DOI: 10.7524/AJE.1673-5897-20141113002

马丽,吴民耀,王宏元.7种金属离子对中国林蛙和中华大蟾蜍蝌蚪的急性毒性比较研究[J]. 生态毒理学报,2015, 10(3): 230-237 Ma L, Wu M Y, Wang H Y. Comparison study on the acute toxicity of 7 metal ions on the *Rana chensinensis* and *Bufo gargarizans* tadpoles [J]. Asian Journal of Ecotoxicology, 2015, 10(3): 230-237 (in Chinese)

7 种金属离子对中国林蛙和中华大蟾蜍蝌蚪的急性毒 性比较研究

马丽,吴民耀,王宏元*

陕西师范大学秦巴山区可持续发展协同创新中心 西安 710119 收稿日期:2014-11-13 录用日期:2015-01-27

摘要:为评估 Cu²⁺, Hg²⁺, Cr⁶⁺, Cd²⁺, Li⁺, Al³⁺和 Co²⁺7种金属离子对中国林蛙(*Rana Chensinensis*)和中华大蟾蜍(*Bufo gargari-zans*)蝌蚪的急性毒性效应,采用生物毒性试验方法对中国林蛙和中华大蟾蜍 36 期蝌蚪,进行上述7种金属离子的急性毒性试验,分别测定了这7种金属离子对中国林蛙蝌蚪和中华大蟾蜍蝌蚪的半数致死浓度(LC₅₀)。此外,分析了中国林蛙和中华大蟾蜍 36 期蝌蚪的肥满度、肝指数等形态指标。结果显示,Cu²⁺、Hg²⁺、Cr⁶⁺、Cd²⁺、Li¹⁺、Al³⁺、Co²⁺对中国林蛙蝌蚪的96 h-LC₅₀分别为 0.270 mg•L⁻¹、0.803 mg•L⁻¹、2.375 mg•L⁻¹、7.351 mg•L⁻¹、11.273 mg•L⁻¹、17.265 mg•L⁻¹和 20.973 mg•L⁻¹。对中华大蟾蜍蝌蚪的96 h-LC₅₀分别 0.593 mg•L⁻¹、0.593 mg•L⁻¹、2.827 mg•L⁻¹、2.592 mg•L⁻¹、12.656 mg•L⁻¹、14.020 mg•L⁻¹和 57.435 mg•L⁻¹。中国林蛙蝌蚪对 Cu²⁺、Cr⁶⁺、Cr⁶⁺、Ci⁺、Cr⁶⁺、Cd²⁺、Al³⁺ 3种金属离子的敏感性相对较高。形态指标的差异是中国林蛙与中华大蟾蜍蝌蚪对同一金属离子敏感性差异的原因之一。

关键词:中国林蛙蝌蚪;中华大蟾蜍蝌蚪;金属离子;LC50

文章编号: 1673-5897(2015) 3-230-08 中图分类号: X171.5 文献标识码: A

Comparison Study on the Acute Toxicity of 7 Metal Ions on the Rana chensinensis and Bufo gargarizans Tadpoles

Ma Li, Wu Minyao, Wang Hongyuan*

Co-Innovation Center for Qinba regions' sustainable development, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China

Received 13 November 2014 accepted 27 January 2015

Abstract: The purpose of this paper is to evaluate the acute toxicity of Cu^{2+} , Hg^{2+} , Cr^{6+} , Cd^{2+} , Li^+ , Al^{3+} and Co^{2+} on the *Rana chensinensis* and *Bufo gargarizans* tadpoles at Gosner stage 36. The median lethal concentration (LC_{50}) values at 7 kinds of metal ions to the *R. chensinensis* and *B. gargarizans* tadpoles were calculated, respectively. In addition, morphological characters (fatness, liver index) of *R. chensinensis* and *B. gargarizans* tadpoles were determined. The results showed that 96 h- LC_{50} of Cu^{2+} , Hg^{2+} , Cr^{6+} , Cd^{2+} , Li^{1+} , Al^{3+} and Co^{2+} for the *R. chensinensis* tadpoles were 0.270 mg $\cdot L^{-1}$, 0.803 mg $\cdot L^{-1}$, 2.375 mg $\cdot L^{-1}$, 7.351 mg $\cdot L^{-1}$, 11.273 mg $\cdot L^{-1}$, 17.265 mg $\cdot L^{-1}$ and 20.973 mg $\cdot L^{-1}$, respectively. While the 96 h- LC_{50} for the *B. gargarizans* tadpoles were 0.593 mg $\cdot L^{-1}$, 0.593 mg $\cdot L^{-1}$, 2.827 mg $\cdot L^{-1}$, 2.592 mg $\cdot L^{-1}$, 12.656 mg $\cdot L^{-1}$, 14.020 mg $\cdot L^{-1}$ and 57.435 mg $\cdot L^{-1}$, respectively. The sensitivity of the *R.*

基金项目:"秦巴山区可持续发展协同创新中心"资助

作者简介:马丽(1988-),女,硕士研究生,研究方向:发育生物学,E-mail: mali6212164@snnu.edu.cn

^{*} 通讯作者(Corresponding author), E-mail: hongyuanwang@snnu.edu.cn

Keywords: Rana chensinensis tadpoles; Bufo gargarizans tadpoles; metal ion; LC₅₀

随着人类对煤炭、石油和天然气等能源消耗的持续增长,以及人类的大量活动如矿山开采,金属冶炼、加工,农药化肥的使用等均造成环境中重金属含量增加¹¹¹。重金属以多种物理和化学形态存在于水体、土壤和大气等环境中,并在环境中产生迁移和积累¹²³,其中,水体重金属污染是当今世界上最严重的环境问题之一。水体重金属污染使得水生生态系统长期处于一种被干扰状态,影响水生生物的生存繁殖及生态系统的结构,并进而影响到人类的生活和健康。

sensitivity to the same metal ions.

目前,重金属离子对水生生物的毒性研究主动 要集中于鱼类、双贝类和两栖动物^[47]。两栖动物是 联系水生和陆生环境的关键物种,在生态系统中占 有重要的位置,其胚胎和幼体的发育均在水域中进 行,水域污染物会直接影响它们的发育和变态^[4,8]。 两栖动物幼体鳃和皮肤的渗透性强,对水质的反应 极为敏感^[9],是水体污染生物监测中的重要的指示 动物^[1011]。虽然有关重金属离子对两栖动物的毒性 研究已有一些相关报道,但是就不同物种对多种金 属离子敏感差异的比较研究还较匮乏。

中国林蛙(Rana chensinensis)和中华大蟾蜍 (Bufo gargarizans)均是我国的广布物种,以二者为 对象进行毒理学研究更有利于将实验室研究与野外 监测相结合,从而为环境污染的生态风险评估提供 更为客观的信息。本试验以中国林蛙(R. Cnensinensis)和中华大蟾蜍(B. gargarizans)蝌蚪为试验动物, 研究铜离子(Cu²⁺)、汞离子(Hg²⁺)、铬离子(Cr⁶⁺)、镉离 子(Cd²⁺)、锂离子(Li⁺)、铝离子(Al³⁺)和钴离子(Co²⁺)对 中国林蛙和中华大蟾蜍蝌蚪的急性毒性,以评估 7 种金属离子的毒性效应,及不同物种对金属离子污 染的敏感差异性,旨在丰富金属离子的水生生物毒 理学基础数据,为水生生态系统保护标准的制定提 供参考信息。

1 材料与方法(Materials and methods)

1.1 试验材料

中华大蟾蜍卵和中国林蛙卵均于 2013 年 3 月 采自秦岭北坡的西安市长安区大峪水库周围小水潭 (109°06′52″E,34°01′00″N),海拔 723 m。将卵带回实 验室,于室温下孵化为蝌蚪,根据 Gosner^[12]的分期标 准对蝌蚪进行分期,36 期蝌蚪后肢五趾分开^[13],肉 眼可见,易于分期辨认,且其各部形态发育基本成熟 稳定^[14],因此试验选取发育至 36 期的蝌蚪作为试验 材料。

1.2 试验试剂及溶液配制

试验所用化合物硝酸铝(Al(NO₃)₃)、铬酸铵 ((NH₄)₂CrO₄)、氯化汞(HgCl₂)、硝酸钴(Co(NO₃)₂)、硝 酸铜(Cu(NO₃)₂)、氯化锂(LiCl)、氯化镉(CdCl₂)为分析 纯(纯度≥99%,购自 Sigma 化学试剂公司),试验前 用双蒸水配制成离子质量浓度为 1 000 mg·L⁻¹的母 液,置于 4 ℃环境中保存备用,试验开始时稀释为所 需金属离子质量浓度的暴露溶液。

1.3 试验条件

对中国林蛙蝌蚪和中华大蟾蜍蝌蚪采用室温下 曝气 3 d 的自来水作为试验用水,试验所用容器为 40 cm×20 cm×20 cm (长×宽×高)的玻璃缸,每容 器盛试验液 4 L,随机放入 36 期的中国林蛙蝌蚪和 中华大蟾蜍蝌蚪各 30 例。试验用水 pH 值约 7.0,硬 度(CaCO₃)为(90±5) mg·L⁻¹,水温为(18±2)℃,自然 光照周期条件下培养,试验期间不投食。为保证试 验质量浓度的准确性,每 24 h 更换全部试验液。

1.4 试验方法

选择几种较大的金属离子浓度范围进行预实验,根据最小的全致死浓度和最大的零致死浓度确定正式试验的浓度范围。7种金属离子均设置8个暴露浓度组(表1),另设自来水空白对照组,每组均为30只蝌蚪。为避免蝌蚪发生同类相食现象及死亡蝌蚪毒性分泌物对正常蝌蚪产生影响^[15],暴露后前12h连续观察,之后每间隔4h观察1次。当蝌蚪沉于水底,用玻璃棒多次刺激其尾部无反应时则判断为死亡,及时将死亡蝌蚪捞出,记录24h、48h、72h、96h死亡蝌蚪的数目。

1.5 形态学指标测量与分析

采用电子游标卡尺(桂林广陆电子数显游标卡尺,测量范围150 mm,精确度0.01 mm)测定蝌蚪全长、体长和尾长;采用SartoriusBS124S型电子天平

Table 1 Concentrations of 7 metal ions in the acute exposure tests										
				金属离子浓度/(1	ng•L ⁻¹)					
Concentrations of 7 metal ions/(mg·L ⁻¹)										
	Cu ²⁺	Hg^{2+}	Cr ⁶⁺	Cd^{2+}	Li ⁺	Al ³⁺	Co ²⁺			
1	0.064	0.201	0.468	5.600	3.470	13.500	11.786			
2	0.128	0.602	0.520	6.720	4.858	14.850	17.679			
3	0.192	0.701	1.040	7.840	6.246	16.200	20.626			
4	0.256	0.802	1.560	8.400	6.940	17.550	23.572			
5	0.320	0.903	2.080	8.960	10.410	18.900	26.519			
6	0.384	1.003	2.680	9.520	13.880	20.250	29.465			
7	0.448	1.103	3.640	10.080	17.350	21.600	35.358			
8	0.512	1.204	4.680	12.320	20.280	24.300	41.251			
1	0.320	0.410	2.080	1.120	4.858	10.800	17.679			
2	0.384	0.502	2.600	2.240	6.246	12.150	29.465			
3	0.448	0.542	2.860	3.360	6.940	12.690	41.251			
4	0.512	0.582	3.120	4.480	9.022	13.230	53.037			
5	0.576	0.602	3.380	5.200	10.410	13.500	58.930			
6	0.640	0.702	3.640	6.720	13.880	14.310	88.395			
7	0.960	0.802	4.160	7.840	17.350	14.850	117.860			
8	1.280	1.003	4,680	8 960	20.820	16 200	147 325			
	1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8	Cu ²⁺ 1 0.064 2 0.128 3 0.192 4 0.256 5 0.320 6 0.384 7 0.448 8 0.512 1 0.320 2 0.384 3 0.448 4 0.512 5 0.576 6 0.640 7 0.960 8 1.280	$\begin{tabular}{ c c c c c } \hline Cu^{2+} & Hg^{2+} \\ \hline 1 & 0.064 & 0.201 \\ \hline 2 & 0.128 & 0.602 \\ \hline 3 & 0.192 & 0.701 \\ \hline 4 & 0.256 & 0.802 \\ \hline 5 & 0.320 & 0.903 \\ \hline 6 & 0.384 & 1.003 \\ \hline 7 & 0.448 & 1.103 \\ \hline 8 & 0.512 & 1.204 \\ \hline 1 & 0.320 & 0.410 \\ \hline 2 & 0.384 & 0.502 \\ \hline 3 & 0.448 & 0.542 \\ \hline 4 & 0.512 & 0.582 \\ \hline 5 & 0.576 & 0.602 \\ \hline 6 & 0.640 & 0.702 \\ \hline 7 & 0.960 & 0.802 \\ \hline 8 & 1.280 & 1.003 \\ \hline \end{tabular}$	Cu ²⁺ Hg ²⁺ Cr ⁶⁺ 1 0.064 0.201 0.468 2 0.128 0.602 0.520 3 0.192 0.701 1.040 4 0.256 0.802 1.560 5 0.320 0.903 2.080 6 0.384 1.003 2.680 7 0.448 1.103 3.640 8 0.512 1.204 4.680 1 0.320 0.410 2.080 2 0.384 0.502 2.600 3 0.448 0.542 2.860 4 0.512 0.582 3.120 5 0.576 0.602 3.380 6 0.640 0.702 3.640 7 0.960 0.802 4.160 8 1.280 1.003 4.680	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$& \& \exists \ a f \neq k \not g \land (mg \cdot L^{-1}) \\ Concentrations of 7 metal ions/(mg \cdot L^{-1}) \\ \hline Cu^{2+} Hg^{2+} Cr^{6+} Cd^{2+} Li^+ Al^{3+} \\ \hline 1 0.064 0.201 0.468 5.600 3.470 13.500 \\ 2 0.128 0.602 0.520 6.720 4.858 14.850 \\ 3 0.192 0.701 1.040 7.840 6.246 16.200 \\ 4 0.256 0.802 1.560 8.400 6.940 17.550 \\ 5 0.320 0.903 2.080 8.960 10.410 18.900 \\ 6 0.384 1.003 2.680 9.520 13.880 20.250 \\ 7 0.448 1.103 3.640 10.080 17.350 21.600 \\ 8 0.512 1.204 4.680 12.320 20.280 24.300 \\ 1 0.320 0.410 2.080 1.120 4.858 10.800 \\ 2 0.384 0.502 2.600 2.240 6.246 12.150 \\ 3 0.448 0.542 2.860 3.360 6.940 12.690 \\ 4 0.512 0.582 3.120 4.480 9.022 13.230 \\ 5 0.576 0.602 3.380 5.200 10.410 13.500 \\ 6 0.640 0.702 3.640 6.720 13.880 14.310 \\ 7 0.960 0.802 4.160 7.840 17.350 14.850 \\ 8 1.280 1.003 4.680 8.960 20.830 1.128$			

表1 7种金属离子的急性毒性暴露浓度

(精确度 0.001 g)测定蝌蚪体质量;在 Zeiss Discovery V12型体视显微镜下剥离出蝌蚪的肝脏,通过电子 天平测定肝质量。肥满度和肝指数分别根据下列公 式计算:

肥满度=体质量/全长×100

肝指数=肝质量/体质量×100^[16]

1.6 数据处理与分析

所有试验数据均采用 SPSS 17.0 软件进行统计 分析。采用概率单位法求得7种金属离子分别对中 国林蛙蝌蚪和中华大蟾蜍蝌蚪的半数致死浓度 (LC50)及95%置信区间[17-18]。安全浓度(SC)参照SC =0.01×96 h-LC₅₀计算^[19]。蝌蚪肝指数以平均值± 标准差表示,数据采用 t 检验(t-test)进行比较分析 (P <0.05 表示差异显著, P<0.01 表示差异极显著)。

2 结果(Results)

2.1 7种金属离子对中国林蛙和中华大蟾蜍蝌蚪的 急性毒性

急性毒性试验过程中,对照组蝌蚪游动正常,无 死亡现象,试验组蝌蚪的死亡个数均随着金属离子 质量浓度的增加而增加,并与暴露时间的延长呈正 相关。7种金属离子对中国林蛙和中华大蟾蜍蝌蚪 的 24 h-LC₅₀、48 h-LC₅₀、72 h-LC₅₀和 96 h-LC₅₀如表 2 所示。

7种金属离子对中国林蛙蝌蚪的 24 h-LC₅₀、 48h-LC50 、72 h-LC50 和 96 h-LC50 大小排列顺序均为: $Co^{2+} > Al^{3+} > Li^+ > Cd^{2+} > Cr^{6+} > Hg^{2+} > Cu^{2+}$ 。试 验所得 Cu²⁺、Hg²⁺、Cr⁶⁺、Cd²⁺、Li⁺、Al³⁺ 和 Co²⁺ 对 中国林蛙蝌蚪的 96 h-LC₅₀分别为 0.270 mg·L⁻¹、 $0.803 \text{ mg} \cdot \text{L}^{-1}$, 2.375 mg $\cdot \text{L}^{-1}$, 7.351 mg $\cdot \text{L}^{-1}$, 11.273 mg \cdot L⁻¹、17.265 mg·L⁻¹和 20.973 mg·L⁻¹,依据安全浓度计 算公式,得出上述7种金属离子对中国林蛙蝌蚪的 安全浓度分别为 0.00270 mg·L⁻¹、0.00803 mg·L⁻¹、 $0.023\ 75\ mg \cdot L^{-1}$, $0.07351\ mg \cdot L^{-1}$, $0.11273\ mg \cdot L^{-1}$, 0.17265 mg•L⁻¹和 0.20973 mg•L⁻¹。

7种金属离子对中华大蟾蜍蝌蚪 24 h-LC₅₀和 48h-LC50大小排列顺序为:Co2+ >Li+ >Al3+ >Cd2+ >Cr⁶⁺ >Hg²⁺ >Cu²⁺,72 h-LC₅₀和 96 h-LC₅₀大小排 列顺序分别为:Co²⁺ >Li⁺ >Al³⁺ >Cr⁶⁺ >Cd³⁺ > ${
m Hg^{2+}}\,{>}\,{
m Cu^{2+}}$, ${
m Co^{2+}}\,{>}\,{
m Al^{3+}}\,{>}\,{
m Li^+}\,{>}\,{
m Cr^{6+}}\,{>}\,{
m Cd^{2+}}\,{>}$ $Hg^{2+} = Cu^{2+}$ 。试验所得 Cu^{2+} 、 Hg^{2+} 、 Cr^{6+} 、 Cd^{2+} 、 Li⁺、Al³⁺和Co²⁺对中华大蟾蜍蝌蚪的96h-LC50分 别 0.593 mg·L⁻¹、0.593 mg·L⁻¹、2.827 mg·L⁻¹、2.592 mg •L⁻¹、12.656 mg•L⁻¹、14.02 mg•L⁻¹和 57.435 mg•L⁻¹,依 据安全浓度计算公式,得出上述7种金属离子对中 华大蟾蜍蝌蚪的安全浓度分别为 0.00593 mg·L⁻¹、

0.00593 mg • L⁻¹、0.02827 mg • L⁻¹、0.02592 mg • L⁻¹、
0.12656 mg • L⁻¹、0.14020 mg • L⁻¹和 0.57435 mg • L⁻¹。
2.2 7种金属离子对中国林蛙和中华大蟾蜍蝌蚪的 毒性比较

根据所获得的7种金属离子对中国林蛙和中华 大蟾蜍蝌蚪的安全浓度,分析比较7种金属离子对 两个不同物种蝌蚪的毒性大小,结果见图 1。由图 可知,7种金属离子对中国林蛙和中华大蟾蜍蝌蚪 的毒性大小表现一致,即 Cu²⁺和 Hg²⁺ 对蝌蚪的毒 性作用最大,Cr⁶⁺和 Cd²⁺ 次之,Li⁺、Al³⁺和 Co²⁺的 毒性作用相对较小。但是,通过安全浓度的比较可 知,Hg²⁺,Cd²⁺,Cr⁶⁺和Al³⁺ 对中华大蟾蜍蝌蚪的毒

表 2 7 种金属离子对中国林蛙和中华大蟾蜍蝌蚪的 LCso

Table 2 L	C_{50} val	lues (of 7	metal	ions	for	R.	chensi	inensis	s and	В.	gargarizans	tadpo	oles
-----------	--------------	--------	------	-------	------	-----	----	--------	---------	-------	----	-------------	-------	------

	Ę	中国林蛙 R. chens	中华大蟾蜍 B. Gargarizans								
半数致死浓度及 95% 置信区间/(mg•L ⁻¹)											
LC ₅₀ and 95% Confidence Interval/(mg·L ⁻¹)											
	24h	48h	72h	96h	24h	48h	72h	96h			
Cu ²⁺	0.480	0.467	0.359	0.270	1.073	0.742	0.645	0.593			
	(0.453~ 0.508)	(0.440~ 0.494)	(0.336~ 0.383)	(0.247~ 0.293)	(0.973~ 1.188)	(0.662~ 0.829)	(0.566~ 0.728)	(0.514~ 0.673)			
Hg^{2^+}	1.278	1.162	0.955	0.803	0.813	0.688	0.646	0.593			
	(1.219~ 1.344)	(1.115~ 1.215)	(0.915~ 0.996)	(0.761~ 0.844)	(0.759~ 0.875)	(0.638~ 0.740)	(0.597~ 0.697)	(0.543~ 0.644)			
Cd^{2+}	13.782	11.069	8.474	7.351	4.695	3.419	2.745	2.592			
	(12.255~	(10.150~	(7.600~	(6.337~	(4.182~	(2.874~	(2.172~	(2.006~			
	15.900)	12.258)	9.311)	8.209)	5.213)	3.948)	3.290)	3.145)			
	4.954	4.459	3.389	2.375	3.707	3.235	2.913	2.827			
Cr ⁶⁺	(4.518~	(4.073~	(3.080~	(2.095~	(3.561~	(3.093~	(2.762~	(2.674~			
	5.443)	4.889)	3.726)	2.669)	3.859)	3.379)	3.059)	2.974)			
Li+	21.075	18.069	14.016	11.273	23.732	17.982	15.230	12.656			
	(18.900~	(16.212~	(12.414~	(9.693~	(21.248~	(16.228~	(13.657~	(11.179~			
	23.586)	20.181)	15.757)	12.917)	26.681)	19.988)	16.973)	14.225)			
Al ³⁺	22.284	21.350	19.361	17.265	16.046	14.966	14.306	14.020			
	(21.197~	(20.327~	(18.395~	(18.266~	(15.578~	(14.581~	(13.942~	(13.657~			
	23.511)	22.481)	20.368)	16.240)	16.588)	15.394)	14.693)	14.398)			
	40.492	28.637	23.893	20.973	138.962	95.851	73.676	57.435			
Co ²⁺	(37.561~	(26.471~	(21.637~	(18.581~	(124.849~	(85.304~	(63.928~	(47.573~			
	43.871)	30.893)	26.113)	23.243)	154.358)	107.271)	83.908)	67.388)			

图 1 7 种金属离子对中国林蛙蝌蚪(A)和中华大蟾蜍蝌蚪(B)的安全浓度

图 2 中国林蛙和中华大蟾蜍蝌蚪体重全长(A)、尾长全长(B)散点图 Fig. 2 Distribution of weight in function of total length (A) and tail length in function of total length (B) of *R. chensinensis* and *B. gargarizans tadpoles*

性作用较中国林蛙蝌蚪大,而 Cu²⁺、Li⁺ 和 Co²⁺ 对 中国林蛙蝌蚪的毒性较中华大蟾蜍蝌蚪的毒性大。 2.3 中国林蛙和中华大蟾蜍蝌蚪的形态指标比较

由图 2 数据计算可知,中华大蟾蜍蝌蚪的肥满 度为 0.8±0.01,中国林蛙的肥满度为 0.7±0.02。与 中华大蟾蜍蝌蚪相比,中国林蛙蝌蚪的尾长较长。 图 3 显示,中国林蛙蝌蚪和中华大蟾蜍蝌蚪的肝指 数分别是 3.6±0.2 和 2.5±0.1,中国林蛙蝌蚪的肝指 数显著大于中华大蟾蜍蝌蚪的肝指数(P<0.05)。

3 讨论(Discussion)

根据急性毒性试验所获得的 LC50 可以有效地 评估水体化学污染物对水生生物的毒性效应。本试

验得出 Cu²⁺、Cd²⁺ 等 7 种金属离子对中国林蛙和 中华大蟾蜍蝌蚪的毒性大小均为: Cu2+ 和 Hg2+ 最 大, Cr⁶⁺ 和 Cd²⁺ 次之, Li⁺、Al³⁺ 和 Co²⁺ 相对较小, 表 明蝌蚪对不同金属离子的敏感性有差异。李春瑜[20] 等报道, Cu²⁺ 对海陆蛙蝌蚪的毒性大于 Cd²⁺。 Sunita^[21]的研究表明,Cu²⁺、Zn²⁺、Ni³⁺,Cd²⁺四种金 属离子中,Cu²⁺ 对紫贻贝胚胎的毒性最强,Cd²⁺ 最 弱。Martin 等[22]研究表明,Hg2+和 Cu2+ 对贻贝胚胎 的毒性最大,而 Cd²⁺ 和 Cr⁶⁺ 次之。相关资料显示, Cu²⁺ 进入细胞后与 Ca²⁺、Zn²⁺ 等二价阳离子竞争与 酶的结合部位,导致酶活性的改变,进而诱导一系列 生化反应异常,引起代谢紊乱^[23-25];Cr⁶⁺的毒性主要 是通过其强氧化性和渗透生物膜的能力所引起[26], 而在两栖类体内 Cr⁶⁺ 可被转变为毒性较弱的 Cr^{3+[27]},分析认为,蝌蚪对不同金属离子敏感性的差 异与不同类型金属离子在蝌蚪体内的代谢机制和毒 性机理存在差异有关。

本研究结果表明, Cu^{2+} 对中国林蛙蝌蚪的 24 h、 48 h、72 h、96 h-LC₅₀分别为 0.480 mg·L⁻¹、0.467 mg· L⁻¹、0.359 mg·L⁻¹和 0.270 mg·L⁻¹。此外,试验结果表 明, Cu^{2+} 和 Hg²⁺ 对中华大蟾蜍蝌蚪的毒性相同。 上述结果与已有研究结果不完全一致,例如,石戈 等^[28]报道, Cu^{2+} 对中国林蛙蝌蚪 24 h、48 h、72 h-LC₅₀ 分别为 0.131 mg·L⁻¹,0.105 mg·L⁻¹,0.038 mg·L⁻¹; 王 寿兵等^[29]的研究表明, Cu^{2+} 对中国林蛙蝌蚪的 24 h、 48 h、72 h、96 h-LC₅₀分别为 8.13 mg·L⁻¹、7.00 mg·L⁻¹、 6.38 mg·L⁻¹和 3.80 mg·L⁻¹。卢祥云等^[30]对中华大蟾 蜍蝌蚪的急性毒性研究结果显示,Hg²⁺的毒性大于

235

Cu²⁺ 的毒性。根据已有研究^[31-36],这些差异性主要 是由于蝌蚪所处发育阶段和暴露试验条件的不同所 导致。

本文所测试的7种金属离子均对蝌蚪有一定的 毒性,但中国林蛙和中华大蟾蜍蝌蚪对同一离子的 敏感性存在差异。Cu2+、Cr6+、Li+和 Co6+ 对中华大 蟾蜍蝌蚪的 96 h-LCso分别是中国林蛙蝌蚪 96 h-LC50的 2.196、1.114、1.123、3.213 倍,表明中国林蛙蝌 蚪对上述4种金属离子的敏感性较中华大蟾蜍蝌蚪 好。而 Hg²⁺、Cd²⁺ 和 Al³⁺ 对中国林蛙蝌蚪的 96 h-LC50分别是对中华大蟾蜍蝌蚪 96 h-LC50 的 1.354、 2.836和 1.231 倍。有研究表明, Hg²⁺ 易于透过皮肤 和鳃渗入动物体内,累积并对机体造成损伤的。而 处于相同发育时期的中华大蟾蜍蝌蚪个体的肥满度 高于中国林蛙蝌蚪的肥满度,提示其生理状况较好, 代谢活跃,从而表现出对 Hg²⁺ 具有相对较高的敏感 性。根据 Hg²⁺,Cd²⁺ 和 Al³⁺ 的生理特性,可以认为 中华大蟾蜍蝌蚪对 Hg2+, Cd2+和 Al3+ 的敏感性较中 国林蛙蝌蚪的好是由不同物种形态、代谢、遗传特征 的差异引起它们对污染物胁迫敏感性的不同。 Cd²⁺ 进入机体后主要分布在肝脏,通过肝脏进行解 毒代谢^[37],中国林蛙蝌蚪的肝指数较大,提示其解毒 能力也就相对较强,这是中国林蛙蝌蚪对 Cd2+ 耐受 性较强的原因之一。此外,中国林蛙蝌蚪尾长全长 比高于比中华大蟾蜍蝌蚪长的尾长全长比,提示二 者的游动速度也有所差异,最终将表现出体内能量 物质存储等方面的差异性,这些差异都是造成二者 对同一金属离子敏感度不同的原因。当然,最终机 制的确定需要进行生理代谢和遗传等方面的深入 研究。

通讯作者简介:王宏元(1974-),男,博士,讲师,主要从事发育 生物学和生态毒理学方面的研究工作。

参考文献(References):

 [1] 彭玉龙, 王永敏, 覃蔡清, 等. 重庆主城区降水中重金属的分布特征及其沉降量[J]. 环境科学, 2014, 35(7): 2490 - 2496

Peng Y L, Wang Y M, Qin C Q, et al. Concentrations and deposition fluxes of heavy metals in precipitation in core urban areas, Chongqing [J]. Environment Science, 2014, 35 (7): 2490–2496 (in Chinese)

[2] Toppi L S, Gabbrielli R. Response to cadmium in higher plants [J]. Environmental and Experimental Botany, 1999, 41(2): 105-130

- [3] 黄益宗,郝晓伟,雷鸣,等.重金属污染土壤修复技术及 其修复实践[J]. 农业环境科报, 2013, 32(3): 409-417
 Huang Y Z, Hao X W, Lei M, et al. The remediation technology and remediation practice of heavy metals contaminated soil [J]. Journal of Agro - Environment Science, 2013, 32(3): 409-417 (in Chinese)
- [4] Chen T H, Gross J A, Karasov W H. Adverse effects of chronic copper exposure in larval northern leopard frogs (*RANA PIPIENS*) [J]. Environmental Toxicology and Chemistry, 2007, 26(7): 1470-1475
- [5] Lv Y T. Effect of zinc on the growth and development of larvae of bay scallop *argopecten irradians* [J]. Chinese Journal of Oceanology and Limnology, 1988, 7(4): 318 – 326
- [6] Ramachandran S, Patel T R, Colbo M H. Effect of copper and cadmium on three Malaysian tropical estuarine invertebrate larvae [J]. Ecotoxicology and Environmental Safety, 1997, 36(2): 183 - 188
- [7] Ricardo B, Edouard H, Matthias N L. Seaman. Effects of storage temperature and duration on toxicity of sediments assessed by the *Crassostrea gigas* oyster embryo bioassay
 [J]. Environmental Toxicology and Chemistry, 1998, 17(10): 2100 2105
- [8] 柴丽红, 王宏元, 吴民耀,等. 氟对不同发育时期中华大 蟾蜍蝌蚪的急性毒性研究[J]. 安全与环境学报, 2013, 13(4): 5-9

Chai L H, Wang H Y, Wu M Y, et al. On the acute toxicity of fluoride to the larvae of *Bufo gargarizans* at different developmental stages [J]. Journal of Safety and Environment, 2013, 13(4): 5-9 (in Chinese)

- [9] Kerby J L, Richards Hrdlicka K L, Storfer A, et al. An examination of amphibian sensitivity to environmental contaminants: are amphibians poor canaries [J]. Ecology Letters, 2010, 13(1): 60-67
- [10] Hopkins W A. Amphibians as models for studying environmental change [J]. ILAR Journal, 2007, 48(3): 270-277
- [11] 秦晓飞,秦占芬,徐晓白.前哨动物在环境污染物人体 健康风险评价中的应用[J]. 生态毒理学报, 2007, 2(4): 476-480

Qin X F, Qin Z F, Xv X B. Application of sentinel animals to human health risk assessment of environmental contaminants [J]. Asian Journal of Ecotoxicology, 2007, 2(4): 270 -277 (in Chinese)

- [12] Gosner K L. A simplified table for staging anuran embryos and larvae with notes on identification [J]. Herpetologica, 1960, 16(3): 183-190
- [13] Sarah S, Bina Perl R G, Anna R, et al. Larval morphology

and development of the Malagasy frog *Mantidactylus betsileanus* [J]. Salamandra, 2013, 49(4): 186-200

[14] 廉静,李丕鹏,陆宇燕,等.辽宁产中华大蟾蜍和花背蟾
 蜍蝌蚪形态特征的比较和分析[J].四川动物,2009,28
 (4):499-504

Lian J, Li P P, Lu Y Y, et al. Comparison and analysis of tadpoles between *Bufo gargarizans* and *B. raddei* from Liaoning [J]. Sichuan Journal of Zoology, 2009, 28(4): 499–504 (in Chinese)

- [15] Saka M. Examination of an amphibian—based assay using the larvae of *Xenopus laevis* and *Ambystoma mexicanum*[J]. Ecotoxicology and Environmental Safety, 2003, 55(1): 38-45
- [16] 刘静, 柴丽红, 吴民耀, 等. 中华蟾蜍蝌蚪变态过程中甲状腺的组织学变化[J]. 西北农林科技大学学报:自然科学版, 2012, 40(3): 7-12
 Liu J, Chai L H, Wu M Y, et al. Changes of thyroid gland histological structures during the metamorphosis of *Bufo gargarizans* tadpole [J]. Journal of Northwest A&F University (Natural Science Edition), 2012, 40(3): 7-12 (in Chinese)
- [17] McGrath P, Seng W L, Willett C. et al. Determination of LD_{50} and assessment of drug induced developmental toxicity in zebrafish [J]. Journal of Pharmacological and Toxicological Methods, 2008, 58(2): 150–150
- [18] Han S S, Chow W K. Calculating FED and LC₅₀ for testing toxicity of materials in bench—scale tests with a cone calorimeter [J]. Polymer Testing, 2005, 24(7): 920–924
- [19] 周永欣, 章宗涉. 水生生物毒性试验方法[M]. 北京:中国农业出版社, 1989
 Zhou Y X, Zhang Z S. Methods of Toxicity Test to Aquatic Organisms [M]. Beijing: China Agriculture Press, 1989 (in Chinese)
- [20] 李春瑜. 重金属铜、镉对海陆蛙蝌蚪毒性作用的初步研究[D]. 海南师范大学, 2013
 Li C Y. Preliminary study on toxicity of copper and cadmium on *Fejervaya cancrivora* tadpoles [D]. Hai Nan Normal University, 2013 (in Chinese)
- [21] Sunita R N, John L, Fitzpatrick N F, et al. Toxicity of dissolved Cu, Zn, Ni and Cd to developing embryos of the blue mussel (*Mytilus trossolus*) and the protective effect of dissolved organic carbon [J]. Comparative Biochemistry and Physiology, Part C: Toxicology & Pharmacology, 2009, 149(3): 340-348
- [22] Martin M, Osborn K E, Billig P, et al. Toxicities of ten metals to *Crassostrea gigas* and *Mytilus edulis* embryos and Cancer magister larvae [J]. Marine Pollution Bulletin, 1981, 12(9): 305-308

- [23] 王爱国,陈学敏,鲁文清,等.低硒高镉对大鼠组织中谷 胱甘肽过氧化物酶活性影响的动态观察[J].中国地方 病学杂志, 1995, 14(6): 337-340
 Wang A G, Chen X M, Lu W Q, et al. Dynamie observation of effect of low-dose selenium and high-dose cadmium on activity of Glutathione Peroxiase in rat tissues [J]. Chinese Journal of Endemiology, 1995, 14(6): 337-340 (in Chinese)
- [24] Vogiatzis A K, Loumbourdis N S. A study of glycogen, lactate, total fats, protein, and glucose concentration in the liver of the frog *Rana ridibunda*, after exposure to cadmium for 30 days [J]. Environmental Pollution, 1999, 104(3): 335 - 340
- [25] Papadimitriou E, Loumbourdis N S. Exposure of the frog Rana ridibunda to copper: Impacton two biomarkers, lipid peroxidation and glutathione [J]. Bulletin of Environmental Contamination and Toxicology, 2002, 69(6): 885-891
- [26] Roy J I. Environmental contaminants encyclopedia chromium (in general) entry [EB/OL]. National park service (1997-07-01) [1998-03-01]. http://www.nature.nps. gov/ hazardssafety/ toxic/ index. cfm
- [27] Khangarot B. S, Ray P. K. Sensitivity of toad tadpoles, *Bufo melanostictus* (Schneider) to heavy metals [J]. Bulletin of Environmental Contamination and Toxicology, 1987, 38(3): 523-527
- [28] 石戈, 王健鑫, 武佳, 等. Cu²⁺和 Cr⁶⁺ 对中国林蛙蝌蚪的急性毒性[J]. 东北师大学报(自然科学版), 2007, 39
 (2): 116-121
 Shi G, Wang J X, Wu J, et al. Acute toxicity of Cu²⁺ and

Cr⁶⁺ to *Rana chensinensis* tadpoles [J]. Journal of Northeast Normal University (Natural Science Edition), 2007, 39 (2): 116-121 (in Chinese)

- [29] 王寿兵,郭锐,屈云芳,等. Cu 对中国林蛙蝌蚪的急性 毒性[J]. 应用生态学报, 1998, 9(3): 309-312
 Wang S B, Guo R, Qu Y F, et al. Acute toxicity of Cu²⁺ to *Rana chensinensis* tadpole [J]. Chinese Journal of Applied Ecology, 1998, 9(3): 309-312
- [30] 卢祥云,张燕萍,吴海东,等.汞离子和铜离子对中华大 蟾蜍蝌蚪联合毒性研究[J].四川动物,2006,25(2):379 -381

Lu X Y, Zhang Y P, Wu H D, et al. Study on joint toxicity of mercury ion and copper ion to *Bufo gargarizans* tadpole [J]. Sichuan Journal of Zoology, 2006, 25(2): 379-381 (in Chinese)

[31] Li X Y, Xiao N, Zhang, Y H. Toxic effects of octylphenol on the expression of genes in liver identified by suppression subtractive hybridization of *Rana chensinensis* [J]. Ecotoxicology, 2014, 23(1): 1-10

- [32] Formicki G, Stawarz R, Lukac N, et al. Combined effects of cadmium and ultraviolet radiation on mortality and mineral content in common frog (*Rana temporaria*) larvae [J]. Journal of Environmental Science and Health. Part A: Toxic/Hazardous substances & Environmental Engineering, 2008, 43(10): 1174-1183
- [33] 马瑜,李勃,张育辉. 敌百虫对中国林蛙蝌蚪生长发育的毒性效应[J]. 生态毒理学报, 2014, 9(3): 531-537
 Ma Y, Li B, Zhang Y H. Toxicity effect of trichlorfon on the growth and development of tadpoles *Rana chensinensis*[J]. Asian Journal of Ecotoxicology, 2014, 9(3): 531-537 (in Chinese)
- [34] Ken O, Osamu T, Akihiko K, et al. Metal ion-responsive transgenic *Xenopus laevis* as an environmental monitoring animal [J]. Environmental Toxicology and Pharmacology,

2003, 13(3): 153-161

- [35] Marcantonio A S, Tavares R M J, Franca F M, et al. Toxicity of zinc sulphate for tadpoles of bullfrogs (*Lithobates catesbeianus*): acute toxicity, chronic toxicity and hematological parameters [J]. Boletim do Instituto de Pesca, 2011, 37(2): 143-154
- [36] 李勃, 王维君, 李忻怡, 等. 铬对中国林蛙蝌蚪生长发育的毒性效应[J]. 生态学杂志, 2013, 32(3): 648-654
 Li B, Wang W J, Li X Y, et al. Toxic effect of Chromium on the growth and development of *Rana Chensinensis* tadpoles [J]. Chinese Journal of Ecology, 2013, 32(3): 648-654 (in Chinese)
- [37] Phillip L W, Robert C J, Stephen M R, et al. Principles of Toxicology [M]. The United States of America: A Wiley− Interscience Publication, 2000: 325-343