from victuals packaging materials during daily usage[J]. EcoMat, 2021, 3(3): e12107
[39] Mitrano D M, Wohlleben W. Microplastic regulation should be more precise to incentivize both innovation and environmental safety [J]. Nature Communications, 2020, 11(1): 5324
[40] Guo J J, Huang X P, Xiang L, et al. Source, migration and toxicology of microplastics in soil [J]. Environment International, 2020, 137: 105263
[41] Golwala H, Zhang X Y, Iskander S M, et al. Solid waste: An overlooked source of microplastics to the environment [J]. The Science of the Total Environment, 2021, 769: 144581
[42] Zhou B Y, Wang J Q, Zhang H B, et al. Microplastics in agricultural soils on the coastal plain of Hangzhou Bay, East China: Multiple sources other than plastic mulching film [J]. Journal of Hazardous Materials, 2020, 388: 121814
[43] Ding L, Wang X L, Ouyang Z Z, et al. The occurrence of microplastic in Mu Us Sand Land soils in northwest China: Different soil types, vegetation cover and restoration years [J]. Journal of Hazardous Materials, 2021, 403: 123982
[44] Chai B W, Wei Q, She Y Z, et al. Soil microplastic pollution in an e-waste dismantling zone of China [J]. Waste Management, 2020, 118: 291-301
[45] Scheurer M, Bigalke M. Microplastics in Swiss floodplain soils [J]. Environmental Science & Technology, 2018, 52(6): 3591-3598
[46] Rahman S M A, Robin G S, Momotaj M, et al. Occurrence and spatial distribution of microplastics in beach sediments of Cox’s Bazar, Bangladesh [J]. Marine Pollution Bulletin, 2020, 160: 111587
[47] Corradini F, Meza P, Eguiluz R, et al. Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal [J]. The Science of the Total Environment, 2019, 671: 411-420
[48] Corradini F, Casado F, Leiva V, et al. Microplastics occurrence and frequency in soils under different land uses on a regional scale [J]. The Science of the Total Environment, 2021, 752: 141917
[49] Ding L, Zhang S Y, Wang X Y, et al. The occurrence and distribution characteristics of microplastics in the agricultural soils of Shaanxi Province, in north-western China [J]. The Science of the Total Environment, 2020, 720: 137525
[50] Zhang G S, Liu Y F. The distribution of microplastics in soil aggregate fractions in southwestern China [J]. Science of the Total Environment, 2018, 642: 12-20
[51] Kim S K, Kim J S, Lee H, et al. Abundance and characteristics of microplastics in soils with different agricultural practices: Importance of sources with internal origin and environmental fate [J]. Journal of Hazardous Materials, 2021, 403: 123997
[52] Jiang X J, Liu W J, Wang E H, et al. Residual plastic mulch fragments effects on soil physical properties and water flow behavior in the Minqin Oasis, northwestern China [J]. Soil and Tillage Research, 2017, 166: 100-107
[53] Rillig M C, Ingraffia R, de Souza Machado A A. Microplastic incorporation into soil in agroecosystems [J]. Frontiers in Plant Science, 2017, 8: 1805
[54] de Souza Machado A A, Lau C W, Till J, et al. Impacts of microplastics on the soil biophysical environment [J]. Environmental Science & Technology, 2018, 52(17): 9656-9665
[55] Zhang G S, Zhang F X, Li X T. Effects of polyester microfibers on soil physical properties: Perception from a field and a pot experiment [J]. Science of the Total Environment, 2019, 670: 1-7
[56] Hüffer T, Metzelder F, Sigmund G, et al. Polyethylene microplastics influence the transport of organic contaminants in soil [J]. The Science of the Total Environment, 2019, 657: 242-247
[57] Rillig M C. Microplastic disguising As soil carbon storage [J]. Environmental Science & Technology, 2018, 52(11): 6079-6080
[58] Hegan D, Tong L, Han Z Q, et al. Determining time limits of continuous film mulching and examining residual effects on cotton yield and soil properties [J]. Journal of Environmental Biology, 2015, 36(3): e677-e684
[59] Liu H F, Yang X M, Liang C T, et al. Interactive effects of microplastics and glyphosate on the dynamics of soil dissolved organic matter in a Chinese loess soil [J]. Catena, 2019, 182: 104177
[60] Bandow N, Will V, Wachtendorf V, et al. Contaminant release from aged microplastic [J]. Environmental Chemistry, 2017, 14(6): 394
[61] Boots B, Russell C W, Green D S. Effects of microplastics in soil ecosystems: Above and below ground [J]. Environmental Science & Technology, 2019, 53(19): 11496-11506
[62] Loeppmann S, Breidenbach A, Spielvogel S, et al. Organic nutrients induced coupled C- and P-cycling enzyme activities during microbial growth in forest soils [J]. Frontiers in Forests and Global Change, 2020, 3: 100
[63] Cao D D, Wang X, Luo X X, et al. Effects of polystyrene microplastics on the fitness of earthworms in an agricultural soil [J]. IOP Conference Series: Earth and Environmental Science, 2017, 61: 012148
[64] Liu H F, Yang X M, Liu G B, et al. Response of soil dissolved organic matter to microplastic addition in Chinese loess soil [J]. Chemosphere, 2017, 185: 907-917
[65] Steinmetz Z, Wollmann C, Schaefer M, et al. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? [J]. Science of the Total Environment, 2016, 550: 690-705
[66] Huang Y, Zhao Y R, Wang J, et al. LDPE microplastic films alter microbial community composition and enzymatic activities in soil [J]. Environmental Pollution, 2019, 254(Pt A): 112983
[67] Murugan R, Beggi F, Kumar S. Belowground carbon allocation by trees, understory vegetation and soil type alter microbial community composition and nutrient cycling in tropical Eucalyptus plantations [J]. Soil Biology and Biochemistry, 2014, 76: 257-267
[68] Huerta Lwanga E, Gertsen H, Gooren H, et al. Incorporation of microplastics from litter into burrows of Lumbricus terrestris [J]. Environmental Pollution, 2017, 220(Pt A): 523-531
[69] Lahive E, Walton A, Horton A A, et al. Microplastic particles reduce reproduction in the terrestrial worm Enchytraeus crypticus in a soil exposure [J]. Environmental Pollution, 2019, 255(Pt 2): 113174
[70] Wang J, Coffin S, Sun C L, et al. Negligible effects of microplastics on animal fitness and HOC bioaccumulation in earthworm Eisenia fetida in soil [J]. Environmental Pollution, 2019, 249: 776-784
[71] Jiang X F, Chang Y Q, Zhang T, et al. Toxicological effects of polystyrene microplastics on earthworm (Eisenia fetida) [J]. Environmental Pollution, 2020, 259: 113896
[72] Xu G H, Liu Y, Song X, et al. Size effects of microplastics on accumulation and elimination of phenanthrene in earthworms [J]. Journal of Hazardous Materials, 2021, 403: 123966
[73] Rodriguez-Seijo A, Lourenço J, Rocha-Santos T A P, et al. Histopathological and molecular effects of microplastics in Eisenia andrei Bouché [J]. Environmental Pollution, 2017, 220(Pt A): 495-503
[74] Kwak J I, An Y J. Microplastic digestion generates fragmented nanoplastics in soils and damages earthworm spermatogenesis and coelomocyte viability [J]. Journal of Hazardous Materials, 2021, 402: 124034
[75] Zhu D, Chen Q L, An X L, et al. Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition [J]. Soil Biology and Biochemistry, 2018, 116: 302-310
[76] Ju H, Zhu D, Qiao M. Effects of polyethylene microplastics on the gut microbial community, reproduction and avoidance behaviors of the soil springtail, Folsomia candida [J]. Environmental Pollution, 2019, 247: 890-897
[77] Kim S W, An Y J. Edible size of polyethylene microplastics and their effects on springtail behavior [J]. Environmental Pollution, 2020, 266: 115255
[78] Yu Y J, Chen H B, Hua X, et al. Polystyrene microplastics (PS-MPs) toxicity induced oxidative stress and intestinal injury in nematode Caenorhabditis elegans [J]. Science of the Total Environment, 2020, 726: 138679
[79] Shang X, Lu J W, Feng C, et al. Microplastic (1 and 5 μm) exposure disturbs lifespan and intestine function in the nematode Caenorhabditis elegans [J]. The Science of the Total Environment, 2020, 705: 135837
[80] Fueser H, Mueller M T, Traunspurger W. Rapid ingestion and egestion of spherical microplastics by bacteria-feeding nematodes [J]. Chemosphere, 2020, 261: 128162
[81] Lei L L, Wu S Y, Lu S B, et al. Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans [J]. The Science of the Total Environment, 2018, 619-620: 1-8
[82] Fueser H, Mueller M T, Weiss L, et al. Ingestion of microplastics by nematodes depends on feeding strategy and buccal cavity size [J]. Environmental Pollution, 2019, 255(Pt 2): 113227
[83] Song Y, Qiu R, Hu J N, et al. Biodegradation and disintegration of expanded polystyrene by land snails Achatina fulica [J]. The Science of the Total Environment, 2020, 746: 141289
[84] Zhu D, Bi Q F, Xiang Q, et al. Trophic predator-prey relationships promote transport of microplastics compared with the single Hypoaspis aculeifer and Folsomia candida [J]. Environmental Pollution, 2018, 235: 150-154
[85] Chen Y L, Liu X N, Leng Y F, et al. Defense responses in earthworms (Eisenia fetida) exposed to low-density polyethylene microplastics in soils [J]. Ecotoxicology and Environmental Safety, 2020, 187: 109788
[86] Prendergast-Miller M T, Katsiamides A, Abbass M, et al. Polyester-derived microfibre impacts on the soil-dwelling earthworm Lumbricus terrestris [J]. Environmental Pollution, 2019, 251: 453-459
[87] Li B, Lan Z H, Wang L, et al. The release and earthworm bioaccumulation of endogenous hexabromocyclododecanes (HBCDDs) from expanded polystyrene foam microparticles [J]. Environmental Pollution, 2019, 255(Pt 1): 113163
[88] Sun W, Meng Z Y, Li R S, et al. Joint effects of microplastic and dufulin on bioaccumulation, oxidative stress and metabolic profile of the earthworm (Eisenia fetida) [J]. Chemosphere, 2021, 263: 128171
[89] Cheng Y L, Zhu L S, Song W H, et al. Combined effects of mulch film-derived microplastics and atrazine on oxidative stress and gene expression in earthworm (Eisenia fetida) [J]. The Science of the Total Environment, 2020, 746: 141280
[90] Yang X M, Lwanga E H, Bemani A, et al. Biogenic transport of glyphosate in the presence of LDPE microplastics: A mesocosm experiment [J]. Environmental Pollution, 2019, 245: 829-835
[91] Zhou Y F, Liu X N, Wang J. Ecotoxicological effects of microplastics and cadmium on the earthworm Eisenia foetida [J]. Journal of Hazardous Materials, 2020, 392: 122273
[92] Huang C D, Ge Y, Yue S Z, et al. Microplastics aggravate the joint toxicity to earthworm Eisenia fetida with cadmium by altering its availability [J]. The Science of the Total Environment, 2021, 753: 142042
[93] Wang H T, Ding J, Xiong C, et al. Exposure to microplastics lowers arsenic accumulation and alters gut bacterial communities of earthworm Metaphire californica [J]. Environmental Pollution, 2019, 251: 110-116
[94] Büks F, van Schaik N L, Kaupenjohann M. What do we know about how the terrestrial multicellular soil fauna reacts to microplastic? [J]. Soil, 2020, 6(2): 245-267
[95] Fueser H, Mueller M T, Traunspurger W. Ingestion of microplastics by meiobenthic communities in small-scale microcosm experiments [J]. Science of the Total Environment, 2020, 746: 141276
[96] Mueller M T, Fueser H, Höss S, et al. Species-specific effects of long-term microplastic exposure on the population growth of nematodes, with a focus on microplastic ingestion [J]. Ecological Indicators, 2020, 118: 106698
[97] van Cauwenberghe L, Claessens M, Vandegehuchte M B, et al. Microplastics are taken up by mussels (Mytilus edulis) and lugworms (Arenicola marina) living in natural habitats [J]. Environmental Pollution, 2015, 199: 10-17
[98] Selonen S, Dolar A, Jemec Kokalj A, et al. Exploring the impacts of plastics in soil: The effects of polyester textile fibers on soil invertebrates [J]. The Science of the Total Environment, 2020, 700: 134451
[99] Song Y, Cao C J, Qiu R, et al. Uptake and adverse effects of polyethylene terephthalate microplastics fibers on terrestrial snails (Achatina fulica) after soil exposure [J]. Environmental Pollution, 2019, 250: 447-455
[100] Sarker A, Deepo D M, Nandi R, et al. A review of microplastics pollution in the soil and terrestrial ecosystems: A global and Bangladesh perspective [J]. The Science of the Total Environment, 2020, 733: 139296
[101] Rillig M C, Ziersch L, Hempel S. Microplastic transport in soil by earthworms [J]. Scientific Reports, 2017, 7: 1362
[102] Wu M J, Yang C P, Du C, et al. Microplastics in waters and soils: Occurrence, analytical methods and ecotoxicological effects [J]. Ecotoxicology and Environmental Safety, 2020, 202: 110910
[103] Zang H D, Zhou J, Marshall M R, et al. Microplastics in the agroecosystem: Are they an emerging threat to the plant-soil system? [J]. Soil Biology and Biochemistry, 2020, 148: 107926
[104] Gao D, Li X Y, Liu H T. Source, occurrence, migration and potential environmental risk of microplastics in sewage sludge and during sludge amendment to soil [J]. Science of the Total Environment, 2020, 742: 140355
[105] Huerta Lwanga E, Mendoza Vega J, Ku Quej V, et al. Field evidence for transfer of plastic debris along a terrestrial food chain [J]. Scientific Reports, 2017, 7(1): 14071
[106] Ibrahim Y S, Tuan Anuar S, Azmi A A, et al. Detection of microplastics in human colectomy specimens [J]. JGH Open: An Open Access Journal of Gastroenterology and Hepatology, 2020, 5(1): 116-121