

DOI:10.7524/j.issn.0254-6108.2023080102

王欣瑶, 盛杰, 邹云杰, 等. 磷酸化纳米铁去除水中 Cd²⁺、Zn²⁺、Ni²⁺的比较[J]. 环境化学, 2024, 43(6): 1898-1909. WANG Xinyao, SHENG Jie, ZOU Yunjie, et al. Investigation on the removal of Cd²⁺, Zn²⁺, Ni²⁺ from water by phosphorylated nanoscale zerovalent iron[J]. Environmental Chemistry, 2024, 43 (6): 1898-1909.

磷酸化纳米铁去除水中 Cd²⁺、Zn²⁺、Ni²⁺的比较^{*}

王欣瑶 盛 杰 邹云杰 凌 岚**

(污染控制与资源化研究国家重点实验室,同济大学环境科学与工程学院,上海污染控制与生态安全研究院,上海,200092)

摘 要 重金属污染已成为全球关注的环境问题,镉、镍和锌是工业生产中常见的重金属污染.纳米零 价铁是重金属污染控制的重要环境功能材料,其改性优化工作也备受关注.本文采用液相还原法在制备 过程中添加 KH₂PO₄ 合成磷酸化纳米铁 (phosphorylated nanoscale zero-valent iron, P-nZVI),考察了磷酸化 对纳米铁去除 Cd²⁺、Zn²⁺、Ni²⁺的效果的影响,评估了磷酸化对抗 pH、干扰离子影响的效果,并结合 XRD、SEM、S/TEM、XPS 等表征手段比较了 P-nZVI 去除 3 种重金属的作用机制.研究表明,P-nZVI 对 Cd²⁺、Zn²⁺的去除效率均显著优于纳米零价铁 (nanoscale zero-valent iron, nZVI),分别为 79.6%、90.6%. 吸附过程以 P-nZVI 表面磷酸基团的吸附为主,均可用准二级动力学描述.Ni²⁺的去除包括吸附和还原作 用,加剧了铁芯腐蚀,使其去除效率达到 92.6%.因此,磷酸化修饰能通过累积零价铁表面负电荷以加 速吸附过程;裂纹结构能降低金属离子跨越氧化铁层的阻碍,促进氧化还原,提高 Fe⁰利用率. **关键词** 纳米铁,磷酸化修饰,重金属,吸附,氧化还原.

Investigation on the removal of Cd²⁺, Zn²⁺, Ni²⁺ from water by phosphorylated nanoscale zero-valent iron

 WANG Xinyao
 SHENG Jie
 ZOU Yunjie
 LING Lan **

 (State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji
 University, Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China)

Abstract Heavy metal pollution has become an environmental issue raising global concern, and cadmium, nickel and zinc are common heavy metal pollution in industrial production. Nano zero-valent iron is an important environmental functional material for heavy metal pollution removal, and its modification as well as optimization have attracted much attention. In this study, we prepared phosphorylated nanoscale zero-valent iron (P-nZVI) by liquid-phase reduction using NaBH₄, FeCl₃·6H₂O in the presence of KH₂PO₄. The performances of P-nZVI on the removal of Cd²⁺, Zn²⁺, Ni²⁺were examined and the effects of initial solution pH and interfering ions were also investigated. Several characterization techniques were adopted to explore the morphology, structure and interface characteristics of P-nZVI including scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM) integrated with energy-dispersive X-ray spectrometry (EDS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results indicated that the removal efficiency of P-nZVI was significantly improved than that of nanoscale zero-valent

Supported by the National Natural Science Foundation of China (22176147, 21822607).

²⁰²³ 年 8 月 1 日收稿(Received: August 1, 2023).

^{*} 国家自然科学基金(22176147)和国家自然科学基金优秀青年基金(21822607)资助.

^{**} 通信联系人 Corresponding author, E-mail: linglan@tongji.edu.cn

iron(nZVI) for both Cd^{2+} and Zn^{2+} with 79.6% and 90.6%, respectively. The removal process was dominated by the adsorption of phosphate groups on the surface of P-nZVI, and both could be described by quasi-secondary kinetics. Unlike Cd^{2+} and Zn^{2+} , removal of Ni²⁺ involved adsorption and reduction, with increased corrosion of internal iron core, resulting in a high removal efficiency of 92.6%. In summary, the advantages of phosphorylated zero-valent iron nanoparticles are described as follows: phosphate groups can accelerate the adsorption process resulting from more negative charge on the zero-valent iron surface; the cracked structure can reduce the barrier of metal ions across the iron oxide layer, promote e-transfer and improve utilization of Fe⁰.

Keywords nanoscale zero-valent iron, phosphorylation, heavy metal, adsorption, redox reaction.

我国工业高速发展及城镇化进程,使得重金属造成的水污染日趋严重,成为了全球关注的环境问题之一^[1].重金属不可被生物降解,易在生物体内累积并通过食物链放大,严重威胁人类健康及生态系统.镉(Cd)、锌(Zn)、镍(Ni)是工业废水中最常见的重金属污染物^[2].Ni、Zn是生命体需要的微量元素,但高浓度Ni²⁺、Zn²⁺能引起呕吐、哮喘及中枢神经系统紊乱等中毒症状^[3-4];Cd²⁺即使在较低浓度下也表现出较高生物毒性^[5],长期接触Cd²⁺会导致慢性肺部疾病、骨骼畸形和肾功能衰减等问题^[6].因此,高效去除水体中的以镉(Cd)、锌(Zn)、镍(Ni)为代表的重金属离子成为了亟待解决的问题,并在近年来受到了相关研究领域的广泛关注.

从水中去除重金属离子的方法包括吸附、化学沉淀/混凝、离子交换、膜技术和电化学方法等^[7].随着纳米技术的发展,纳米材料在水处理中逐渐发挥重要作用.其中,纳米零价铁(nanoscale zero-valent iron, nZVI)凭借比表面积大、还原活性高、适用面广、环境友好等特性被广泛用于水环境中的重金属 去除^[8]. nZVI 的粒径在(20—100) nm 范围,呈链状,合成后瞬间在表面生成铁(氢)氧化物,这使 nZVI 形成了独特"核-壳"结构^[9]. nZVI 在参与重金属去除过程中,外氧化壳层首先通过静电引力和表 面络合作用吸附重金属离子,随后单质铁核可以充当电子供体还原被吸附的重金属离子,因此 nZVI 对重金属的去除可能涉及吸附和还原机制^[10].但 nZVI 在实践应用中也呈现出一定的局限性,如易自发 团聚,表面活性位点减少;极易被空气和水氧化,大大削弱其还原能力,导致活性降低.为了解决上述问 题,大量研究对 nZVI 的改性进行了探索^[11-13],旨在进一步提升 nZVI 的稳定性、电子传递效率和去除 的选择性.

研究发现, nZVI 对磷酸盐具有很强的亲和力, 能通过吸附、沉淀等作用高效去除水中 PO4^{3-[14-15]}. 研究进一步表明, 吸附在 nZVI 表面的 PO4³能生成钝化层, 磷酸基团的侧链质子抑制 nZVI 与氧和水的 反应, 从而对 nZVI 起到一定保护作用^[10]. 因此, 表面磷酸化能提高 nZVI 在水中的稳定性. 此外, 磷酸盐 能取代 nZVI 表面的羟基, 与重金属形成三元配合物, 进而增强其对重金属的配位能力^[17]. 基于上述特性, 表面磷酸化的 nZVI(phosphorylated nanoscale zero-valent iron, P-nZVI)用于污染物去除已被广泛研究, 如 Zhang 等^[16] 发现四聚磷酸盐改性 nZVI 对阿特拉津的降解过程中, 四聚磷酸盐的存在抑制了质子还原, 增强了分子氧活化, 使阿特拉津的降解率提高 955 倍. Li 等^[18] 的研究表明, 磷酸化改性后, P-nZVI 对 Cr(VI)还原的电子选择性从 6.1%提高到 31.3%, 去除效率提高了 4 倍, 这是由于磷酸化修饰增强了对铬的吸附能力, 进而促进其还原. 综上所述, nZVI 的表面磷酸盐改性能提高对重金属离子 的配位能力, 同时表面磷酸盐抑制了 nZVI 被水和氧气氧化, 在增强 nZVI 对重金属离子吸附能力的基础上有效提高了 nZVI 对吸附在表面的重金属的还原能力, 其改性策略成本低, 操作简单, 效果显著. 但目前, P-nZVI 对不同种类重金属的去除性能、机理的相关比较研究仍较少, 因此, 比较 P-nZVI 对常见重金属的去除能力和作用机制具有较大的研究价值.

本研究以 KH₂PO₄ 为磷化剂, 通过液相还原法制备磷化改性的 nZVI, 并且选择了 Cd²⁺、Zn²⁺、Ni²⁺3 种典型的重金属离子作为目标污染物. 由于 Fe⁰ 对 Cd²⁺、Zn²⁺、Ni²⁺具有不同的还原能力; Cd²⁺、Zn²⁺、Ni²⁺受 pH 影响的沉淀-溶解特性存在差异; 同时, 其与表面磷酸根的亲和力也不尽相同, 因此磷酸化改性后的 nZVI 对于上述 3 种金属离子的去除特性可能存在差异. 本文在讨论 P-nZVI 去除水溶液

中 Cd²⁺、Zn²⁺、Ni²⁺效果的基础上,进一步研究了 pH、干扰离子等影响因素的影响,并结合 XRD、XPS、 SEM、TEM 等表征,讨论 P-nZVI 去除 Cd²⁺、Zn²⁺、Ni²⁺的微观机理差异.本研究旨在比较 P-nZVI 对不同 重金属的去除能力、重金属去除过程中的影响因素和微观界面特征,为进一步深入探索 P-nZVI 在微 界面上与重金属离子的作用机理提供一定的参考.

1 实验部分(Experimental section)

1.1 纳米零价铁及改性纳米零价铁的制备

研究所用的 nZVI、P-nZVI 均采用 NaBH₄ 液相还原 Fe³⁺法合成¹⁹. 根据先前的实验, P/Fe 物质的量 比在 0.6 左右 P-nZVI 去除效果较好, 因此制备磷酸化修饰的 nZVI 时, 需要将 NaH₂PO₄ 以一定比例和 NaBH₄ 混合, 确保 P/Fe 为 0.6, 并通过蠕动泵将混合溶液缓缓滴入三颈瓶中, 其他步骤与 nZVI 的制备 相同. 反应完成后, 采用离心的方式收集 nZVI 并用去离子水和无水乙醇各洗涤 3 次, 储存于无水乙醇 中备用.

1.2 批量去除实验

实验分别探究了 P-nZVI 吸附 Cd²⁺、Zn²⁺、Ni²⁺的动力学特征、pH 及干扰离子等因素对重金属去除的影响.所有实验中 P-nZVI 的投加量均为 0.5 g·L⁻¹, 重金属离子的初始浓度为 100 mg·L⁻¹. 在动力学实验中,首先配制一定量 Cd²⁺、Zn²⁺、Ni²⁺溶液至三颈瓶中,调节反应初始 pH 为 6±0.1, 通氮 20 min 脱去溶液中 O₂, 再加入适量 P-nZVI,分别反应 0(空白)、5、10、15、30、40、50、60、75、90、120 min 取出少量溶液,过 0.22 µm 滤膜后测定离子浓度.反应过程中,采用磁力搅拌器以 250 r·min⁻¹进行机械搅拌,使P-nZVI 与目标离子充分接触. pH 实验中,为防止 Cd²⁺、Zn²⁺、Ni²⁺大量沉淀控制 pH 范围在 2—8 之间,使用 HCl 和 NaOH 调节反应 pH 分别为 2±0.1、3±0.1、4±0.1、5±0.1、6±0.1、7±0.1、8±0.1,其他步骤同上. 为探究溶液中干扰离子对吸附的影响,在其他操作不变的情况下,控制反应 pH 为 6±0.1,量取适量含有共存离子的溶液 [HA、Na₂SO₄、NaHCO₃、Mg(NO₃)₂、Ca(NO₃)₂] 加入三颈瓶中,使共存离子浓度分别为 0、10、50 mg·L⁻¹.上述所有实验,控制实验温度为 25 ℃.

1.3 分析方法

采用电感耦合等离子体发射光谱仪(ICP-720 ES,安捷伦公司,美国)测定溶液中 Cd²⁺、Zn²⁺、Ni²⁺浓度.采用 Zeta 电位测定仪(Zetasizer Nano ZS90)测定 P-nZVI 的零电荷点, ASPS 2460 气体分析仪测定 材料孔径分布及比表面积.为比较反应前后材料的微观形貌变化,采用场发射电子扫描显微镜(Nova naniSEM-450, FEI 公司,美国)及球差校正扫描透射电子显微镜(TatanTMG2 60-300, FEI 公司,美国)进 行表征,并使用 EDS 能谱对材料的元素分布情况进行定性及半定量分析.采用 X 射线衍射仪(D8 Advance,布鲁克公司,德国)及 X 射线光电子能谱仪(ESCALAB 250XI,赛默飞,美国)探测材料体相物 质的晶体结构及表相化学组成、元素种类及价态,并使用 MDI Jade 6 软件对 XRD 结果进行比对分析、 Advantage 5.948 软件对 XPS 谱进行分峰拟合.采用 Origin 2021 软件对所得数据进行绘图.

2 结果与讨论 (Results and discussion)

2.1 P-nZVI 结构及界面性质

2.1.1 结构特征

HAADF-STEM 图直观反映出 P-nZVI 的壳-核结构特征及表层 2 nm 左右的无定形壳(图 1a). Fe、 O、P及 Fe+O 重叠的 EDS 元素分布图显示, Fe、O 元素分别分布在颗粒内核与外壳, P 元素均匀分布 在颗粒表面(图 1a). 磷酸基团的修饰虽不影响零价铁的"壳-核"结构, 却使 nZVI 的球形轮廓稍有变形 并出现不规则边缘;同时, P-nZVI 的 HAADF-STEM 图揭示 P-nZVI 内部出现了明显的径向裂纹结构, 该裂纹从外壳层延伸至铁芯内部. 这与 Zhang 等的研究结果一致^[20], Zhang 等指出在磷酸基团存在下, 铁壳表面生成的磷酸铁物种阻碍颗粒的继续长大, 并且铁芯生长和外壳层施加的阻力发生了对抗, 导 致 P-nZVI 最终生长成边缘缺陷、内部皲裂的不规则球状颗粒. BET 测试也证实了这一现象, 计算结果 显示 P-nZVI的比表面积为(159.27±1.01) m²·g⁻¹, 远大于 nZVI的比表面积(26.54±2.13) m²·g⁻¹; 同时, P-nZVI的总孔容及孔径均值分别为(0.6093±0.0025) cm³·g⁻¹、(21.22±0.19) nm, 相较于 nZVI 均有所增 加(图 2、表 1). 因此,裂纹结构显著增加了材料的比表面积,这有利于提供更多活性位点、促进吸附. 该结构还有利于污染物快速穿过氧化外壳层,提高 Fe⁰ 的电子利用率^[21].

图 1 (a)P-nZVIHAADF-STEM 图像和 Fe、O、P、Fe+O 的 EDS 元素分布图; (b)P-nZVI 的 Fe 2p、O1s XPS 谱图; (c) 不同 pH 下 P-nZVI、nZVI 的 Zeta 电位图; (d)P-nZVI 上磷酸基团的结合示意图

Fig.1 (a) HAADF-STEM image of fresh P-nZVI as well as the corresponding elemental mapping of Fe, O, P and the overlapped mapping of Fe, O; (b)XPS survey spectra of P 2p, Fe 2p and O 1s of P-nZVI; (c)zeta potential of P-nZVI and nZVI at different pH; (d) schematic diagram of phosphate groups binding mode

图 2 nZVI(a)和 P-nZVI(b)的 N₂吸附-脱附等温线(插入图为相应的孔径分布图) Fig.2 N₂ adsorption-desorption isotherms of(a)nZVI(b)P-nZVI (Inset is the pore size distribution)

	Table 1 Comparison of specific surfact	Comparison of specific surface area, pore volume and pore size of nZVI and P-nZVI		
	比表面积/(m ² ·g ⁻¹)	孔容/(cm ³ ·g ⁻¹)	孔径/nm	
	Surface area	Pore volume	Pore size	
nZVI	26.54±2.13	0.0759 ± 0.0030	27.67±0.06	
P-nZVI	159.27±1.01	0.6093 ± 0.0025	21.22±0.19	

表 1 nZVI及 P-nZVI的比表面积、孔容、孔径对比

2.1.2 表面化学性质

为进一步确定 P-nZVI 表面元素成分及化学性质, 对 P-nZVI 进行了 XPS 分析(图 1b)及不同 pH 下 的 Zeta 电位测试(图 1c). P 2p XPS 谱图在 132.54 eV、133.49 eV 的特征峰分别归属于 P 2p_{1/2}、P 2p_{3/2}^[20], 该结果证实了纳米铁表面的成功磷酸化. Fe 2p XPS 谱图观察到 P-nZVI 在 710.69 eV、713.76 eV 附近 分别出现 Fe(Ⅱ)—O 与 Fe(Ⅲ)—O 的特征峰^[22],表明新鲜制备的 P-nZVI 表面出现一定程度的氧化,氧 化层的形成主要来自于溶液中水及少量氧的腐蚀作用[23],这一现象与 nZVI 类似. 有趣的是, P-nZVI 与 nZVI的O1s XPS 谱存在明显区别. P-nZVI 在结合能为 529.83 eV、530.98 eV、532.48 eV 附近的特征峰 分别归属于 O²、OH 以及物理或化学吸附水^[24] 其中, P-nZVI 的 OH 光电子特征峰占比高达到 75.67%, O²的占比偏低, 仅为 12.59% (表 2); nZVI的 O²与 OH 光电子峰面积占比接近, 分别为 43.98% 和 53.08%, 化学计量比接近 1:1, 表明 nZVI 表面铁氧化物以 FeOOH 为主(表 2)^[25] 该对比表明, P-nZVI 表面存在较高比例的 OH,这主要来自于磷酸基团的贡献,表明 nZVI 表面被大量磷酸根包被.磷酸盐 可能主要以3种方式结合在 nZVI 表面(图 1d);(1)nZVI 的氧化铁外壳对磷酸基团发生静电吸附,该结 合方式会受到 pH 的显著影响^[26] (2) PO₄³⁻与颗粒表面羟基脱水络合(方程式 1), 以单齿单核形式结合 在 nZVI 表面^[18,27]. (3)随着 nZVI 外壳的腐蚀, 释放的 Fe²⁺能与 PO₄³⁻发生沉淀作用(方程式 2), 以表面沉 积^[26]的方式附着在颗粒上. Zeta 电位测试的结果与预期一致,由于结合在 nZVI 表面的磷酸基团能提 供一定负电荷,导致 P-nZVI 的 IEP 相较于 nZVI 大幅下降. Zhang 等^[20] 通过 DFT 计算证实,磷酸基团 周围负电量增加,因此 P-nZVI 表面能通过累积负电荷的方式增大对重金属阳离子的静电引力^[28].

$$\equiv \text{FeOH} + \text{H}_2\text{PO}_4^- \equiv \text{FeO}(\text{PO}_2)\text{OH}^- + \text{H}_2\text{O}$$
(1)

$$Fe^{2+} + PO_4^{3-} = Fe_3(PO_4)_2 \downarrow$$
 (2)

Table 2	Relative abundance of O	²⁻ , OH ⁻ a	nd H ₂ O in the	e O1s XPS s	pectra of nZVI	and P-nZVI
---------	-------------------------	-----------------------------------	----------------------------	-------------	----------------	------------

	P-nZVI	nZVI
O ²⁻	23.11	43.98
OH.	62.88	53.08
H_2O	14.01	2.94
总计	100	

2.2 重金属去除实验

2.2.1 反应动力学

通过批量去除实验,对 nZVI、P-nZVI 去除 Cd²⁺、Ni²⁺、Zn²⁺的动力学过程进行了对比研究.结果表明,磷酸化修饰成功实现了对 3 种重金属离子的高效去除(图 3a、b).未经修饰的 nZVI 对 Cd²⁺和 Zn²⁺的去除率仅为 45.4%、53.8%,并且去除率在达到平衡后的一定时间内出现波动,这是由于 P-nZVI 对 金属离子的吸附不牢固,易出现解吸现象.而 P-nZVI 对 Cd²⁺、Zn²⁺的去除率相比 nZVI 有大幅提升,分别达到 79.6%、90.6%.这是由于 P-nZVI 表面形成了 nZVI-PO₄³⁻金属阳离子三络合物,磷酸基团能快速富集并稳定结合重金属离子,不易造二次释放.

对比 Ni²⁺的去除动力学,发现 P-nZVI 能加快 Ni²⁺的去除,在 15 min 左右即去除了 80% 的 Ni²⁺,并 将去除率提高 10% 左右.结合标准氧化还原电位可知,Ni²⁺/Ni 的标准电位($E_0 = -0.23$ V)高于 Fe²⁺/Fe($E_0 = -0.44$ V),因此 Ni²⁺不仅可以被吸附固定,还能通过还原作用去除^[29].Fe⁰ 的电子转移被认 为是整个反应过程的限速步^[19],而 P-nZVI 的缺陷结构有利于 Ni²⁺快速突破氧化外壳的反应屏障、"攻 击"富含电子的铁核,促进还原过程并提升去除效率.

为了进一步认识 P-nZVI 去除 Cd²⁺、Zn²⁺、Ni²⁺的反应过程,对 3 种重金属离子的反应动力学进行了 评估,分别采用伪一级、伪二级动力学模型进行模拟,两种模型表达式如下:

$$q_t = q_e \left(1 - e^{-k_1 t} \right) \tag{3}$$

$$\frac{t}{q_t} = \frac{1}{k_2 \cdot q_e^2} + \frac{t}{q_e} \tag{4}$$

式中, q_t (mg·g⁻¹)为 t 时刻材料对重金属离子的吸附量, k_1 (min⁻¹)为伪一级动力学模型的吸附速率常数, k_2 (g·mg⁻¹·min⁻¹)为伪二级动力学模型的吸附速率常数.图 3c、d 表明, P-nZVI 对 Cd²⁺、Zn²⁺、Ni²⁺的 去除过程均更符合伪二级动力学模型, R^2 分别为 0.9988、0.9992、0.9997.

图 3 (a, b)反应动力学曲线; (c, d)伪一级、伪二级动力学拟合曲线; (e)pH 的影响; (f, g, h)干扰离子的影响 **Fig.3** (a, b)Kinetic adsorption experiments of nZVI and P-nZVI; (c, d)fitted curves of pseudo-first-order kinetic model and pseudo-second-order kinetic model; (e) influence of different pH conditions; (f, g, h) influence of interfering ions

相较于活性炭、沸石等常见商用重金属去除材料, P-nZVI 对上述 3 种重金属的去除能在短时间内 达到相近的水平^[30], 但不同于这些材料的单一吸附作用, P-nZVI 在与水及污染物相互作用中会不断产 生高活性的新鲜表面, 在一定程度上提升颗粒周边 pH, 从而能够通过吸附、沉淀、共沉淀等多种方式 去除更多的重金属, 同时该材料及其产物具有一定的磁性, 便于分离回收, 因此 P-nZVI 具有一定潜在 应用价值.

2.2.2 pH 的影响

环境因素对水体中重金属存在形式及迁移转化具有重要影响,其中,pH 是影响重金属吸附行为的 关键因素之一^[31].由于 Cd²⁺、Zn²⁺、Ni²⁺在碱性条件下均会大量沉淀,因此本实验控制溶液初始 pH 值在 2—8 范围内,探究 pH 对 P-nZVI 吸附 3 种重金属离子的影响,结果如图 3e 所示.当 pH 值为 2、3 时, P-nZVI 对重金属离子的吸附量较低; pH 值提升至 4 时,吸附量增幅明显,因为 P-nZVI 在偏酸性环境 下会受到 H⁺的腐蚀而大量溶解.当 pH 值从 4 增加到 8, P-nZVI 对 Cd²⁺、Zn²⁺、Ni²⁺的吸附量分别从 (152.24±1.89) mg·g⁻¹、(165.52±1.14) mg·g⁻¹、(172.25±3.21) mg·g⁻¹提升至(168.24±2.83) mg·g⁻¹、 (185.52±4.23) mg·g⁻¹、(188.54±2.84) mg·g⁻¹. 从表面化学的角度分析,由于 P-nZVI的 IEP 为 4.51(图 1c),因此在低 pH 条件下,H⁺与重金属离子 竞争 P-nZVI 表面的吸附位点,导致目标离子的吸附量较低.随着 pH 升高,P-nZVI 表面带明显负电,对 金属阳离子的静电吸引大大增加,吸附量随之升高.因此,在 pH 7—8 时重金属的去除效果最佳. 2.2.3 干扰离子的影响

为进一步探究 P-nZVI 在实际水体中对 Cd²⁺、Zn²⁺、Ni²⁺的去除情况,本研究选择了自然水体中最为 常见的几种阴阳离子 SO₄²⁻、HCO³⁻、Ca²⁺和 Mg²⁺,以及广泛存在于自然水体中的天然有机物质腐殖酸 HA(黄腐酸含量>90%)进行探究.结果与预期一致(图 3f-h),阳离子 Mg²⁺和 Ca²⁺对 Cd²⁺、Zn²⁺、Ni²⁺的去 除抑制作用明显,且随着浓度的增加,抑制作用将增强.因为 Mg²⁺和 Ca²⁺与目标离子带有相同的电荷且 离子水合半径接近,在反应过程中能与目标离子竞争 P-nZVI 表面结合位点,导致去除效率下降^[32].而 阴离子 SO₄²⁻、HCO₃·存在时, P-nZVI 对目标离子的吸附几乎不受影响.

共存物质为 HA 时,目标重金属的去除率受到显著影响.当 HA 浓度从 0 mg·L⁻¹增加到 50 mg·L⁻¹时,其对目标离子的去除效率至少下降 20%.这与 HA 表面丰富的官能基团有关,该表面特性使其具有较强的配位结合能力^[33],在短时间极易占据大量活性位点,导致目标离子的解吸释放.

2.3 机理研究

2.3.1 XRD

图 4 为 P-nZVI、nZVI 与 Cd²⁺、Zn²⁺、Ni²⁺³ 种重金属离子反应 2 h 后的 XRD 图谱. 谱图显示,在 2 θ = 44.8°附近均出现了尖峰,经对比确认,为 Fe⁰(110)晶面峰(PDF # 89-7194);在 2 θ = 35.5°附近出现的峰为 Fe₃O₄(311)面的宽化衍射峰(PDF # 75-0033),说明 P-nZVI、nZVI反应后均表现出一定程度的氧化. 其中,与 Cd²⁺、Zn²⁺反应后,该氧化峰信号较弱,可能由于表面铁(氢)氧化物的结晶度较差或主要以无定形态存在¹⁵⁴;与 Ni²⁺反应后,相对较强的氧化峰信号表明铁的氧化较明显,并且 P-nZVI 的氧化更加显著. 值得注意的是, P-nZVI 与 Cd²⁺反应后,在 2 θ = 13.2°处出现了尖峰,这来自于 Fe₃(PO₄)₂·8H₂O(020)晶面的衍射(PDF # 83-2453),表明少量磷酸盐还可能进一步在 nZVI 表面生成具有一定结晶度的蓝矿石¹²⁶. XRD 图谱上并未反映出与 Cd、Ni、Zn 元素相关的晶面衍射峰,因此需要结合其他表征手段进一步分析.

2.3.2 SEM

nZVI、P-nZVI 去除 Cd²⁺、Zn²⁺、Ni²⁺后的形貌对比如图 5 所示. P-nZVI 去除 Cd²⁺后(图 5b)外表变为 不规则球形并出现絮状沉淀,而 nZVI 与 Cd²⁺反应未出现明显絮状沉淀.该对比表明 P-nZVI 的去除能 力强于 nZVI, P-nZVI 表面的高浓度磷酸盐环境促使 Cd²⁺形成了 Cd₃(PO₄)₂ 界面沉淀(pK_{sp} = 32.6)^[35].与 Cd²⁺类似, Zn²⁺反应后纳米铁的球形形貌仍然保持并出现少量絮状沉淀(图 5c、5d). 但与 Ni²⁺反应后, P-nZVI 表面的球形则完全消失,外表被大量片层状结构及针状结构覆盖(图 5e、5f). 结合上述 XRD 谱 图,这再次证实 P-nZVI 对 Ni²⁺的去除能力最强,在反应过程材料表面氧化明显,生成了结晶度低/无定 形铁(氢)氧化物,根据外观结构推测其主要成分可能为 FeOOH^[36].

图 5 SEM 表征: 与 Cd²⁺反应后的 nZVI(a)和 P-nZVI(b); 与 Zn²⁺反应后的 nZVI(c)和 P-nZVI(d); 与 Ni²⁺反应后的 nZVI(e)和 P-nZVI(f)

Fig.5 SEM images of spent nZVI exposed to $Cd^{2+}(a)$, $Zn^{2+}(c)$, $Ni^{2+}(e)$ and spent P-nZVI exposed to $Cd^{2+}(b)$, $Zn^{2+}(d)$, $Ni^{2+}(f)$

2.3.3 TEM

对 P-nZVI 反应后的单颗粒进行了 STEM 及 EDS 分析, 以进一步对比微观界面的变化. 如图 6a、6b 所示, P-nZVI 与 Cd²⁺、Zn²⁺反应后, "壳-核"结构仍然保持, 外形及内部结构没有明显改变, 颗粒的裂 纹及外部的氧化薄层清晰可见. 但 EDS 能谱的定量结果表明, 反应后颗粒 O 原子相对丰度小幅增加 (表 3), 这是由于溶液中 O₂、H₂O 对 Fe⁰ 的腐蚀作用^[23]. 根据 Cd、Zn 及 P 的 EDS 元素分布图, Cd²⁺、Zn²⁺与 P 元素的分布高度相关, 均匀分布在外壳层, 由此推测磷酸基团在 Cd²⁺、Zn²⁺的去除过程中起到 主导作用.

图 6 P-nZVI 与 Cd²⁺(a)、Zn²⁺(b)、Ni²⁺(c)反应后的 HAADF-STEM 图、Fe、O、P 及目标离子元素分布图 Fig.6 HAADF-STEM images of P-nZVI after reactions with Cd²⁺, Zn²⁺, Ni²⁺ as well as the corresponding elemental mapping of Fe, O, P, Cd, Zn, Ni:(a)reaction with Cd²⁺, (b)reaction with Zn²⁺, (c)reaction with Ni²⁺

HAADF-STEM 图显示, 与 Ni²⁺反应 2 h 后, P-nZVI 颗粒的"壳-核"结构遭到严重破化, 裂纹结构消失, 图像明暗衬度的差异反映出铁芯已被明显腐蚀. Ni、Fe 元素分布图表明 Ni 元素不仅分布在外壳层 还深入铁核内部, 颗粒中心的铁元素大量减少(图 6c). 同时, 反应后 P-nZVI 单颗粒中 Ni 原子相对丰度 高于 Cd、Zn, 并且 O 原子比例升高至 54.5%、Fe 原子占比明显降低(表 3), 这进一步证明 P-nZVI 颗粒 的快速氧化及铁离子的大量溶出^[37]. 因此, P-nZVI 与 Ni²⁺的反应较为剧烈, 这与 SEM 表征结果一致.

			,		
		Table 3 Quantitative results of EDS before and after removal of heavy metals			
	P-nZVI	除Cd ²⁺ 后	除Zn ²⁺ 后	除Ni ²⁺ 后	
		After removal of Cd ²⁺	After removal of Zn ²⁺	After removal of Ni ²⁺	
Fe	85.68	63.55	76.01	28.22	
0	13.83	34.37	21.90	54.50	
Р	0.49	1.45	1.13	0.62	
目标污染物	_	0.64	0.95	16.55	
总计			100		

表 3 P-nZVI 及去除重金属后的 EDS 定量结果

2.3.4 XPS

为进一步确定 P-nZVI 去除重金属的机理,采用 XPS 分析反应后的表面元素组成及价态变化.如图 7a 所示,反应后的 XPS 谱图检测出了 Cd、Zn、Ni 元素的特征峰,证实重金属离子成功结合在 P-nZVI 表面.

图 7 与 P-nZVI 反应后, Cd 3d、Zn 2p、Ni 2p 的 XPS 谱图和重金属的去除机理示意图 Fig.7 XPS survey spectra of Cd 3d, Zn 2p, Ni 2p, P 2p of P-nZVI after reaction, and schematic diagram of mechanisms for heavy metal removal by P-nZVI

Cd 3d 与 Zn 2p 的 XPS 谱图显示, nZVI 去除 Cd²⁺后 Cd 3d_{5/2} 结合能为 405.28 eV, 归因于 Cd(II) 在 nZVI 表面的吸附; Zn²⁺2p_{3/2} 结合能更高, 特征峰值在 1022.38 eV 附近, 均与文献报道一致^[38]. 与 P-nZVI 反应后, Cd 3d_{5/2} 特征峰稍稍左移, 通过分峰分别得到峰值为 405.5 eV 及 406.18 eV 的两个峰, 根据 Cd²⁺所处的化学环境不同,将 405.5 eV 处的峰分配给吸附在 nZVI 活性位点上的 Cd²⁺, 406.18 eV 处的峰分配给吸附于磷酸基团上的 Cd²⁺. 由于 Cd²⁺/Cd($E_0 = -0.40$ V)的标准电位非常接近 Fe²⁺/Fe($E_0 = -0.44$ V), 因此在 nZVI 上 Cd²⁺被还原为 Cd⁰ 在热力学上是不利的^[34,39], 并且在 pH<8 时 Cd²⁺几乎不发生 沉淀^[10]. 由上推测, P-nZVI 主要以两种不同吸附方式去除 Cd²⁺: (1)直接吸附于 nZVI 的表面活性位点^[40] (2)与磷酸基团结合,形成三元络合物^[41]. 由于吸附在磷酸基团位点的 Cd²⁺特征峰面积远大于直接吸附 在 nZVI 表面的特征峰面积,这归因于磷酸根对 Cd²⁺较高的亲和力(pK_{splCds}(PO₄)₂₁ = 32.6), 证实磷酸基团 对 Cd²⁺的吸附起到了主导作用. Zn²⁺的 XPS 结果与 Cd²⁺类似, 可通过同样的方式分峰并分配给不同吸 附位点上的 Zn²⁺. 由于 Zn²⁺/Zn 的 $E_0 = -0.7624$ V 显著低于 Fe²⁺/Fe, Zn²⁺在 nZVI 表面以吸附为主,并且 Zn²⁺对 PO₄³⁻也具有较高亲和力(pK_{splCn}(PO₄)₂₁ = 32.04), 因此 Zn²⁺可能的去除机制与 Cd²⁺相近, 即优先吸 附在磷酸根位点, 少量直接与 nZVI 表面的铁(氢)氧化物结合^[25](图 7). Cd²⁺、Zn²⁺与 nZVI 的反应方程

式可表达如下:

$\equiv \text{FeO}(\text{PO}_2)\text{OH}^- + \text{Me}^{2+} \rightarrow \equiv \text{FeO}(\text{PO}_2)\text{OMe} + \text{H}^+$

$$\equiv$$
 FeOH + Me²⁺ $\rightarrow \equiv$ FeOMe⁺ + H

 \equiv FeOMe⁺ + H₂O \rightarrow \equiv FeOMeOH + H⁺ (Me = Cd, Zn)

Ni²⁺与 P-nZVI反应后的 XPS 谱图显示,在 851.89 eV、855.60 eV、861.25 eV 附近出现了 Ni⁰、Ni(II)—O 与 Ni(II)—OH 的特征峰^[42],其结合能相较于 nZVI 均略向左偏移.同时,P-nZVI 的 Ni^(II)—O、Ni(II)—OH 特征峰信号明显强于 Ni⁰、表明磷酸化修饰的纳米零价铁表面更倾向于吸附 Ni²⁺,少量 Ni²⁺被还原为 Ni⁰.而 STEM 及 EDS 元素分布图显示,P-nZVI 的内部被严重腐蚀.根据上述现象推测,P-nZVI 首先通过三元络合作用将大量 Ni²⁺吸附在表面,部分 Ni²⁺能通过径向裂纹结构深入铁芯内部,发生较为剧烈的氧化还原反应.Zhang 等^[20]采用 XPS 刻蚀,详细比较了 Ni²⁺在 4 h 内对 nZVI 及 P-nZVI 铁芯的腐蚀过程,结果证实 P-nZVI 的确大大提升了反应速率、促进腐蚀.原因可作如下分析:浓度梯度被认为是污染物进入铁核速率的决定因素^[43],虽然铁氧化物外壳及表面磷酸基团阻碍 Ni²⁺与 Fe⁰ 的直接接触,但由于 P-nZVI 表面负电荷量大,能比 nZVI 更迅速地通过静电引力作用将溶液中游离的 Ni²⁺以物理、化学吸附结合在铁壳表面,较高的浓度梯度促进 Ni²⁺跨越 P-nZVI 氧化外壳层,向铁芯转移;其次,P-nZVI 独特的径向裂纹及表面缺陷更有助于 Ni²⁺向铁芯扩散,加快电子转移,提高 Fe⁰ 的利用率(图 7).因此,P-nZVI 的结构降低了 Ni²⁺跨越铁氧化壳的阻碍,其反应方程式可表达如下:

 $\equiv \text{FeO}(\text{PO}_2)\text{OH}^- + \text{Ni}^{2+} \rightarrow \equiv \text{FeO}(\text{PO}_2)\text{ONi} + \text{H}^+$

 $\equiv \text{FeOH} + \text{Ni}^{2+} \rightarrow \equiv \text{FeONi}^+ + \text{H}^+$

$$\equiv \text{FeONi}^+ + \text{H}_2\text{O} \rightarrow \equiv \text{FeONiOH} + \text{H}^+$$

 $\equiv FeONi^{+} + Fe^{0} + H^{+} \rightarrow \equiv FeOH - Ni + Fe^{2+}$

3 结论(Conclusion)

本文以 KH₂PO₄ 为磷化剂通过液相还原法制备出磷酸化修饰的纳米铁,并结合 XRD、SEM、 TEM、XPS 等分析手段探究其对 Cd²⁺、Zn²⁺、Ni²⁺的去除效果及微观作用机制.结果表明, P-nZVI 是一种 表面缺陷、内部皲裂的不规则球状颗粒,其较大的比表面积及表面包被的磷酸基团为重金属的吸附提 供了更多位点.反应动力学表明, P-nZVI 对 Cd²⁺、Zn²⁺、Ni²⁺的去除效率均显著优于 nZVI, 2 h 左右分别 达到了 79.6%、90.6%、92.6%.其中, P-nZVI 对 Cd²⁺、Zn²⁺的去除以表面磷酸基团的吸附为主,形成了 nZVI-PO₄³⁻-金属阳离子三元络合物,使重金属离子结合牢固、不易解吸.该吸附过程均可用准二级动力 学描述. 而 Ni²⁺的去除过程有所不同,其首先在 P-nZVI 的表面吸附作用下被富集,其次部分 Ni²⁺通过径 向裂纹深入铁芯并被快速还原,因此 P-nZVI 独特的裂纹结构能促进电子的转移.综上, P-nZVI 表面的 磷酸化修饰及物理结构的缺陷,使其具有较好的重金属去除活性,本研究结果为开发简单实用的改性 nZVI 高效去除重金属的方法提供了一定可行性思路.

参考文献 (References)

- [1] PAITHANKAR J G, SAINI S, DWIVEDI S, et al. Heavy metal associated health hazards: An interplay of oxidative stress and signal transduction[J]. Chemosphere, 2021, 262: 128350.
- [2] SHENG P X, TING Y P, CHEN J P, et al. Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: Characterization of biosorptive capacity and investigation of mechanisms[J]. Journal of Colloid and Interface Science, 2004, 275(1): 131-141.
- [3] BARCZAK M, SKWAREK E, JANUSZ W, et al. Functionalized SBA-15 organosilicas as sorbents of zinc(II) ions[J]. Applied Surface Science, 2010, 256(17): 5370-5375.
- [4] ONG D C, KAN C C, PINGUL-ONG S M B, et al. Utilization of groundwater treatment plant (GWTP) sludge for nickel removal from

aqueous solutions: Isotherm and kinetic studies [J]. Journal of Environmental Chemical Engineering, 2017, 5(6): 5746-5753.

- [5] GUO X J, CHEN F H. Removal of arsenic by bead cellulose loaded with iron oxyhydroxide from groundwater[J]. Environmental Science & Technology, 2005, 39(17): 6808-6818.
- [6] MOHAN D, SINGH K P. Single- and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse—An agricultural waste[J]. Water Research, 2002, 36(9): 2304-2318.
- [7] BASHIR A, AHMAD MALIK L, AHAD S, et al. Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods[J]. Environmental Chemistry Letters, 2019, 17(2): 729-754.
- [8] ZHU W B, QIAO X, LING L. Improved cadmium removal induced by interaction of nanoscale zero-valent iron and microplastics debris[J]. Journal of Environmental Engineering, 2023, 149(6): 04023029.
- [9] 盛杰,傅浩洋,王伟,等.纳米零价铁的表征及改性研究进展[J].环境化学,2020,39(11):2959-2978.
 SHENG J, FU H Y, WANG W, et al. Research progress on the characterization and modification of nanoscale zero-valent iron for applications[J]. Environmental Chemistry, 2020, 39(11): 2959-2978 (in Chinese).
- [10] 黄潇月,王伟,凌岚,等. 纳米零价铁与重金属的反应: "核-壳"结构在重金属去除中的作用 [J]. 化学学报, 2017, 75(6): 529-537.
 HUANG X Y, WANG W, LING L, et al. Heavy metal-nZVI reactions: The core-shell structure and applications for heavy metal treatment[J]. Acta Chimica Sinica, 2017, 75(6): 529-537 (in Chinese).
- [11] 杜毅, 王向宇. 新型纳米零价铁的绿色合成和改性工艺研究进展 [J]. 环境化学, 2016, 35(2): 337-347.
 DU Y, WANG X Y. Green synthesis and modification of nano zero-valent iron [J]. Environmental Chemistry, 2016, 35(2): 337-347 (in Chinese).
- [12] LI Q, JIANG Z, ZHENG J H, et al. Interaction of pyrite with zerovalent iron with superior reductive ability via Fe(ii) regeneration[J]. Environmental Science:Nano, 2022, 9(8): 2713-2725.
- [13] 汤晶,汤琳,冯浩朋,等. 硫化纳米零价铁去除水体污染物的研究进展 [J]. 化学学报, 2017, 75(6): 575-582.
 TANG J, TANG L, FENG H M, et al. Research progress of aqueous pollutants removal by sulfidated nanoscale zero-valent iron [J].
 Acta Chimica Sinica, 2017, 75(6): 575-582 (in Chinese).
- [14] XU Q Y, LI W P, MA L, et al. Simultaneous removal of ammonia and phosphate using green synthesized iron oxide nanoparticles dispersed onto zeolite[J]. The Science of the Total Environment, 2020, 703: 135002.
- [15] NRIAGU J O. Stability of vivianite and ion-pair formation in the system Fe₃(PO₄)₂-H₃PO₄H₃PO₄-H₂O[J]. Geochimica et Cosmochimica Acta, 1972, 36(4): 459-470.
- [16] MU Y, AI Z H, ZHANG L Z. Phosphate shifted oxygen reduction pathway on Fe@Fe₂O₃ core-shell nanowires for enhanced reactive oxygen species generation and aerobic 4-chlorophenol degradation[J]. Environmental Science & Technology, 2017, 51(14): 8101-8109.
- [17] FU H Y, HE H F, ZHU R L, et al. Phosphate modified magnetite@ferrihydrite as an magnetic adsorbent for Cd(II) removal from water, soil, and sediment[J]. The Science of the Total Environment, 2021, 764: 142846.
- [18] LI M Q, MU Y, SHANG H, et al. Phosphate modification enables high efficiency and electron selectivity of nZVI toward Cr(VI) removal[J]. Applied Catalysis B:Environmental, 2020, 263: 118364.
- [19] LING L, PAN B C, ZHANG W X. Removal of selenium from water with nanoscale zero-valent iron: Mechanisms of intraparticle reduction of Se(IV)[J]. Water Research, 2015, 71: 274-281.
- [20] LI M Q, SHANG H, LI H, et al. Kirkendall effect boosts phosphorylated nZVI for efficient heavy metal wastewater treatment[J]. Angewandte Chemie International Edition, 2021, 60(31): 17115-17122.
- [21] LING L, HUANG X Y, LI M R, et al. Mapping the reactions in a single zero-valent iron nanoparticle[J]. Environmental Science & Technology, 2017, 51(24): 14293-14300.
- [22] TANG L, FENG H P, TANG J, et al. Treatment of arsenic in acid wastewater and river sediment by Fe@Fe₂O₃ nanobunches: The effect of environmental conditions and reaction mechanism[J]. Water Research, 2017, 117: 175-186.
- [23] 刘静, 刘爱荣, 张伟贤. 纳米零价铁及其在环境介质中氧化后性质演变研究进展[J]. 环境化学, 2014, 33(4): 576-583.
 LIU J, LIU A R, ZHANG W X. Review on transformation of oxidized nanoscale zero valent iron in environment media[J].
 Environmental Chemistry, 2014, 33(4): 576-583 (in Chinese).
- [24] LI X Q, ELLIOTT D W, ZHANG W X. Zero-valent iron nanoparticles for abatement of environmental pollutants: Materials and engineering aspects [J]. Critical Reviews in Solid State and Materials Sciences, 2006, 31(4): 111-122.
- [25] LI X Q, ZHANG W X. Sequestration of metal cations with zerovalent iron Nanoparticles A study with high resolution X-ray photoelectron spectroscopy (HR-XPS)[J]. The Journal of Physical Chemistry C, 2007, 111(19): 6939-6946.
- [26] NAGOYA S, NAKAMICHI S, KAWASE Y. Mechanisms of phosphate removal from aqueous solution by zero-valent iron: A novel kinetic model for electrostatic adsorption, surface complexation and precipitation of phosphate under oxic conditions[J]. Separation and Purification Technology, 2019, 218: 120-129.
- [27] LIANG X L, LIN X J, WEI G L, et al. Competitive adsorption geometries for the arsenate As(V) and phosphate P(V) oxyanions on magnetite surfaces: Experiments and theory[J]. American Mineralogist, 2021, 106: 374-388.

- [28] MATUSIK J, BAJDA T, MANECKI M. Immobilization of aqueous cadmium by addition of phosphates[J]. Journal of Hazardous Materials, 2008, 152(3): 1332-1339.
- [29] LI X Q, ZHANG W X. Iron nanoparticles: The core-shell structure and unique properties for Ni(II) sequestration [J]. Langmuir, 2006, 22(10): 4638-4642.
- [30] SHRESTHA R, BAN S, DEVKOTA S, et al. Technological trends in heavy metals removal from industrial wastewater: A review[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105688.
- [31] LI M R, LING L. Visualizing dynamic environmental processes in liquid at nanoscale via liquid-phase electron microscopy [J]. ACS Nano, 2022, 16(10): 15503-15511.
- [32] 白子昂, 陈瑞兴, 庞宏伟, 等. 硫化纳米零价铁对水中 U(VI) 的高效去除研究 [J]. 化学学报, 2021, 79(10): 1265-1272.
 BAI Z A, CHEN R X, PANG H W, et al. Investigation on the efficient removal of U(VI) from water by sulfide nanoscale zero-valent iron[J]. Acta Chimica Sinica, 2021, 79(10): 1265-1272 (in Chinese).
- [33] LUO Y X, GAO B Y, YUE Q Y, et al. Application of enteromorpha polysaccharides as coagulant aid in the simultaneous removal of CuO nanoparticles and Cu²⁺: Effect of humic acid concentration [J]. Chemosphere, 2018, 204: 492-500.
- [34] LIANG L, LI X Q, GUO Y Q, et al. The removal of heavy metal cations by sulfidated nanoscale zero-valent iron (S-nZVI): The reaction mechanisms and the role of sulfur [J]. Journal of Hazardous Materials, 2021, 404: 124057.
- [35] WANG K J, XING B S. Mutual effects of cadmium and phosphate on their adsorption and desorption by goethite[J]. Environmental Pollution, 2004, 127(1): 13-20.
- [36] GUO H B, BARNARD A S. Naturally occurring iron oxide nanoparticles: Morphology, surface chemistry and environmental stability[J]. Journal of Materials Chemistry A, 2013, 1(1): 27-42.
- [37] SONG M, HU X L, GU T H, et al. Nanocelluloses affixed nanoscale zero-valent iron (nZVI) for nickel removal: Synthesis, characterization and mechanisms[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107466.
- [38] BOSE D N, HEDGE M S, BASU S, et al. XPS investigation of CdTe surfaces: Effect of Ru modification[J]. Semiconductor Science and Technology, 1989, 4(10): 866-870.
- [39] ZHANG Y L, LI Y T, DAI C M, et al. Sequestration of Cd(II) with nanoscale zero-valent iron (nZVI): Characterization and test in a two-stage system[J]. Chemical Engineering Journal, 2014, 244: 218-226.
- [40] DONG H R, ZENG Y L, XIE Y K, et al. Single and combined removal of Cr(VI) and Cd(II) by nanoscale zero-valent iron in the absence and presence of EDDS[J]. Water Science and Technology, 2017, 76(5/6): 1261-1271.
- [41] LIU J, ZHU R L, MA L Y, et al. Adsorption of phosphate and cadmium on iron (oxyhydr)oxides: A comparative study on ferrihydrite, goethite, and hematite[J]. Geoderma, 2021, 383: 114799.
- [42] McINTYRE N S, COOK M G. X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper[J]. Analytical Chemistry, 1975, 47(13): 2208-2213.
- [43] GU B, LIANG L, DICKEY M J, et al. Reductive precipitation of uranium(VI) by zero-valent iron[J]. Environmental Science & Technology, 1998, 32(21): 3366-3373.