

DOI:10.7524/AJE.1673-5897.20190911003

韩丽花, 李巧玲, 徐笠, 等. 大辽河流域土壤中微塑料的丰度与分布研究[J]. 生态毒理学报, 2020, 15(1): 174-185

Han L H, Li Q L, Xu L, et al. Abundance and distribution of microplastics of soils in Daliao River basin [J]. Asian Journal of Ecotoxicology, 2020, 15 (1): 174-185 (in Chinese)

# 大辽河流域土壤中微塑料的丰度与分布研究

韩丽花<sup>1,2,3</sup>,李巧玲<sup>1</sup>,徐笠<sup>2,3,\*</sup>,陆安祥<sup>2,3</sup>,李冰茹<sup>2,3</sup>,巩文雯<sup>2,3</sup>,田佳宇<sup>2,3</sup>

中北大学理学院,太原 030051
 北京市农林科学院,北京农业质量标准与检测技术研究中心,北京 100097
 农产品产地环境监测北京市重点实验室,北京 100097
 收稿日期:2019-09-11
 录用日期:2019-10-18

**摘要:**微塑料在海洋生态系统中的分布特征已有不少研究,但人类活动强度较大的流域土壤中微塑料的污染研究仍存在较大空白。以大辽河流域为研究对象,采集附近 8 个土壤样品,采用密度浮选法,结合体视显微镜及显微红外光谱(μ-FTIR),进行了大辽河流域土壤中微塑料的组成及分布特征研究。结果表明,土壤中微塑料颜色以白、蓝和绿色为主(88.03%),形状以碎片、薄膜和泡沫为主(总占比为96.32%),土壤中粒径为500~1000 μm的微塑料最多(41.10%),其次依次为1000~2000 μm (26.38%)、100~500 μm(19.33%)和2000~5000 μm(11.66%)。粒径为0~100 μm 的微塑料和>5000 μm 的塑料碎片所占比例最小(均小于1.00%)。薄膜类和碎片类微塑料的主要成分分别是聚乙烯(PE)和聚丙烯(PP),颗粒类和泡沫类的主要成分是聚苯乙烯(PS),纤维类微塑料的主要成分是聚酰胺(PA)。土壤中微塑料平均丰度为(273.33±327.65)个·kg<sup>-1</sup>。总体上,该研究区域土壤中微塑料的污染程度处于中等偏低水平。

关键词:微塑料;大辽河流域;土壤;丰度;分布 文章编号:1673-5897(2020)1-174-12 中图分类号:X171.5 文献标识码:A

## Abundance and Distribution of Microplastics of Soils in Daliao River Basin

Han Lihua<sup>1,2,3</sup>, Li Qiaoling<sup>1</sup>, Xu Li<sup>2,3,\*</sup>, Lu Anxiang<sup>2,3</sup>, Li Bingru<sup>2,3</sup>, Gong Wenwen<sup>2,3</sup>, Tian Jiayu<sup>2,3</sup> 1. School of Science, North University of China, Taiyuan 030051, China

2. Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China

3. Beijing Municipal Key Laboratory of Agricultural Environment Monitoring, Beijing 100097, China

Received 11 September 2019 accepted 18 October 2019

Abstract: Microplastics have been widely distributed in marine ecosystems, which is an increasing concern for researchers. But there is still a large gap in the studies on the pollution of microplastics in watershed soils with high human activity. Eight soil samples were selected in Daliao River basin. The composition and distribution characteristics of microplastics in the soil of the Daliao River basin were studied by density flotation combined with stereo microscope and  $\mu$ -FTIR. The results showed that the color of microplastics in the soil was mainly white, blue and

基金项目:北京市优秀人才青年骨干项目;北京市农林科学院创新能力建设(KJCX20180406,KJCX20190405);辽河流域水环境管理与水污 染治理技术推广应用项目(2018ZX07601003)

作者简介:韩丽花(1993—),女,硕士研究生,研究方向为微塑料的污染分布,E-mail: lihuaHanzbdx@163.com

<sup>\*</sup> 通讯作者(Corresponding author), E-mail: xuliforever@163.com

green (the total proportion was 88.03%); the shape was fragment, film and foam (the total proportion was 96.32%). The main particle sizes of microplastics in soil were 500 ~1 000  $\mu$ m, which accounted for 41.10%, followed by 1 000 ~2 000  $\mu$ m (26.38%), 100 ~500  $\mu$ m (19.33%) and 2 000 ~5 000  $\mu$ m (11.66%). Microplastics with particle size of 0 ~100  $\mu$ m and debris plastics with particle size of >5 000  $\mu$ m accounted for the smallest proportion (both less than 1.00%). The main components of film and fragment microplastics were polyethylene (PE) and polypropylene (PP), respectively. The main components of particle and foam microplastics were polystyrene (PS), and the main component of the fiber microplastic was polyamide (PA). The average abundance of microplastics in soil was (273.33±327.65) items  $\cdot$ kg<sup>-1</sup>. Overall, the pollution level of microplastics in the soils of the study area was at a moderately low level.

Keywords: microplastic; Daliao River basin; soil; abundance; distribution

微塑料(microplastics)一词最早由 Andrady<sup>11</sup>提 出,后经美国国家海洋和大气管理局(National Oceanic and Atmospheric Administration, NOAA)将其定 义为直径<5 mm 的塑料颗粒,主要来源于大尺寸塑 料的风化和降解产物、化纤纺织品的断裂及个人护 理品或工业原材料,即按其来源可分为初级微塑料 和次级微塑料。微塑料具有粒径小、比表面积大、疏 水性强和难降解等特性,是众多疏水性污染物和重 金属的理想载体<sup>[2]</sup>。微塑料不断上升的环境浓度以 及潜在的生态毒理效应,引起了全球的日益关注<sup>[3]</sup>。

近年来,国内外学者对微塑料污染的研究已取 得了一定的成果。这些研究表明,微塑料广泛存在 于海洋<sup>[4-5]</sup>、淡水湖<sup>[6]</sup>、河流沉积物<sup>[7-10]</sup>和淡水生物<sup>[11]</sup> 等中。而海洋和淡水中微塑料的一个重要来源是陆 地塑料的使用<sup>[12]</sup>。据报道,土壤可能比海洋接收更 多的塑料垃圾<sup>[13]</sup>。已有研究表明,微塑料经过长期 的风化、老化过程,比表面积逐步增大,疏水性增强, 在土壤盐度、有机质和 pH 等多种因素影响下,与土 壤中的重金属和有机污染物发生相互作用,引起土 壤的物理化学性质的改变<sup>[14]</sup>。此外,微塑料在被土 壤中的动物摄食后沿着土壤食物链传递,进而影响 各营养级的土壤动物<sup>[15]</sup>。因此,对土壤中微塑料污 染方面的研究迫在眉睫。

目前有部分研究证明了滨海潮滩土壤<sup>[16]</sup>、瑞士 洪泛区土壤<sup>[17]</sup>、西南地区土壤<sup>[18]</sup>和滨海盐场土壤<sup>[19]</sup> 等均存在微塑料的污染,而流域土壤中的微塑料很 可能随着大风、降雨等冲蚀进入河流中,最终汇入海 洋。目前对流域土壤中微塑料污染的认识仍存在很 大的空白。因此,本文以大辽河为研究对象,选取附 近8个土壤样品,进行了微塑料的丰度与分布研究, 以期更好地了解大辽河附近土壤中微塑料的污染状 况,为我国流域土壤中微塑料的评估和治理提供科 学数据。

### 1 材料与方法 (Materials and methods)

#### 1.1 研究区域概况

大辽河地处辽河下游冲积平原,系指浑河、太子 河合流后由三岔河至营口入海口的河段,河道全长 97 km,流域面积1962 km<sup>2</sup>。两岸土质为壤土和亚 粘土沉积,地势平坦,河道蜿蜒曲折多变,属弯曲形 河道。整个大辽河的流向是向西南,由三岔河经下 坎子、石佛、赏军台、田庄台、水源至荣兴农场附近, 流向折向东南,经鸭岛进入营口市,由营口市区流入 渤海辽东湾。土壤采自大辽河附近,采样点分布如 图1所示,采样时间为2018年9月。



图 1 研究区域概况 Fig. 1 Overview of the study area

1.2 实验材料与方法

1.2.1 实验试剂与仪器

实验试剂包括 ZnCl<sub>2</sub>(分析纯,购自天津福晨化 学试剂有限公司)、30% H<sub>2</sub>O<sub>2</sub>(分析纯,购自天津市 风船化学试剂科技有限公司)、超纯水(实验室自制, 用前过滤)。

实验仪器包括 Magellan-MobleMapper 6 手持 GPS 导航仪(美国麦哲伦导航定位公司)、FA2204 电 子天平(上海力辰仪器科技有限公司,中国)、OLYM-PUS SZ61 体式显微镜(Olympus Corporation,日本)、 DH-101 电热鼓风干燥箱(天津市中环实验电炉有限 公司,中国)、LC-DMS-H 双显恒温磁力搅拌器(上海 力辰仪器科技有限公司,中国)、DB-2EFS 石墨电热 板(上海邦西仪器科技有限公司,中国)、标准不锈钢 筛(5 mm 和 2 mm)。

1.2.2 实验方法

(1) 样品采集

随机选择若干个 50 cm×50 cm 正方形采样点, 采样点的位置分别由 GPS 定位器确定,采集表面约 5 cm 厚的土壤,去除大型石头、树枝等杂质(>5 cm), 铝箔包好,装入聚乙烯(PE)自封袋,做好标记后带回 实验室,放置于4℃的冰箱内,直至分析。

(2) 样品处理

微塑料通常具有相对较低的密度(0.9~2.3g· cm<sup>-3</sup>)<sup>[20]</sup>。对于具有高密度(2.6~2.7 g·cm<sup>-3</sup>)<sup>[21]</sup>的土 壤,微塑料的提取常采用密度浮选法。饱和 NaCl  $(1.2 \text{ g} \cdot \text{cm}^{-3})$ ,  $\text{ZnCl}_2(1.5 \sim 1.7 \text{ g} \cdot \text{cm}^{-3})$ , NaI  $(1.6 \sim 1.8 \text{ m}^{-3})$ g·cm<sup>-3</sup>)、CaCl<sub>2</sub>(1.5 g·cm<sup>-3</sup>)和聚钨酸钠(SPT)常作为 水体、沉积物、土壤中浮选微塑料的溶液<sup>[20,22-23]</sup>,特 别是 NaCl 和 CaCl,,因为它们的成本低且没有潜在 的污染[24]。也有研究采用甲醇和二氯甲烷溶液有效 提取了土壤中的微塑料,并可在高温下蒸发至干燥 后进行称重[25]。然而,这些萃取方法可能会高估微 塑料的浓度,并导致土壤有机质在180℃时溶解<sup>[26]</sup>。 Zhang 等<sup>[27]</sup>用去离子水重复超声浮选,并用加热法 去除微塑料样品中的杂质,从不同类型的土壤中成 功分离提取出了聚乙烯(polyethylene, PE)、聚丙烯 (polypropylene, PP), 微塑料的回收率接近 90%。 Mani 等<sup>[28]</sup>用蓖麻油结合双氧水消解法,从土壤和沉 积物中分离出 PP、聚苯乙烯(polystyrene, PS)、聚对 苯二甲酸乙二醇酯(polyethylene terephthalate glycol, PET-G)、聚甲基丙烯酸甲酯(polymethyl methacrylate, PMMA)微塑料,并将该方法应用于莱茵河样 品。余构彬等<sup>[29]</sup>用 0.4 mol·L<sup>-1</sup>高锰酸钾与 1:3 硫 酸酸度等量混合,常温静置氧化 24 h,使得甘蔗地土 壤有机质的去除率达到 90.90%,并结合饱和 NaCl 溶液浮选法,使得微塑料的检出率达到 74.50%。

本研究选择较为常用的 ZnCl<sub>2</sub>(ρ=1.5~1.7 g· cm-3)溶液作为密度浮选液,对采集的土壤样品进行 微塑料的提取分离。具体步骤如下。每份土壤样品 混匀,取300g于60℃的恒温鼓风干燥箱中烘干。 将干燥后的土壤混匀取 150 g,过5 mm 和2 mm 的 不锈钢筛<sup>[30]</sup>,去除大型石头、树枝等杂质,将过筛样 品分为三等份。实验前将 ZnCl, 溶液(p=1.5~1.7 g ·cm<sup>-3</sup>)通过直径 47 mm、孔径 0.45 µm 的混合纤维 素酯膜(MF-Millipore TM Membrane Filter)过滤。将 50 g 过筛土壤(干重计)样品(n=3)置于 500 mL 玻璃 烧杯中,加入150 mL ZnCl, 溶液,于恒温磁力搅拌 器上持续搅拌30 min,静置过夜。固液分层后,将上 清液用真空抽滤装置进行抽滤,滤膜采用直径47 mm、孔径5 μm 的纤维素滤膜(Whatman AE 98)。用 少量去离子水多次冲洗滤器内壁,冲洗液一并过滤。 将载有可疑微塑料的滤膜用不锈钢镊子转移至玻璃 培养皿中,待消解。重复上述密度浮选操作3次 (ZnCl, 溶液重复利用),以期将上清液漂浮的物质全 部收集至滤膜上。

将滤膜上的物质全部转移至 200 mL 玻璃烧杯 中,用少量超纯水冲洗滤膜,冲洗液转移至上述烧杯 中。本研究中浮选得到的漂浮物中还含有一些其他 的残留杂质,这与其他研究相似<sup>[20]</sup>。因此,本研究采 用双氧水消解法去除这些杂质<sup>[31]</sup>。向上述装有可疑 微塑料的烧杯中加入 100 mL 30% 双氧水,用铝箔 密封,在石墨电加热板上于 60 ℃下消解样品中残留 的有机物 3 d,将烧杯中消解液再次真空抽滤,完成 过滤前,多次反复使用超纯水淋洗滤器内壁,使目标 物全部富集至滤膜上。用无齿不锈钢镊子将滤膜取 下转移至 60 mm 洁净的玻璃培养皿中,室温干燥, 待分析。

#### (3) 微塑料的定性与定量

用无齿不锈钢镊子和解剖针在体式显微镜下挑 拣,将挑出的可疑微塑料置于混合纤维素网格滤膜 (Whatman WME WHGR ST 47 mm 0.45 μm ME 25) 上,并做好标记。按颜色和形貌特征分类,记录在电 子表格中。再将样品单层平铺拍照,以最长一边计, 测量可疑微塑料的尺寸(图 2)。傅立叶显微红外光 谱仪(Perkin Elmer Spotlight 400)工作条件:采用透 射/反射模式, MCT 检测器, 波数范围 4 000 ~ 750 cm<sup>-1</sup>, 分辨率 4.00 cm<sup>-1</sup>, 扫描次数 16 次, 光栅大小 与累加次数随样品大小变化。采用显微红外光谱 (µ-FTIR)的透射模式对所有粒径在 0 ~ 500 µm 的可 疑微塑料进行测定; 采用傅立叶衰减全反射(ATR-FTIR)对所有粒径在 500 ~ 5 000 µm 的颗粒进行聚 合物成分的鉴定和官能团的表征。将图谱与购买的 标准品谱库(萨特勒谱库)进行比对, 规定匹配度达 60% 及以上的谱图对应的样品为微塑料, 以此确定 微塑料的成分。



 图 2 显微镜下的微塑料(放大倍数为 20×)
 注:(a),(b)为碎片类;(c),(d)为薄膜类;(e)为泡沫类; (f)为颗粒类;(g),(h)为纤维类。
 Fig. 2 Microplastics under stereo microscope (magnification times 20×)

Note: (a) and (b) are fragments; (c) and d are films; (e) is foam; (f) is particle; (g),(h) are fibers.

### 1.3 数据统计与处理

本实验结果采用平均值±标准偏差表示,土壤 中微塑料丰度以"个·kg<sup>-1</sup>"(干重)为单位,数据统 计在 Microsoft Excell 2010 中完成,绘图采用 Origin 9.0 软件进行。采用 IBM-SPSS 22.0 对采样区域微 塑料丰度的差异进行显著性检验,显著性水平设定 为α=0.05。

#### 2 结果(Results)

2.1 大辽河土壤中微塑料的形状、粒径及组成2.1.1 大辽河土壤中微塑料的形状特征

根据微塑料的形状特征,将微塑料分为薄膜、纤 维、颗粒、泡沫和碎片(图2)。碎片类微塑料(图2(a), 2(b))边缘整齐、有一定厚度、形状多样,有三角形、矩 形和正方形等,质地较硬。薄膜微塑料(图2(c),2(d)) 质地较软而薄,颜色多种多样,边缘较不规则。泡沫 类微塑料(图2(e))为轻质的、白色聚苯乙烯泡沫塑 料。颗粒类(图2(f))微塑料为质地较硬的、规则的球 状或椭球状的塑料颗粒。纤维类微塑料(图 2(g),2 (h))呈细而长的线状或极细的条状,较软,部分呈卷 曲状或缠绕在一起。

由图3可知,整体上看,各形状的微塑料在微塑料总量中的占比由高到低顺序依次为:薄膜(57.36%)、碎片(32.21%)、泡沫(6.75%)、纤维(2.15%)和颗粒(1.53%)。不同形状的微塑料在各点的检出情况不同。碎片类和薄膜类微塑料在各点土壤中均有检出。而DL1检出的纤维类和颗粒类微塑料是8个采样点中最多的,在该点的微塑料数量中占比均为15.79%,分别占所有纤维类和颗粒类微塑料总量的42.86%和60.00%。DL8未检测到纤维类微塑料。量的42.86%和60.00%。DL8未检测到纤维类微塑料。15.79%,分别占所有纤维类和颗粒类微塑料。1.38%,方所有薄膜类微塑料总量的72.19%。DL3中碎片类微塑料总量的50.48%。DL5中泡沫类微塑料占比最大(45.95%),占泡沫类微塑料总量的77.27%。



图 3 大辽河土壤中微塑料的形状



#### 2.1.2 大辽河土壤中微塑料的粒径特征

将所检出的塑料粒径分为 0~100 μm、100~ 500 μm、500~1000 μm、1000~2000 μm、2000~ 5000 μm、>5000 μm 共 6 个等级。如图 4 所示,经 分析统计,8 个土壤样品中各粒径范围内的塑料碎 片在所有塑料总量中占比最高的为 500~1000 μm (41.10%),其次为 1000~2000 μm(26.38%)、100~ 500 μm(19.33%)、2000~5000 μm(11.66%)、0~ 100 μm(0.92%)及 5000 μm 以上(0.61%)。<1000 μm 的微塑料占微塑料总量的 61.35%。其中,500 ~1000 μm 的微塑料占 67.00%,其次是 100~500 μm,占31.50%,0~100 μm的微塑料占比最小,为 1.50%。各点不同粒径微塑料的分布存在显著差异 (*P*=0.00)。DL1、DL6 和 DL7 土壤微塑料粒径以 1 000~2 000 μm 为主,占比范围为46.15%~ 57.89%。DL2、DL3、DL4、DL5 和 DL8 以500~ 1 000 μm 为主,占比范围为37.04%~72.97%。在 本研究中所有粒径为0~100 μm 的微塑料仅在 DL2、DL3 中有分布。

2.1.3 大辽河土壤中微塑料的颜色特征

将检测出的微塑料大致分为白色、蓝色、黄色、 绿色、红色、透明、黑色及彩色等类型。其中含量最 多的为蓝色(43.87%)、其次为白色(32.82%)、绿色 (11.04%)、黄色(6.13%)、彩色(3.07%)、透明(1.53%)、 红色(0.92%)和黑色(0.61%)(图 5)。不同颜色的微 塑料在各采样点的占比情况不同。除 DL2 以蓝色 为主,DL3 以绿色为主外,2/3 的土壤样品中白色微 塑料占比均最大,占比变化范围为33.33%~ 83.78%。其中,DL5中白色微塑料在该点微塑料中 占比最大,为 83.78%, DL6 中白色微塑料占比为 33.33%。此外,DL1 中仅观察到白色、黄色和黑色 的微塑料。DL2 仅观察到白色、蓝色和绿色微塑 料。DL3 除透明和黑色微塑料未观察到以外,其余 颜色均有观察到。DL4 白色微塑料占比最大,为 50%,其次为透明,占31.25%。DL5 中蓝色和黄色 占比相同,均为8.11%。DL6中白色和绿色微塑料 占比相同,均为33.33%。DL7中白色和黄色微塑料 占比相同,均为38.46%。蓝色、红色和绿色微塑料 占比相同,均为7.69%。DL8 中白色微塑料占 74.07%,其次为黄色(18.52%)、彩色(7.41%)。

2.1.4 大辽河土壤中微塑料的组成成分

对大辽河各采样点的微塑料进行红外光谱分析,按匹配度为60%,确定了微塑料的组成成分。挑出384个颗粒,其中微塑料颗粒共326个,即FT-IR鉴定后假阳性的颗粒所占比例为15.10%。各聚合物类型(共20种)的微塑料中英文名称、英文缩写及在微塑料的总量中所占比例列于表1。由表1可知,大辽河土壤中微塑料的主要类型为聚乙烯(PE)、聚丙烯(PP)和聚苯乙烯(PS)。为便于统计分析,将聚11-溴代十一烷丙烯酸酯(PBA)、聚(N-甲基丙烯酸酯(PBA)、聚(N-甲基丙烯酸酯(PBA)、聚(Z烯/4-甲基-1-戊烯)(PE/PMP)、聚十八烯(PODE)和聚十八烷基异氰酸酯(PODC)归于"其他"

类型的聚合物中(图 6)。









由表1和图6可知,不同聚合物类型的微塑料 在微塑料总量中所占比例不同。所有PE占50%, PP占24.23%,PS占7.67%,PA占2.15%,POA占 3.07%,RY占3.25%,PODC占3.37%,其他微塑料 占比~2.00%。各采样点不同种类的微塑料所占比 例也不同。DL2中的PE在微塑料总量中占比最 大,为87.76%。DL3中PP微塑料在微塑料总量占 比最大,为82.76%。DL1中PA占比最大,为 15.79%。DL5中PS在微塑料总量中占比最大,为 45.95%。但 PE 和 PP 类微塑料在 8 个土壤样品中 均有检出,占比变化范围分别为5.17%~87.76%和 2.70%~82.76%。土壤中典型微塑料样品及对应微 塑料标准品的红外光谱如图7所示。特别的,参考 先前的研究将人造丝(Rayon)也归为微塑料的研究 范畴<sup>[1,32-35]</sup>。





| Table 1       | The microplastic polymer types in soil of Daliao River                                                                                                         |               |             |  |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------|--|
| 中文名称          | 英文名称                                                                                                                                                           | 英文缩写          | 占比/%        |  |
| Chinese names | English names                                                                                                                                                  | Abbreviations | Proportions |  |
| 聚乙烯           | Polyethylene                                                                                                                                                   | PE            | 50          |  |
| 聚丙烯           | Polypropylene                                                                                                                                                  | PP            | 24.233      |  |
| 聚对苯二甲酸乙二酯     | Poly(ethylene terephthalate)                                                                                                                                   | PET           | 0.307       |  |
| 聚苯乙烯          | Poly(styrene)                                                                                                                                                  | PS            | 7.669       |  |
| 取(五区齡上小 畸形)   | $\mathbf{D}_{\mathbf{r}} = 1_{\mathbf{r}} \left( \mathbf{r} + \mathbf{r} + 1_{\mathbf{r}} + \mathbf{r} + 1_{\mathbf{r}} + \mathbf{r} + 1_{\mathbf{r}} \right)$ | DO A          | 2.079       |  |

#### 表1 大辽河土壤中微塑料聚合物类型

| Chinese names    | English names                      | Abbreviations | Proportions/% |
|------------------|------------------------------------|---------------|---------------|
| 聚乙烯              | Polyethylene                       | PE            | 50            |
| 聚丙烯              | Polypropylene                      | РР            | 24.233        |
| 聚对苯二甲酸乙二酯        | Poly(ethylene terephthalate)       | PET           | 0.307         |
| 聚苯乙烯             | Poly(styrene)                      | PS            | 7.669         |
| 聚(丙烯酸十八醇酯)       | Poly(octadecyl acrylate)           | POA           | 3.068         |
| 聚酰胺              | Polyamide                          | PA            | 2.147         |
| 人造丝              | Rayon                              | RY            | 2.454         |
| 苯乙烯-丁二烯-苯乙烯嵌段共聚物 | Styrene-Butadiene-Styrene          | SBS           | 0.307         |
| 聚(丙烯腈/丙烯酸)       | Polyacrylonitrile/acrylic acid     | PAN           | 0.7           |
| 聚丙烯酸酯            | Polyacrylate                       | PEA           | 0.307         |
| 聚对苯二酸丁二醇酯        | Polybutylene diester               | PBTP          | 0.307         |
| 聚11-溴代十一烷丙烯酸酯    | Poly(11-bromoundecyl acrylate)     | PBA           | 1.227         |
| 聚(N-甲基丙烯酰胺)      | Poly(N-methyl acrylamide)          | PMAA          | 0.92          |
| 聚4-甲基己内酰胺        | Poly(4-methylcaprolactam)          | PMCL          | 0.307         |
| 聚11-溴代十一烷甲基丙烯酸酯  | Poly(11-bromoundecyl methacrylate) | PBMA          | 0.307         |
| 聚十八烯             | Poly(1-octadecene)                 | PODE          | 0.307         |
| 聚十八烷基异氰酸酯        | Polyoctadecyl isocyanate           | PODC          | 3.374         |
| 聚丁二炔二酯           | Poly(diacetylene diester)          | PALE          | 0.307         |
| 脲(甲)醛树脂          | Urea-formaldehyde resin            | UF            | 1.534         |
| 聚(乙烯/4-甲基-1-戊烯)  | Poly(ethylene/4-methyl-1-pentene)  | PE/PMP        | 0.307         |



图 7 典型微塑料样品的红外光谱图 Fig. 7 Infrared spectra of typical microplastics samples

2.2 大辽河土壤中微塑料的丰度及空间分布

如图8所示,在大辽河表层土壤中共检测出 326个微塑料颗粒,微塑料在8个采样点的检出率 为100%。本研究土壤样品中微塑料数量丰度介于 (60±52.92)~(980.00±383.14)个·kg<sup>-1</sup>(干重)之间,平 均丰度为(273.33±327.65)个·kg<sup>-1</sup>(干重)。各点丰度 顺序由高到低依次为 DL2>DL3>DL5>DL8>DL1> DL4>DL7>DL6。即大洼区、大石桥、鞍山海城市玉 米地土壤中微塑料丰度高于辽中区耕地和大洼区大 辽河入河口草地土壤。但盘山县、辽阳县柳壕镇玉 米地土壤中微塑料丰度低于上述耕地和草地。因 此,本研究中微塑料丰度与土壤利用方式有相关性, 且丰度有显著性差异(P=0.001, <0.05)。将本研究中 玉米地、草地、耕地的丰度进行比较,可以看出玉米 地土壤微塑料平均丰度最大,其次是耕地、草地。该 研究区域的上中游为浑河和太子河至河口汇入处之 间的河段,包括 DL5、DL6、DL7 和 DL8。下游为河 口汇入处至入海口之间的河段,包括 DL1、DL2、 DL3 和 DL4。据此,大辽河流域土壤中微塑料的丰 度顺序为:下游(406.33±216.21)个·kg<sup>-1</sup>>上中游 (143.33±101.65) 个·kg<sup>-1</sup>。







#### 3 讨论 (Discussion)

3.1 研究区域土壤微塑料的形状、颜色、粒径及组成目前,已有的研究结果表明,不同区域土壤中微塑料的形状有所差异。如渤海、黄海沿岸土壤中微塑料主要有泡沫、小球、碎片、薄片、纤维、薄膜和海绵等7种形态<sup>[16]</sup>;滨海潮滩土壤中微塑料的类型有颗粒、碎片、纤维和薄膜,其中颗粒类占总数的3/4<sup>[19]</sup>;

上海蔬菜地农田土壤中微塑料的形状主要为碎片、 薄膜和纤维<sup>[36]</sup>。福建漳浦近岸海域表层土壤中微塑 料的形状类型为碎片、纤维、颗粒、泡沫和薄膜<sup>[37]</sup>。 本研究中颗粒类微塑料在各形状的微塑料中占比最 小(1.53%),薄膜类微塑料占比最大(57.36%),碎片 类占32.21%,即碎片类和薄膜类微塑料占比之和超 过85%。本研究中纤维类仅占2.15%,这一结果与 渤海、黄海沿岸土壤中纤维类微塑料占1.0%<sup>[16]</sup>的结 果相近,也与上海稻鱼共养土壤<sup>[38]</sup>、中国西南滇池河 岸森林缓冲带及4种不同种植面积土壤<sup>[18]</sup>、智利迈珀 河附近土壤<sup>[39]</sup>的结果形成了对比,这些区域中纤维类 微塑料百分比均超过90%。存在这种差异的主要原 因可能是微塑料的来源和材质不同<sup>[40]</sup>。例如,颗粒类 占比较小的原因可能是颗粒状微塑料主要来自硬质 塑料的分解,而硬质塑料分解需要较长时间<sup>[41]</sup>。

本研究中粒径<1 mm 的微塑料占微塑料总量 的61.35%。这一结果与渤海、黄海沿岸土壤粒径<1 mm的微塑料(60%)<sup>[16]</sup>、上海蔬菜农田深层土壤粒径 <1 mm 的微塑料(59.81%)<sup>[36]</sup>占比结果很相近,比滨 海潮滩土壤粒径<1 mm 的微塑料(49.8%)<sup>[19]</sup>、上海 菜地农田表层土壤粒径<1 mm 的微塑料(48.79%)<sup>[56]</sup> 占比高,比墨西哥热带家庭花园土壤粒径<50 μm 的微塑料(93.7%)<sup>[42]</sup>、瑞士漫滩土壤粒径<500 µm的 微塑料(85%)<sup>[16]</sup>占比低。本研究中 500~1 000 µm 的微塑料占总数的41.10%,是所有粒径范围内占比 最大的区间。进一步的分析发现(图 9),粒径<1 mm 的微塑料中,500~1000 μm 范围内的微塑料占比 最大,为67.00%。且500~1000 µm 范围内的薄膜 (66.00%)、泡沫(5.50%)和碎片类(26.50%)微塑料占 比的高低顺序与总体规律一致,而纤维类微塑料在 粒径<1 mm 的微塑料中仅在 100~500 μm 内有分 布。在所有纤维类微塑料中,微塑料粒径主要分布 在1000~2000 µm(57.14%)。颗粒类微塑料在100 ~500 和 500 ~1 000 µm 范围中的占比相同, 而所 有颗粒类微塑料的粒径主要集中在1000~2000 μm 之间(60.00%)。Doyle 等<sup>[43]</sup>的研究结果中也未发 现<1 mm 的纤维。在目前报道的研究中土壤微塑料 的粒径大部分以<1 mm 为主[15-16,18,36,38-39,42]。在不同 粒径的微塑料中, <1 mm 或微米级的微塑料更易进入 生物体内[44-45],这种尺寸范围的微塑料与许多海洋生 物的食物尺寸相近,很可能被它们误食,进而对这些 生物群落产生潜在的威胁<sup>[46]</sup>。因此未来对丰度较高、 颗粒更细的<1 mm 的微塑料应给予更高的关注。



当前的报道中土壤中微塑料的成分各不相同。 如渤海、黄海沿岸土壤<sup>[16]</sup>中微塑料的主要成分为 PE、PP、PS、PE/PP 和聚氨酯(PEU)。墨西哥热带家 庭花园土壤中微塑料的主要组成为 PE、PS<sup>[42]</sup>。 Scheurer 和 Bigalke<sup>[17]</sup>的研究结果表明,瑞士漫滩土 壤中微塑料的主要类型为 PA、聚碳酸酯(PC)、PE、 PP、聚氯乙烯(PVC)和丁苯橡胶(SBR),其中最主要 的是 PE。澳大利亚悉尼工业区土壤中微塑料主要 类型为 PVC<sup>[25]</sup>。而本研究中微塑料的主要成分为 PE 和 PP。这与上海菜地农田土壤<sup>[36]</sup>、上海稻鱼共 养土壤<sup>[38]</sup>的结果相同。由图 10 可知,本研究中微塑 料的形状与聚合物类型有关。薄膜类微塑料的主要 成分为 PE、PP 和 PA,其中 PE 占比最大,为 77.54%, 其颜色以蓝色、白色为主,推测其来源主要是日常生 活中的塑料制品如膜类食品包装袋及鱼饲料编织袋 上的防水薄膜层<sup>[40]</sup>,此外,地膜在工程和农业上的应 用也是潜在的来源[46-47]。碎片类微塑料的成分包括 PE、PP 和 POA, 其中 PP 占 64.76%。其颜色以绿 色、白色和蓝色为主,推测其来自化肥、水泥的塑料 编织包装袋的破碎分解。颗粒类的组成有 PE、PP、 PEA 和 PS,占比最大的为 PS(占微塑料总量的 0.61%)。泡沫类微塑料的成分只有 PS,颜色为白 色,说明了这2种材质的微塑料有相同的来源,包括 聚苯乙烯泡沫塑料和岸边的缓冲材料、以及海水养 殖中使用的泡沫浮标及个人清洁护理品中的微珠 等<sup>[48-50]</sup>。纤维类微塑料的主要成分包括 PP、PA、

PAN 和 SBS 等,其中 PA 占比最大,为 42.86%。其 颜色以白色、黄色为主,它们可能来自于附近居民服 装和纺织行业的织物洗涤后的污水排放<sup>[51]</sup>。此外, 渔具、大气沉积和地表径流也是塑料纤维的潜在来 源<sup>[52-53]</sup>。而福建漳浦近岸海域表层土壤<sup>[37]</sup>中泡沫塑 料均为聚乙烯(PE),纤维塑料均为聚酯纤维(PES), 碎片塑料多为聚丁烯(PB)。这一结果与本研究结果 存在差异。





3.2 研究区域土壤微塑料的丰度及空间分布特征

ANOVA 统计分析可知,大辽河各采样点土壤 中微塑料的丰度存在显著差异(P=0.001,<0.05)。本 研究大辽河土壤中微塑料的丰度为(60±52.92)~ (980.00±383.14) 个·kg<sup>-1</sup>(干重), 与渤海、黄海沿岸土 壤微塑料的丰度值 50~1000 个·kg<sup>-1</sup>很相近<sup>[16]</sup>。低 于中国西南滇池河岸森林缓冲带及4种不同种植面 积土壤的 7 100~42 960 个·kg<sup>-1[18]</sup>、智利迈珀河附 近土壤的18 000~41 000 个·kg<sup>-1[39]</sup>、墨西哥热带家 庭花园土壤的(900±1 900) 个·kg<sup>-1[42]</sup>,高于滨海潮滩 土壤的 634 个·kg-1[19]、上海菜地农田深层土壤的 (62.50±12.9) 个·kg<sup>-1[36]</sup>、上海菜地农田表层土壤的 (78±13) 个·kg<sup>-1[36]</sup>、上海稻鱼共养土壤(10.3±2.2) 个 ·kg<sup>-1[38]</sup>等。此外,澳大利亚悉尼工业区土壤<sup>[25]</sup>中微 塑料丰度为0.03%~6.70%(300~67 500 mg·kg<sup>-1</sup>)。 Ramos 等<sup>[54]</sup>发现阿根廷土壤中 PE 膜残留量为3g· m<sup>2</sup>,平均尺寸为 28 cm<sup>2</sup>,占采样区域土壤表面积的 10%。Scheurer 和 Bigalke<sup>[17]</sup>的研究结果表明,瑞士 洪泛区土壤中的微塑料污染较轻(≤0.00555%,≤

593 个·kg<sup>-1</sup>)。国内有关土壤(主要为农田土壤)样品 中微塑料含量较低(≤320 个·kg<sup>-1</sup>)<sup>[36,38]</sup>。由此可知, 大辽河土壤微塑料的丰度为(273.33±327.65) 个· kg<sup>-1</sup>处于中等偏低水平。

不同形状的微塑料在不同利用方式的土壤中的 空间分布情况也不同。薄膜类微塑料在草地、玉米 地和耕地中均有检出,主要分布在玉米地中(平均值 556.67 个·kg<sup>-1</sup>;百分比89.30%)。其中,大洼区玉米 地薄膜类微塑料占 72.19%。颗粒类微塑料也主要 分布在大洼区草地中(60个·kg<sup>-1</sup>,60%)。泡沫类微 塑料主要在鞍山海城市的玉米地检出(340 个·kg<sup>-1</sup>, 77.27%),纤维类微塑料主要在大洼区草地检出(60 个·kg<sup>-1</sup>,42.86%),此外,2/3 的玉米地也检测到了纤 维状微塑料。碎片类微塑料在3种土壤类型中均有 检出(2 100 个·kg<sup>-1</sup>),其中,大石桥玉米地碎片类微 塑料最多(1 060 个·kg<sup>-1</sup>,50.48%)。造成这一结果 的原因可能是为了轮作、倒茬、提早上市以及提高玉 米的商品价值,该区域大多采用盖拱膜或盖地膜方 式种植,这些留在土壤中的塑料薄膜在物理、化学和 生物效应的综合作用下,可以慢慢地破碎成更小的 塑料[55-56],进而导致微塑料污染。也可能是该区域 的土壤有污泥改良和污水灌溉史[18],包括衣物洗涤 水、生活污水或个人护理品中微珠的排放等,使得微 塑料含量较高。Majewsky 等<sup>[31]</sup>也发现,废水中 PE 和 PP 的总浓度为 80~260 mg·m<sup>-3</sup>。这些塑料制品 可能通过处理过的废水或自然洪水灌溉进入农田土 壤。此外,大气沉积也可能是进入表层土壤的微塑 料的一个重要来源。如对偏远的高山地区土壤中微 塑料的检测结果表明,空气沉积可能是某些地区的 主要来源[17]。土壤采样深度[36]、微塑料提取方法的 不同等也可能是土壤微塑料丰度差异的原因。

综上所述,大辽河流域土壤中微塑料的检出率 为 100%。薄膜和碎片类微塑料百分比分别为 57.36%、32.21%,是占比最大的2类微塑料。其次 为泡沫(6.75%)、纤维(2.15%)和颗粒(1.53%)。该研 充区域微塑料粒径基本遵循粒径越小,数量越多的 规律。<1 mm 的微塑料占微塑料总量的 61.35%。 其中,500~1 000 μm 的微塑料占 67.00%,其次是 100~500 μm,为 31.50%,0~100 μm 的微塑料占 比最小,为 1.50%。>1 mm 的微塑料中,1~2 mm 的微塑料占 68.25%,2~5 mm 的占 30.16%,>5 mm 的塑料碎片占 1.59%。大辽河流域土壤样品中共检 测出 20 种微塑料,其主要类型有 PP、PE、PS、POA、 PA和RY等。其中,PE占50%,PP占24.23%,是占比最大的2类微塑料。微塑料的形状类型与组成有关,薄膜类微塑料的主要成分为PE,碎片类微塑料的主要成分为PF。颗粒类、泡沫类微塑料的成分为PS。纤维类微塑料的主要成分为PA。各采样点微塑料丰度具有显著差异,其中,DL2(大洼区玉米地)微塑料丰度最大,为(980.00±383.14)个·kg<sup>-1</sup>(干重),DL6(辽阳县柳壕镇玉米地)丰度最小,为(60±52.92)个·kg<sup>-1</sup>(干重)。大辽河流域土壤中微塑料平均丰度为(273.33±327.65)个·kg<sup>-1</sup>(干重),与现有研究结果相比,大辽河流域土壤中微塑料污染状况处于中等偏低水平。

通讯作者简介:徐笠(1984—),男,博士,副研究员,主要研究 方向为微塑料的污染分布及毒性效应。

#### 参考文献(References):

- Andrady A L. Microplastics in the marine environment
   [J]. Marine Pollution Bulletin, 2011, 62(8): 1596-1605
- Shim W J, Thomposon R C. Microplastics in the ocean
   [J]. Archives of Environmental Contamination Toxicology, 2015, 69(3): 265-268
- [3] Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP). Sources, fate and effects of microplastics in the marine environment: A global assessment [R]. London: International Maritime Oganization, 2016
- [4] Mu J, Qu L, Jin F, et al. Abundance and distribution of microplastics in the surface sediments from the northern Bering and Chukchi Seas [J]. Environmental Pollution, 2019, 245: 122-130
- [5] Zhang C, Zhou H, Cui Y, et al. Microplastics in offshore sediment in the Yellow Sea and East China Sea, China [J]. Environmental Pollution, 2019, 244: 827-833
- [6] Wen X, Du C, Xu P, et al. Microplastic pollution in surface sediments of urban water areas in Changsha, China: Abundance, composition, surface textures [J]. Marine Pollution Bulletin, 2018, 136: 414-423
- [7] Klein S, Worch E, Knepper T P. Occurrence and spatial distribution of microplastics in river shore sediments of the Rhine-Main Area in Germany [J]. Environmental Science & Technology, 2015, 49(10): 6070-6076
- [8] Ding L, Mao R F, Guo X, et al. Microplastics in surface waters and sediments of the Wei River, in the northwest of China [J]. Science of the Total Environment, 2019, 667 (1): 427-434

- [9] Rodrigues M O, Abrantes N, Fernando J M, et al. Spatial and temporal distribution of micro-plastics in water and sediments of a freshwater system (Antuã River, Portugal)
   [J]. Science of the Total Environment, 2018, 633: 1549-1559
- [10] Zhao S, Zhu L, Li D. Microplastic in three urban estuaries, China [J]. Environmental Pollution, 2015, 206: 597-604
- [11] Slootmaekers B, Carteny C C, Belpaire C, et al. Microplastic contamination in gudgeons (*Gobio gobio*) from Flemish rivers (Belgium) [J]. Environmental Pollution, 2019, 244: 675-684
- [12] Alimi O S, Budarz J F, Hernandez L M, et al. Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport [J]. Environmental Science & Technology, 2018, 52(4): 1704-1724
- [13] Horton A A, Walton A, Spurgeon D J, et al. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities [J]. Science of the Total Environment, 2017, 586: 127-141
- [14] Bläsing M, Amelung W. Plastics in soil: Analytical methods and possible sources [J]. Science of the Total Environment, 2017, 612: 422-435
- [15] Rillig M C. Microplastic in terrestrial ecosystems and the soil? [J]. Environmental Science & Technology, 2012, 46 (12): 6453-6454
- [16] Zhou Q, Zhang H, Fu C, et al. The distribution and morphology of microplastics in coastal soils adjacent to the Bohai Sea and the Yellow Sea [J]. Geoderma, 2018, 322: 201-208
- Scheurer M, Bigalke M. Microplastics in Swiss floodplain soils [J]. Environmental Science & Technology, 2018, 52 (6): 3591-3598
- [18] Zhang G S, Liu Y F. The distribution of microplastics in soil aggregate fractions in southwestern China [J]. Science of the Total Environment, 2018, 642: 12-20
- [19] Zhou Q, Zhang H B, Zhou Y, et al. Separation of microplastics from a coastal soil and their surface micro-scopic features [J]. Chinese Science Bulletin, 2016, 61: 1604-1611
- [20] Hidalgo-Ruz V, Gutow L, Thompson R C, et al. Microplastics in the marine environment: A review of the methods used for identification and quantification [J]. Environmental Science & Technology, 2012, 46(6): 3060-3075
- [21] Dekiff J H, Remy D, Klasmeier J, et al. Occurrence and

spatial distribution of microplastics in sediments from Norderney [J]. Environmental Pollution, 2014, 186 (96): 248-256

- [22] Imhof H K, Schmid J, Niessner R, et al. A novel, highly efficient method for the separation and quantification of plastic particles in sediments of aquatic environments [J]. Limnology & Oceanography Methods, 2012, 10(7): 524-537
- [23] Nuelle M T, Dekiff J H, Remy D, et al. A new analytical approach for monitoring microplastics in marine sediments [J]. Environmental Pollution, 2014, 184(1): 161-169
- [24] Claessens M, Van Cauwenberghe L, Vandegehuchte M B, et al. New techniques for the detection of micro-plastics in sediments and field collected organisms [J]. Marine Pollution Bulletin, 2013, 70(1-2): 227-233
- [25] Fuller S G, Gautam A. A procedure for measuring microplastics using pressurized fluid extraction [J]. Environmental Science & Technology, 2016, 50(11): 5774-5780
- [26] Schnitzer M, Khan S U. Soil Organic Matter [M]. New York: Elsevier Science Publishing Company Inc., 1980: 97-98
- [27] Zhang S, Yang X, Gertsen H, et al. A simple method for the extraction and identification of light density microplastics from soil [J]. Science of the Total Environment, 2018, 616-617: 1056-1065
- [28] Mani T, Frehland S, Kalberer A, et al. Using castor oil to separate microplastics from four different environmental matrices [J]. Analytical Methods, 2019, 11 (13): 1788-1794
- [29] 余构彬,陈明周,陶平. 基于微塑料分离分析的甘蔗地 土壤有机质去除方法研究[J]. 甘蔗糖业, 2017(2): 66-70
  Yu G B, Chen M Z, Tao P. Study on the removal of organic matter for separation and analysis of microplastics in sugarcane soil [J]. Sugarcane and Canesugar, 2017(2): 66-70 (in Chinese)
- [30] He D F, Luo Y M, Lu S B, et al. Microplastics in soils: Analytical methods, pollution characteristics and ecological risks [J]. TrAC Trends in Analytical Chemistry, 2018, 109: 163-172
- [31] Majewsky M, Bitter H, Eiche E, et al. Determination of microplastic polyethylene (PE) and polypropylene (PP) in environmental samples using thermal analysis (TGA-DSC) [J]. Science of the Total Environment, 2016, 568: 507-511
- [32] Hu L, Chernick M, Hinton D E, et al. Microplastics in small waterbodies and tadpoles from Yangtze River Delta, China [J]. Environmental Science & Technology, 2018, 52

(15): 8885-8893

- [33] Mohamed Nor N H, Obbard J P. Microplastics in Singapore's coastal mangrove ecosystems [J]. Marine Pollution Bulletin, 2014, 79(1-2): 278-283
- [34] Peng G, Zhu B, Yang D, et al. Microplastics in sediments of the Changjiang Estuary, China [J]. Environmental Pollution, 2017, 225: 283-290
- [35] Yan M, Nie H, Xu K, et al. Microplastic abundance, distribution and composition in the Pearl River along Guangzhou City and Pearl River estuary, China [J]. Chemosphere, 2019, 217: 879-886
- [36] Liu M T, Lu S B, Song Y, et al. Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China [J]. Environmental Pollution, 2018, 242: 855-862
- [37] 邓加聪, 陈晓凤, 张志鹏, 等. 福建漳浦近岸海域表层 土壤中微塑料的赋存特征[J]. 福建师大福清分校学报, 2019(2): 75-83
  Deng J C, Chen X F, Zhang Z P, et al. On the accumulation characteristics of microplastics from the surface soil offshore of Zhangpu in Fujian Province [J]. Journal of Fuqing Branch of Fujian Normal University, 2019(2): 75-83 (in Chinese)
- [38] Lv W, Zhou W, Lu S, et al. Microplastic pollution in ricefish co-culture system: A report of three farm-land stations in Shanghai, China [J]. Science of the Total Environment, 2019, 652: 1209-1218
- [39] Corradini F, Meza P, Eguiluz R, et al. Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal [J]. Science of the Total Environment, 2019, 671: 411-420
- [40] Wen X, Du C, Xu P, et al. Microplastic pollution in surface sediments of urban water areas in Changsha, China: Abundance, composition, surface textures [J]. Marine Pollution Bulletin, 2018, 136: 414-423
- [41] Marcus E, Lebreton L C M, Carson H S, et al. Plastic pollution in the world's oceans: More than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea [J]. PLoS ONE, 2014, 9(12): e111913
- [42] Huerta E, Vega J M, Quej V K, et al. Field evidence for transfer of plastic debris along a terrestrial food chain [J]. Scientific Reports, 2017, 7(1): 14071
- [43] Doyle M J, Watson W, Bowlin N M, et al. Plastic particles in coastal pelagic ecosystems of the Northeast Pacific Ocean [J]. Marine Environmental Research, 2011, 71(1): 41-52
- [44] von Moos N, Burkhardt-Holm P, Köhler A. Uptake and effects of microplastics on cells and tissue of the blue

mussel *Mytilus edulis* L. after an experimental exposure [J]. Environmental Science & Technology, 2012, 46(20): 11327-11335

- [45] Lusher A L, Mchugh M, Thompson R C. Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel [J]. Marine Pollution Bulletin, 2013, 67(1-2): 94-99
- [46] Lusher A L, Hernandez-Milian G, O' Brien J, et al. Microplastic and macroplastic ingestion by a deep diving, oceanic cetacean: The true's beaked whale *Mesoplodon mirus* [J]. Environmental Pollution, 2015, 199: 185-191
- [47] Free C M, Jensen O P, Mason S A, et al. High-levels of microplastic pollution in a large, remote, mountain lake[J]. Marine Pollution Bulletin, 2014, 85(1): 156-163
- [48] Thompson R C. Lost at Sea: Where is all the plastic? [J]. Science, 2004, 304(5672): 838
- [49] Lee J, Hong S, Song Y K, et al. Relationships among the abundances of plastic debris in different size classes on beaches in South Korea [J]. Marine Pollution Bulletin, 2013, 77(1-2): 349-354
- [50] Lee J, Lee J S, Jang Y C, et al. Distribution and size relationships of plastic marine debris on beaches in South Korea [J]. Archives of Environmental Contamination and Toxicology, 2015, 69(3): 288-298
- [51] Browne M A, Crump P, Niven S J, et al. Accumulation of microplastic on shorelines woldwide: Sources and sinks

[J]. Environmental Science & Technology, 2011, 45(21): 9175-9179

- [52] Alam F C, Sembiring E, Muntalif B S, et al. Microplastic distribution in surface water and sediment river around slum and industrial area (case study: Ciwalengke River, Majalaya District, Indonesia) [J]. Chemosphere, 2019, 224: 637-645
- [53] Chubarenko I P, Esiukova E E, Bagaev A V, et al. Threedimensional distribution of anthropogenic microparticles in the body of sandy beaches [J]. Science of the Total Environment, 2018, 628-629: 1340-1351
- [54] Ramos L, Berenstein G, Hughes E A, et al. Polyethylene film incorporation into the horticultural soil of small periurban production units in Argentina [J]. Science of the Total Environment, 2015, 523: 74-81
- [55] Barnes D K A, Galgani F, Thompson R C, et al. Accumulation and fragmentation of plastic debris in global environments [J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364(1526): 1985-1998
- [56] Briassoulis D, Babou E, Hiskakis M, et al. Analysis of long-term degradation behaviour of polyethylene mulching films with pro-oxidants under real cultivation and soil burial conditions [J]. Environmental Science and Pollution Research, 2015, 22(4): 2584-2598