

DOI:10.7524/j.issn.0254-6108.2022011001

周颖,朱钰,李宗睿,等.固相萃取-液相色谱串联质谱(LC-MS/MS)同步测定鸡蛋样品中有机磷酸酯及其代谢产物[J].环境化学, 2023, 42(6): 1970-1980.

ZHOU Ying, ZHU Yu, LI Zongrui, et al. Simultaneous determination of organophosphate esters and their specific metabolites in egg samples by solid-phase extraction with LC-MS/MS[J]. Environmental Chemistry, 2023, 42 (6): 1970-1980.

固相萃取-液相色谱串联质谱(LC-MS/MS)同步测定 鸡蛋样品中有机磷酸酯及其代谢产物^{*}

周 颖^{1,2} 朱 钰^{2,3} 李宗睿² 徐森昊² 朱晓辉² 陈希超² 向明灯² 于云江^{2 **}

(1. 锦州医科大学,锦州,121000; 2. 生态环境部华南环境科学研究所,国家环境保护环境污染健康风险评价重点实验室,广州,510655; 3. 西安工程大学环境与化学工程学院,西安,710048)

摘 要 本研究基于固相萃取和液相色谱串联质谱(LC-MS/MS)建立了同步提取、净化和检测高脂肪含量生物样品中7种有机磷酸酯及其9种代谢产物的分析方法.取鸡蛋样品用体积比为9:1乙腈:甲苯混合溶剂超声提取,用Florisil-PR固相萃取柱初步净化,将含有目标物的溶液经Z-Sep/C18除脂,并采用Strata X-AW 柱进一步净化,使用LC-MS/MS 进行分析.目标化合物在0.2—500.0 ng·mL⁻¹范围内呈良好线性关系,相关系数 R^2 介于 0.997—0.999之间.OPEs(有机磷酸酯)和它们的代谢物(mOPEs)的加标回收率范围分别在 69.9%—81.3%和 61.2%—82.5%之间,相对标准偏差(RSDs)分别介于7.9%—20%和11%—24%之间.利用本文建立的分析方法对12例鸡蛋样品中的16种 OPEs和mOPEs进行同步检测,鸡蛋样品中 Σ_7 OPEs的浓度范围为 1.43—5.9 ng·g⁻¹,TCPP浓度最高(浓度中值为2.13 ng·g⁻¹),占OPEs总浓度的58.8%.7种 OPEs除TEHP外,其他 OPEs均有检出. Σ_9 mOPEs的浓度范围为 2.81—11.8 ng·g⁻¹,DPHP(磷酸三(2-氯丙基)酯)为主要检出单体(浓度中值为3.14 ng·g⁻¹),浓度贡献占比为54%.9种 mOPEs除 BCEP(二-β,β'-氯乙基磷酸)和BCPP(双-(1-氯-2-丙基)磷酸)外,其他 mOPEs均有检出.

关键词 液相色谱串联质谱,生物样品,有机磷酸酯,代谢产物,检测方法.

Simultaneous determination of organophosphate esters and their specific metabolites in egg samples by solid-phase extraction with LC-MS/MS

ZHOU Ying^{1,2} ZHU Yu^{2,3} LI Zongrui² XU Senhao² ZHU Xiaohui² CHEN Xichao² XIANG Mingdeng² YU Yunjiang^{2 **}

(1. Jinzhou Medical University, Jinzhou, 121000, China; 2. State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; 3. Xi'an Polytechnic University, School of Environmental and Chemical Engineering, Xi'an, 710048, China)

²⁰²²年1月10日收稿(Received: January 10, 2022).

^{*} 国家重点研发计划项目(2019YFC1803403)和国家自然科学基金(42007347)资助.

Supported by the National Key R&D Program of China (2019YFC1803403) and the National Natural Science Foundation of China (42007347).

^{**} 通信联系人 Corresponding author, Tel: 020-29119807, E-mail: yuyunjiang@scies.org

An effective method was established for the analysis of organophosphorus flame Abstract retardants and their diesters in organisms by liquid-liquid extraction and solid-phase extraction, followed by triple quadrupole liquid chromatography-tandem mass spectrometry (LC-MS/MS) for quantification. The organisms sample were extracted with mixed acetonitrile : Toluene (9:1, V/V) and purified by Florisil-PR cartridges. The phase was loaded onto Z-Sep/C18 tube and Strata X-AW cartridges for extraction and further clean-up, Then the extracts were analyzed by LC-MS/MS. Under the optimized conditions, good linearities for both OPEs(organophosphate esters) and their metabolites (mOPEs) were achieved as the analytes in the corresponding concentration range $(0.2 - 500.0 \text{ ng} \cdot \text{mL}^{-1})$ and the correlation coefficients (R^2) are 0.997 - 0.999. The average recoveries of OPEs and mOPEs in organisms range from 69.9% to 81.3% and 61.2% to 82.5%, with RSDs of 7.9% to 20% and 11% to 24%, respectively. Sixteen OPEs and mOPEs in 12 egg samples were detected synchronically using the method established. The concentration of $\Sigma OPEs$ in egg samples ranged from 1.43 $ng \cdot g^{-1}$ to 5.9 $ng \cdot g^{-1}$, and the concentration of TCPP was the highest (2.13 ng·g⁻¹, median concentration), accounting for 58.8% of total OPEs. All OPEs except TEHP and EHDPP were detected. Σ mOPEs ranged from 2.81 ng·g⁻¹ to 11.8 ng·g⁻¹, and DPHP was the main detected analyte ($3.14 \text{ ng} \cdot \text{g}^{-1}$, median concentration), accounting for 54% of the concentration contribution. Except BCEP and BCPP, all other mOPEs were detected.

Keywords liquid chromatography tandem mass spectrometry, biota sample, organophosphate esters, metabolites, method.

有机磷酸酯(OPEs)具有良好的阻燃作用,增塑和润滑效果,在建材工业、电子设备、食品包装、室内装饰和纺织品中得到了广泛应用.随着多溴联苯醚等溴系阻燃剂逐步禁止使用^[1-3],作为重要替代品的 OPEs,其生产量和使用量显著增长^[4].2006年,OPEs的全球使用量为46.5万吨^[5],2015年达到68万吨,呈以7.9%逐年递增^[6].据估计,中国的 OPEs产量每年将增加15%^[4].OPEs 以物理方式添加于各种材料,而不是化学键结合的形式^[7],随着时间的推移它们易通过挥发和磨损、渗漏而进入环境介质,如水体、土壤、大气及生物体内^[8-13],从而导致人体通过多种途径暴露.OPEs具有潜在生物累积性,长期暴露于人体会对其健康产生不利影响.大量研究证实,OPEs具有甲状腺和内分泌干扰作用^[14-15]、神经毒性^[16]和生殖毒性^[17],并且具有致癌性^[4-5].由于其潜在的毒性作用,以及在环境和生物体内的广泛存在,日益引起人们的关注^[4-5].

目前已有大量的研究报道了 OPEs 在空气、室内灰尘、土壤、水体和沉积物等环境介质中的赋存 情况^[18-20]. 但是针对生物样品而言, 其脂肪含量相对较高, 前处理过程相对复杂, 对于生物体内 OPEs 的研究仍比较有限^[4-5,21-22]. 与此同时, 由于 OPEs 在生物体内能够发生快速的代谢转化^[23-24], 近 年来越来越多的研究开始关注 OPEs 的代谢产物(mOPEs), 并将其作为暴露标志物研究人体对 OPEs 的暴露情况^[25-30]. 然而, Liu 等^[31] 在室内灰尘中同时检出了 OPEs 和 mOPEs, 表明环境介质中同 时存在 OPEs 和 mOPEs. 因此, mOPEs 除源自生物体对 OPEs 的代谢转化外, 也可能来自外源直接摄入. 膳食摄入被认为是人体暴露阻燃剂的重要途径^[32], 此前的研究在北美洲休伦湖银鸥蛋^[33]和广东清远 电子废弃物回收区域鸡蛋中^[34] 均检测到了一定程度的 OPEs. 有机磷酸酯具有神经、生殖毒性及致癌 作用已被广泛报道, 目前对于 OPEs 的研究较多, 而关于代谢产物 mOPEs 的研究较少. 研究表明, 部分 mOPEs 的毒性很可能比其母体化合物更高, 如 Su 等^[35] 采用鸡胚胎细胞实验发现, DPHP(磷酸二苯酯) 对神经系统发育的负面作用比其母体化合物 TPHP(磷酸三苯酯)更强, 这也提示我们需要更加关注 mOPEs 的毒性效应. 由于鸡蛋是一种高脂肪含量的生物样本, 从前检测鸡蛋中 OPEs 的方法在萃取、 纯化和测定过程中存在一定不足, 如萃取和纯化过程复杂, 且少有能同时萃取、纯化和测定鸡蛋中 OPEs 和 mOPEs 的方法. 因此, 建立能同时提取鸡蛋中 OPEs 和 mOPEs 的高效、灵敏、准确的分析方法 对研究 OPEs 和 mOPEs 的生物富集和人体暴露评估都具有十分重要的意义.

本研究建立了基于固相萃取和 LC-MS/MS 同步检测鸡蛋中 16 种 OPEs 和 mOPEs 的分析方法,并 利用建立的方法分析了 12 例鸡蛋中 OPEs 和 mOPEs 的含量水平, 本研究的结果为准确测定高脂肪含 量生物样品中的 OPEs 和 mOPEs 提供了有效的支撑.

Table 1 Chinese name, English full name, abbreviation and CAS number of OPEs and their specific metabolites							
中文全称	英文全称	简称		内标			
Chinese name	English full name	Abbreviation	CAS	Internal standard			
有机磷酸酯(OPEs)							
磷酸三丁酯	Tributyl Phosphate	TBP	126-73-8	d ₂₇ -TBP			
磷酸三(2-氯乙基)酯	Tris(2-Chloroethyl)Phosphate	TCEP	115-96-8	d ₁₂ -TCEP			
磷酸三(2-乙基己基)酯	Tris(2-Ethylhexyl)Phosphate	TEHP	78-42-2	d ₂₇ -TBP			
磷酸三(1,3-二氯-2-丙基)磷酸酯	Tris(1-Dichloro-2-propyl)Phosphate	TDCPP	13674-87-8	d ₁₈ -TCPP			
磷酸三苯酯	Triphenyl Phosphate	TPHP	115-86-6	d ₁₅ -TPHP			
磷酸三(2-丁氧乙基)酯	Tris(2-Butoxyethyl)Phosphate	TBOEP	78-51-3	d ₂₇ -TBOEP			
磷酸三(2-氯丙基)酯	Tris(1-Chloro-2-propyl)Phosphate	ТСРР	13674-84-5	d ₁₈ -TCPP			
有机磷酸酯代谢产物(mOPEs)							
磷酸二正丁酯	Dibutyl Phosphate	DBP	107-66-4	d ₁₀ -BDCIPP			
二-β,β'-氯乙基磷酸	$Di-\beta$, β '-Chloroethylphosphoric Acid	BCEP	3040-56-0	d ₈ -BCEP			
双-(1-氯-2-丙基)磷酸	Bis-(1-chloro-2-propyl)phosphate	BCPP	789440-10-4	d ₁₀ -DPHP			
双(1,3-二氯-2-丙基)磷酸	Bis(1, 3-dichloro-2-propyl) Phosphate	BDCPP	72236-72-7	d ₁₀ -BDCIPP			
磷酸二苯酯	Diphenyl phosphate	DPHP	838-85-7	d ₁₀ -DPHP			
双(2-丁氧基乙基)2-羟基乙基磷酸三酯	Bis(2-butoxyethyl) 2-Hydroxyethyl Phosphate Triester	BBOEHEP	1477494-86-2	d ₄ -BBOEHEP			
双(丁氧乙基)磷酸酯	Bis(butoxyethyl) Phosphate	BBOEP	14260-97-0	d ₈ -BBOEP			
二(2-乙基己基)磷酸酯	Di(2-ethylhexyl) phosphate	BEHP	298-07-7	d ₈ -BBOEP			
双(2-丁氧基乙基)2-(羟基丁氧基)乙基 磷酸三酯	Bis(2-butoxyethyl) 2-(3-Hydroxybutoxy) ethyl Phosphate Triester	OH-TBOEP	1477494-87-3	d ₈ -BBOEP			

表1 有机磷酸酯及其代谢产物的中文全称、英文全称、简称及 CAS

材料与方法(Materials and methods) 1

1.1 仪器与材料

(1)仪器:真空冷冻干燥机(博医康实验仪器,北京),涡旋振荡器(Troemner,美国),离心机(Thermo Fisher Scientific, 美国), 2600TH 超声机, 真空固相萃取装置(Polytech, 北京), Milli-Q 超纯水系统 (Merck, 德国), 氮吹仪(Organomation, 美国), Agilent 1260 液相色谱仪(Agilent, 美国), HPLC-MS/MS 液相色谱串联三重四级杆质谱仪(AB SCIEX 6500,美国), Sunergi[™] Fusion-RP 100A 色谱柱(50 mm× 2.1 mm, 2.5 μm)(菲诺美, 美国).

(2)试剂与材料: Strata Florisil(FR-PR)小柱、Strata X-AW小柱(飞诺美,美国), Supel[™] QuE Z-Sep/C18 纯化管(色谱科,美国)色谱纯乙腈、色谱纯甲苯、色谱纯正己烷、色谱纯三乙胺(TEA)(上海 安谱实验科技,中国),色谱纯甲醇(默克,德国),OPEs化合物标准品TBP、TCEP、TCPP、TDCPP、 TPHP、TBOEP、TEHP(AccuStandard,美国), 氘代同位素标准品 d₂₇-TBOEP、d₁₅-TPHP、d₂₇-TBP、d₁₈-TCPP(CIL(Cambrige Isotope Laboratorie) 美国), d₁₂-TCEP(TRC(Toronto Research Chemcals) 德国)、 OPEs 代谢产物标准品 DBP、BCEP、BCPP、BDCPP、DPHP、BBOEHEP、BBOEP、BEHP、OH-TBOEP(Toronto Research Chemcals, 德国), 氘代同位素标准品 d8-BBOEP、d4-BBOEHEP、d10-DPHP、 d8-BCEP、d10-BDCPP(Toronto Research Chemcals,德国)具体见表 1.

1.2 样品信息

本次研究采用的12枚鸡蛋样品均购自本地农贸市场.采集的鸡蛋样品用干净的铝箔纸包好,置

于 PP 密封袋中运回实验室.鸡蛋清洗后打破,将蛋黄和蛋清置于小烧杯中混匀并编号,随后置于 -20 ℃ 的冰箱中冷冻保存.

1.3 溶液的配制

准确称量 OPEs 标准品,溶解在甲醇中; mOPEs 和内标的标准品,溶解在乙腈中,得到质量浓度为 10 mg·L⁻¹ 的储备液,储存于-20 ℃ 冰箱.将每种内标储备液取 100 µL 于细胞瓶,添加乙腈稀释至 1 mL,得到质量浓度为 1 mg·L⁻¹ 内标混合溶液,储存于-20 ℃ 冰箱.

1.4 样品处理

样品处理参考 Xu 等^[56]的方法并进行优化. 鸡蛋样品经 48 h 冷冻干燥后,充分研磨为均匀粉末. 将 1.5 g 干重样品放入 15 mL 离心管中,加入 20 μL 内标混合液后,用 5 mL 体积比为 9:1 乙腈:甲苯混 合溶剂超声提取 30 min, 4000 r·min⁻¹ 离心 10 min 后取上清液,此步骤重复两次,合并上清液于 15 mL 离心管中.在 40 ℃ 下将提取液氮吹至近干,并将溶剂转换为正己烷,随后以 Florisil-PR 固相萃取柱净 化样品,首先用 6 mL 正己烷淋洗并弃掉,再用 8 mL 甲醇洗脱并收集,将含有目标物的溶液经 Z-Sep/C18 柱除脂后,采用 Strata X-AW 柱进一步净化,用体积比为 5% 三乙胺:乙腈溶液洗脱,氮吹至近 干后,加入 100 μL 体积比为 1:1 超纯水:乙腈溶液定容,使用 HPLC-MS/MS 进行分析.

1.5 仪器检测条件

液相色谱条件: 16 种目标化合物(7 种 OPEs 和 9 种 mOPEs)使用 Sunergi[™] Fusion-RP 100A 色谱柱 (50×2.1 mm, 2.5 μm),在正/负离子模式下同步分析.设置流动相流速为 500 μL·min⁻¹,流动相组成为 0.1% 乙酸的甲醇:水(5:95, *V/V*)溶液(A)和 0.1% 乙酸的甲醇:水(95:5, *V/V*)溶液(B),进样量为 5 μL,柱温设置为 45 ℃.洗脱梯度见表 2.

	Table 2	Gradient elution	i oi moone phase	
时间/min Time	(A)/%	(B)/%	流速/(µL·min ⁻¹) Velocity	
0	99	1	500	
7.5	1	99	500	
11.5	1	99	500	
15.0	99	1	500	

表 2 流动相洗脱梯度 Table 2 Gradient elution of mobile phase

质谱条件: 电喷雾电离源(ESI), 离子源温度 550 ℃; 离子源电离模式为正/负离子源, 其中 7 种 OPEs 以及 BBOEHEP、OH-TBOEP 两种 mOPEs 的质谱检测在正离子模式(ESI+)下进行, 另外 7 种 mOPEs 的质谱检测在负离子模式(ESI-)下进行, 毛细管电压为 4500 V.检测模式均为多反应监测模式 (MRM), 载气为高纯度氮气, 载气温度为 550 ℃; 入口电压-10 V; 碰撞室出口电压-15 V; 离子喷雾电压 为 4500 V.

1.6 分析方法建立

用甲醇稀释 16种目标化合物的标准品储备液,包括7种OPEs(TBP、TCEP、TCPP、TDCPP、TPHP、TBOEP、TEHP)和9种 mOPEs(DBP、BCEP、BCPP、BDCPP、DPHP、BBOEHEP、BBOEP、BEHP、OH-TBOEP),从小到大依次配制10个浓度(0.2、0.5、1.0、5.0、10.0、20.0、50.0、100.0、200.0、500.0 ng·mL⁻¹)的化合物混合溶液.加入1mg·L⁻¹内标混合溶液,最终得到同位素内标均为100 ng·mL⁻¹的不同梯度的混合标准溶液.将同位素标记的OPEs(d27-TBOEP、d15-TPHP、d27-TBP、d18-TCPP、d12-TCEP)和 mOPEs(d8-BBOEP、d4-BBOEHEP、d10-DPHP、d8-BCEP、d10-BDCPP)作为分析物的定量内标.以分析物的质量浓度为横坐标,以分析物的峰面积与其对应的定量内标的峰面积比值作为纵坐标,建立标准曲线.

采用鸡蛋作为基质,制备基质加标样品3个;分别制备空白加标样品3个,空白不加标样品3个 (加标浓度20 ng·g⁻¹).按照1.4节的方法进行前处理,上机检测,计算加标回收率.

2 结果与讨论(Results and discussion)

2.1 质谱鉴定

将 16 种浓度均为 200 ng·mL⁻¹ 的目标化合物以 5 μL·min⁻¹ 的流量注入离子源,结合总离子流和质 谱数据明确目标物的母离子和子离子,并通过响应情况进一步优化去簇电压以及碰撞能. 16 种目标化 合物的离子对及碰撞能见表 3,标准品色谱图见图 1.

	1	Sable 3 ESI-MS/MS Parar	neter		
分析物 Analytes	母离子 Precursor ion(m/z)	子离子 Product ion(m/z)	时间 /min Time	去簇电压 /V DP	碰撞能/V CE
正离子模式					
TBP	267.3	98.7/154.9	9.29	92/90	20/15
TCEP	289. 0	65.1	7.06	78	46
ТСРР	327. 0	99.8/250.9	8,36	33/66	42/13
TDCPP	421.4	147.2/221.1	9.47	123/113	31/31
TPHP	327.4	152.4/215.0	9.03	93/112	45/33
TBOEP	399.2	299.2/199.3	9.13	115/75	19/21
TEHP	435.4	99.2/211.1	12.15	116/116	17/11
BBOEHEP	342.9	243.1/101.1	8.15	75/59	16/21
OH-TBOEP	415.1	199.1/243.1	8.57	82/85	21/23
负离子模式					
DBP	209	153/79	7.6	-70/-70	-20/-45
BCEP	221.1	35	4.53	-39	-24
ВСРР	249.0/250.9	35.1/37.1	6.57	-30/-13	-21/-21
BDCPP	316.8	35.1	7.94	-42	-31
DPHP	249.2/265.1	93.1/96.7	7.05	-87/-97	-36/-38
BBOEP	296.9	182.5	8.3	-76	-46
BEHP	321.1	209.2/79	13.39	-97/-102	-28/-45
2800000 2400000 st 2000000 1600000 1200000	-	DPHP 7.05 DBP 7.61	2		

Fig.1 Ion chromatograms obtained with analyte standards

2.2 前处理优化

参考 Xu^[36]等的研究,对加标鸡蛋样品进行处理.比较了几种不同萃取溶剂的处理效果,分别为乙 腈、体积比 9:1 的甲醇:甲苯、体积比 9:1 的乙腈:甲苯,空白加标回收率如表 4.结果显示体积比为 9:1 的乙腈:甲苯的萃取效果最佳.对于脂肪含量较高的生物样品,有效的除脂过程对于降低基质干扰 效应具有重要的作用,本文通过 d-SPE(分散固相萃取)的方法,采用 Z-Sep 和 DSC-18 两种填料对鸡蛋 样品进行除脂.此外,为了提高 mOPEs 的回收率,本研究选用弱阴离子交换柱 StrataX AW 对鸡蛋样品 进一步净化,减少了基质干扰的同时保证了目标化合物的回收率.

Table	4 Blank standard recovery of a	different extraction solvents(%	
1. 1. 1.	2	萃取溶剂	
分析物		Extraction solvents	
Analytes	乙腈	甲醇:甲苯	乙腈:甲苯
OPEs			
TCEP	65	66	67
ТСРР	90	88	88
TDCPP	48	50	51
TBP	41	48	52
TBOEP	105	111	109
TEHP	31	57	90
TPHP	89	88	90
mOPEs			
DBP	61	10	98
BCEP	88	83	94
BCPP	86	118	50
BDCPP	88	91	94
DPHP	74	80	80
BBOEHEP	73	75	75
BBOEP	110	103	130
BEHP	60	16	88
OH-TBOEP	81	80	82

表 4 不同萃取溶剂空白加标回收率(%)

2.3 标准曲线和定量限

本文采用内标法定量,16种分析物浓度配制成0.2、0.5、1.0、5.0、10.0、20.0、50.0、100.0、200.0、500.0 ng·mL⁻¹的10个梯度,建立标准曲线.上机检测后以目标化合物的峰面积与其对应的定量内标的峰面积 Y 对其质量浓度 X 进行回归分析,各分析物的线性回归方程和相关系数见表5.

表 5 目标化合物的线性回归方程、相关系数及方法定量限

Table 5	Linear regression equations,	correlation coefficients and method	detection limit of quantification for	r analyte
		compounds		

		compounds		
分析物	线性回归方程	相关系数	空白浓度/(ng·g ⁻¹)	方法定量限/(ng·g ⁻¹)
Analytes	Linear regression equations	Correlation coefficient	Blank	MDL
OPEs				
TBP	<i>Y</i> =0.07186 <i>x</i> +0.00179	0.99716	0.044 ± 0.007	0.063
TCEP	<i>Y</i> =0.33848 <i>x</i> +0.00347	0.99928	0.044 ± 0.006	0.060
TCPP	<i>Y</i> =2.01067 <i>x</i> +0.03463	0.99875	0.22 ± 0.04	0.33
TDCPP	<i>Y</i> =0.55785 <i>x</i> +8.20943	0.99761	0.033 ± 0.006	0.051
TPHP	<i>Y</i> =1.00853 <i>x</i> +0.01098	0.99971	nd	0.0040
TBOEP	<i>Y</i> =0.49885 <i>x</i> +8.77055	0.99830	nd	0.045
TEHP	<i>Y</i> =0.04196 <i>x</i> +1.39158	0.99814	nd	0.0040

				续表5
分析物	线性回归方程	相关系数	空白浓度/(ng·g ⁻¹)	方法定量限/(ng·g ⁻¹)
Analytes	Linear regression equations	Correlation coefficient	Blank	MDL
mOPEs				
DBP	<i>Y</i> =34.50089 <i>x</i> +0.02457	0.99871	0.0088 ± 0.003	0.016
BCEP	<i>Y</i> =0.38345 <i>x</i> +0.00182	0.99942	nd	0.0040
BCPP	<i>Y</i> =0.07190 <i>x</i> +9.45927	0.99849	nd.	0.040
BDCPP	<i>Y</i> =1.83710 <i>x</i> +0.00469	0.99837	nd	0.0040
DPHP	<i>Y</i> =0.72931 <i>x</i> +7.46303	0.99945	0.018 ± 0.004	0.028
BBOEHEP	<i>Y</i> =1.70772 <i>x</i> +0.01410	0.99909	0.23 ± 0.03	0.33
BBOEP	<i>Y</i> =0.45782 <i>x</i> +0.01208	0.99659	nd	0.0040
BEHP	<i>Y</i> =1.20436 <i>x</i> +0.00717	0.99931	0.00089 ± 0.0002	0.0015
OH-TBOEP	<i>Y</i> =31.84854 <i>x</i> +0.02318	0.99878	0.041 ± 0.004	0.054

注: Y, 峰面积比值; x, 质量浓度, ng·g⁻¹; nd, 未检出. Note: Y, peak area ratio; x, concentration, ng·g⁻¹; nd, not detected.

计算空白样品的平均浓度加3倍标准差,确定为目标化合物定量限(LOQ).若空白样品中的目标物未检出,10倍信噪比(S/N)(以标准曲线最低浓度点进行计算)为该目标物的LOQ.结果显示,空白样品中检出了TCEP、TCPP、TDCPP、TBP等4种OPEs,DBP、DPHP、BBOEHEP、BEHP、OH-TBOEP等5种mOPEs,目标化合物的空白含量和方法定量限见表5.

2.4 加标回收率

分别在鸡蛋中添加 16 种目标化合物标准品(混合标准品浓度为 100 ng·g⁻¹)和同位素内标制备基 质加标样品和基质不加标样品各 1 组,每组 3 个平行样品,以进行回收率测定.经仪器检测后计算加标 回收率.加标实验结果如表 6 所示,基质加标样品中 OPEs 和 mOPEs 回收率分别在 69.9%—81.3% 和 61.2%—82.5% 之间,平行样相对标准偏差(RSD)分别介于 7.9%—20% 和 11%—24%,表明该前处理 方法和仪器分析条件满足 16 种目标化合物的分析要求.

	Table 6	Recovery rate of substrate			
人上北下州加		基质加标 Spiked substrate			
	Analytes	回收率/%	相对标准偏差/%		
		Recovery rate	RSD		
	TCEP	75.4	19		
	TCPP	69.9	12		
	TDCPP	81.3	17		
OPEs	TBP	75.0	20		
	TBOEP	71.9	17		
	TEHP	78.4	7.9		
	TPHP	78.1	10		
	DBP	71.9	23		
	BCEP	61.4	13		
	BCPP	62.1	15		
	BDCPP	61.8	18		
mOPEs	DPHP	73.1	20		
	BBOEHEP	61.2	17		
	BBOEP	82.5	24		
	BEHP	75.9	16		
	OH-TBOEP	76.9	11		

表 6 样品基质加标回收率

2.5 鸡蛋样品分析

利用本文建立的分析方法对 12 个鸡蛋样品中的 16 种目标化合物进行同步检测,鸡蛋中 7 种 OPEs 的含量和 9 种 mOPEs 的含量如表 7 所示.鸡蛋样品中 OPEs 除 TEHP 外,其他 OPEs 均有检出, TCEP 和 TCPP 的检出率为 100%, TBP 和 TBOEP 的检出率为 75%,而 TDCPP 和 TPHP 的检出率只有 25%. ΣOPEs 的浓度范围为 1.43—5.9 ng·g⁻¹, TCPP 浓度最高,占 OPEs 总量的 58.8%.鸡蛋样品中 mOPEs 除 BCEP 和 BCPP 外,其他 mOPEs 均有检出,DBP、DPHP 和 BEHP 的检出率为 100%, BBOEP 的检出率为 83%, BDCPP 的检出率为 75%,而 OH-TBOEP 和 BBOEHEP 的检出率分别只有 25% 和 8%. ΣmOPEs 的浓度范围为 2.81—11.8 ng·g⁻¹, DPHP 为主要检出单体,浓度贡献占比为 54%. 鸡蛋是中国最常见的食物之一,对于人体鸡蛋摄入的健康风险,我们通过中国成年人的鸡蛋消费量计 算了 OPEs 和 mOPEs 的估计目摄入量(EDIs, ng·g⁻¹ 体重/天). Σ9mOPEs 和 Σ7OPEs 的 EDIs 分别为 0.67 ng·g⁻¹ 和 1.32 ng·g⁻¹ 体重/天.通过食用鸡蛋暴露 OPEs 和 mOPEs 的潜在健康风险较低.

编号				OI	PEs					
No.	TCEP	TCPP	TDCPP	TBP	TBOEP	TEHP	TPHP	$\Sigma_7 OPEs$		
1	0.126	2.14	0.152	0.891	0.134	nd	nd	3.45		
2	0.0972	1.93	nd	0.612	0.123	nd	1.46	4.22		
3	0.208	2.72	nd	0.786	0.126	nd	nd	3.84		
4	0.078	1.66	nd	nd	0.101	nd	nd	1.84		
5	0.139	1.63	nd	0.630	nd	nd	1.54	3.95		
6	0.142	2.90	0.141	1.01	0.104	nd	nd	4.29		
7	0.112	2.16	0.201	0.967	nd	nd	nd	3.45		
8	0.170	2.84	nd	nd	0.108	nd	nd	3.12		
9	0.171	2.81	nd	0.664	0.150	nd	nd	3.79		
10	0.147	2.11	nd	0.734	0.485	nd	2.41	5.90		
11	0.101	1.74	nd	0.447	nd	nd	nd	2.28		
12	0.192	0.988	nd	nd	0.249	nd	nd	1.43		
均值	0.140	2.14	0.165	0.748	0.176	_	1.81	3.46		
中值	0.141	2.13	0.152	0.734	0.126	_	1.54	3.62		
检出率/%	100	100	25	75	75	0	25	_		
编号					mC	OPEs				
No.	DBP	BCEP	BCPP	BDCPP	DPHP	BBOEHEP	BBOEP	BEHP	OH-TBOEP	Σ_9 mOPEs
1	0.0241	nd	nd	1.05	1.13	nd	0.235	1.54	0.0278	4.01
2	0.102	nd	nd	0.369	3.38	0.116	0.0762	1.03	nd	5.08
3	0.137	nd	nd	5.62	3.32	nd	0.171	2.41	nd	11.7
4	0.0411	nd	nd	nd	1.97	nd	0.119	1.98	nd	4.11
5	0.0733	nd	nd	0.726	4.39	nd	0.133	1.47	nd	6.80
6	0.0370	nd	nd	0.0639	2.95	nd	0.272	6.27	nd	9.59
7	0.0291	nd	nd	0.0409	2.17	nd	0.177	0.788	0.0487	3.25
8	0.0586	nd	nd	nd	1.61	nd	nd	1.15	nd	2.81
9	0.0235	nd	nd	0.562	1.63	nd	0.150	0.641	0.0973	3.10
10	0.153	nd	nd	3.21	4.04	nd	0.187	2.34	nd	9.94
11	0.506	nd	nd	0.0486	11.1	nd	nd	0.149	nd	11.8
12	0.148	nd	nd	nd	6.90	nd	0.122	2.86	nd	10.0
平均值	0.111	_	_	1.30	3.72	0.116	0.164	1.89	0.0579	6.85
中值	0.0660	—	—	0.562	3.14	0.116	0.160	1.51	0.0487	5.94
检出率/%	100	0	0	75	100	8.3	83.3	100	25	_

表 7 鸡蛋样品中 OPEs 和 mOPEs 的浓度(ng·g⁻¹)

 $\label{eq:Table 7} \mbox{ Concentration of OPEs and mOPEs in egg samples} (ng \cdot g^{-1})$

注:nd, 未检出; Σ₇OPEs, 7种OPEs的总和. Σ₉mOPEs, 9种OPEs代谢产物的总和.

Note: nd, not detected; Σ_7 OPEs, sum of 7 OPEs. Σ_9 mOPEs, sum of 9 OPEs metabolites.

42 卷

12 个鸡蛋样品中 OPEs 的浓度中值为 3.62 ng·g⁻¹,与 Chen 等^[33] 报道的北美地区银鸥蛋 (6.83—13.61 ng·g⁻¹)中 OPEs 的含量相近,但远低于五大湖地区银鸥蛋((14.8±2.4) ng·g⁻¹)^[37]和白头海雕蛋(4.76—760 ng·g⁻¹)^[38],以及中国西南长江上游地区黑冠夜鹭、池鹭、小白鹭和牛白鹭蛋(48 ng·g⁻¹,中值)^[39]中 OPEs 的含量.鸡蛋中 OPEs 的含量略高于比利时市售鸡蛋(0.39 ng·g⁻¹,中值)^[40],表明野生鸟类由于处在食物链较高位置,食物来源复杂,OPEs 的暴露量很可能远高于人工饲养的家禽,导致产蛋中 OPEs 的含量存在较大差异.目前国内外同步分析鸟蛋中 OPEs 和 mOPEs 的研究十分有限,本研究鸡蛋样品中 mOPEs 的浓度中位数为 5.94 ng·g⁻¹,大幅低于 Stubbings等^[41]报道的北美地区白头海雕蛋的含量(27±3.0) ng·g⁻¹,与 OPEs 的规律类似,可能也与野生鸟类复杂的栖息环境和食物来源等因素有关.

本研究鸡蛋中 mOPEs 的浓度显著高于 OPEs 的浓度(Paired t test, P < 0.01).由于 OPEs 在生物体 内容易发生代谢转化,此前关于 mOPEs 的研究大多将其作为 OPEs 的暴露标志物,但近年来的研究发 现灰尘等环境介质中 OPEs 和 mOPEs 同时存在,表明生物体内的 mOPEs 很可能不是全部来自于对 OPEs 的代谢转化,还可能存在对 mOPEs 的直接暴露.因此,本研究鸡蛋中的 mOPEs 除母鸡对 OPEs 的 代谢作用外,也可能存在母鸡通过饲料、土壤等途径对 mOPEs 的直接摄入.

3 结论(Conclusion)

本研究在整合国内外现有文献报道的基础上,对生物样品中 OPEs 和 mOPEs 的前处理和仪器分析 条件进行优化,建立了能够同时提取、净化和分析高脂肪含量生物样品中 16 种 OPEs 和 mOPEs 的检 测方法.该方法选用体积比为 9:1 的乙腈和甲苯混合溶剂进行提取,采用 d-SPE 除脂,并通过 Strata X-AW 柱进一步净化,最后通过液相色谱串联三重四极杆质谱(LC-MS/MS)进行定量分析,测得的 16 种 目标化合物的回收率范围在 61.2%—82.5% 之间.本研究 12 个鸡蛋样品中均检出了多种 OPEs 和 mOPEs,浓度中值分别为 3.62 ng·g⁻¹和 5.94 ng·g⁻¹, mOPEs 的含量显著高于 OPEs 的含量.本研究的结 果为准确评估高脂肪含量生物样品中 OPEs 和 mOPEs 的含量提供了有效的支撑,同时由于鸡蛋是一 类重要的食物来源,研究结果也表明需要进一步关注通过食物直接摄入的 mOPEs 及其潜在健康风险.

参考文献 (References)

- [1] MARKLUND A, ANDERSSON B, HAGLUND P. Screening of organophosphorus compounds and their distribution in various indoor environments [J]. Chemosphere, 2003, 53(9): 1137-1146.
- [2] STAPLETON H M, KLOSTERHAUS S, KELLER A, et al. Identification of flame retardants in polyurethane foam collected from baby products [J]. Environmental Science & Technology, 2011, 45(12): 5323-5331.
- [3] STAPLETON H M, SHARMA S, GETZINGER G, et al. Novel and high volume use flame retardants in US couches reflective of the 2005 PentaBDE phase out [J]. Environmental Science & Technology, 2012, 46(24): 13432-13439.
- [4] WEI G L, LI D Q, ZHUO M N, et al. Organophosphorus flame retardants and plasticizers: Sources, occurrence, toxicity and human exposure [J]. Environmental Pollution, 2015, 196: 29-46.
- [5] van der VEEN I, de BOER J. Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis [J].
 Chemosphere, 2012, 88(10): 1119-1153.
- [6] ZHANG T, BAI X Y, LU S Y, et al. Urinary metabolites of organophosphate flame retardants in China: Health risk from tris(2chloroethyl) phosphate (TCEP) exposure [J]. Environment International, 2018, 121: 1363-1371.
- [7] 胡晓辉, 仇雁翎, 朱志良, 等. 环境中有机磷酸酯阻燃剂分析方法的研究进展 [J]. 环境化学, 2014, 33(12): 2076-2086. HU X H, QIU Y L, ZHU Z L, et al. Research progress on analytical methods of organophosphate ester flame retardants in the environment [J]. Environmental Chemistry, 2014, 33(12): 2076-2086(in Chinese).
- [8] SUNDKVIST A M, OLOFSSON U, HAGLUND P. Organophosphorus flame retardants and plasticizers in marine and fresh water biota and in human milk [J]. Journal of Environmental Monitoring, 2010, 12(4): 943-951.
- [9] MIHAJLOVIC I, MILORADOV M V, FRIES E. Application of Twisselmann extraction, SPME, and GC-MS to assess input sources for organophosphate esters into soil [J]. Environmental Science & Technology, 2011, 45(6): 2264-2269.
- [10] CASTRO- JIMÉNEZ J, BERROJALBIZ N, PIZARRO M, et al. Organophosphate ester (OPE) flame retardants and plasticizers in the open Mediterranean and Black Seas atmosphere [J]. Environmental Science & Technology, 2014, 48(6): 3203-3209.

- [11] KHAN M U, LI J, ZHANG G, et al. First insight into the levels and distribution of flame retardants in potable water in Pakistan: An underestimated problem with an associated health risk diagnosis [J]. Science of the Total Environment, 2016, 565: 346-359.
- [12] 魏莱,黄清辉,许宜平,等.崇明岛小白鹭鸟卵中有机磷阻燃剂污染特征 [J]. 环境科学学报, 2019, 39(5): 1691-1697.
 WEIL, HUANG Q H, XU Y P, et al. Occurrence of organophosphorus flame retardants in little egret eggs from Chongming Island [J].
 Acta Scientiae Circumstantiae, 2019, 39(5): 1691-1697(in Chinese).
- [13] 张洛红,朱钰,李宗睿,等. 有机磷酸酯污染现状及其生物富集和生物转化研究进展 [J]. 环境化学, 2021, 40(8): 2355-2370.
 ZHANG L H, ZHU Y, LI Z R, et al. Pollution status, bioaccumulation and biotransformation of organophosphate esters: A review [J].
 Environmental Chemistry, 2021, 40(8): 2355-2370(in Chinese).
- [14] ZHANG Q, LU M Y, DONG X W, et al. Potential estrogenic effects of phosphorus-containing flame retardants [J]. Environmental Science & Technology, 2014, 48(12): 6995-7001.
- [15] ZHANG Q, JI C Y, YIN X H, et al. Thyroid hormone-disrupting activity and ecological risk assessment of phosphorus-containing flame retardants by *in vitro*, *in vivo* and in silico approaches [J]. Environmental Pollution (Barking, Essex:1987), 2016, 210: 27-33.
- [16] DISHAW L V, POWERS C M, RYDE I T, et al. Is the PentaBDE replacement, tris (1, 3-dichloro-2-propyl) phosphate (TDCPP), a developmental neurotoxicant?Studies in PC12 cells [J]. Toxicology and Applied Pharmacology, 2011, 256(3): 281-289.
- [17] MEEKER J D, STAPLETON H M. House dust concentrations of organophosphate flame retardants in relation to hormone levels and semen quality parameters [J]. Environmental Health Perspectives, 2010, 118(3): 318-323.
- [18] CEQUIER E, IONAS A C, COVACI A, et al. Occurrence of a broad range of legacy and emerging flame retardants in indoor environments in Norway [J]. Environmental Science & Technology, 2014, 48(12): 6827-6835.
- [19] L IU H H, HU Y J, LUO P, et al. Occurrence of halogenated flame retardants in sediment off an urbanized coastal zone: Association with urbanization and industrialization [J]. Environmental Science & Technology, 2014, 48(15): 8465-8473.
- [20] BRANDSMA S H, LEONARDS P E G, LESLIE H A, et al. Tracing organophosphorus and brominated flame retardants and plasticizers in an estuarine food web [J]. Science of the Total Environment, 2015, 505: 22-31.
- [21] HOU R, LIU C, GAO X Z, et al. Accumulation and distribution of organophosphate flame retardants (PFRs) and their di-alkyl phosphates (DAPs) metabolites in different freshwater fish from locations around Beijing, China [J]. Environmental Pollution, 2017, 229: 548-556.
- [22] POMA G, LIU Y, CUYKX M, et al. Occurrence of organophosphorus flame retardants and plasticizers in wild insects from a former ewaste recycling site in the Guangdong Province, South China [J]. The Science of the Total Environment, 2019, 650: 709-712.
- [23] CEQUIER E, MARCÉ R M, BECHER G, et al. Comparing human exposure to emerging and legacy flame retardants from the indoor environment and diet with concentrations measured in serum [J]. Environment International, 2015, 74: 54-59.
- [24] HOU R, XU Y P, WANG Z J. Review of OPFRs in animals and humans: Absorption, bioaccumulation, metabolism, and internal exposure research [J]. Chemosphere, 2016, 153: 78-90.
- [25] MEEKER J D, COOPER E M, STAPLETON H M, et al. Urinary metabolites of organophosphate flame retardants: Temporal variability and correlations with house dust concentrations [J]. Environmental Health Perspectives, 2013, 121(5): 580-585.
- [26] BUTT C M, CONGLETON J, HOFFMAN K, et al. Metabolites of organophosphate flame retardants and 2-ethylhexyl tetrabromobenzoate in urine from paired mothers and toddlers [J]. Environmental Science & Technology, 2014, 48(17): 10432-10438.
- [27] van den EEDE N, HEFFERNAN A L, AYLWARD L L, et al. Age as a determinant of phosphate flame retardant exposure of the Australian population and identification of novel urinary PFR metabolites [J]. Environment International, 2015, 74: 1-8.
- [28] HE C, ENGLISH K, BADUEL C, et al. Concentrations of organophosphate flame retardants and plasticizers in urine from young children in Queensland, Australia and associations with environmental and behavioural factors [J]. Environmental Research, 2018, 164: 262-270.
- [29] DODSON R E, van den EEDE N, COVACI A, et al. Urinary biomonitoring of phosphate flame retardants: Levels in California adults and recommendations for future studies [J]. Environmental Science & Technology, 2014, 48(23): 13625-13633.
- [30] KIM J W, ISOBE T, MUTO M, et al. Organophosphorus flame retardants (PFRs) in human breast milk from several Asian countries [J]. Chemosphere, 2014, 116: 91-97.
- [31] TAN H L, YANG L, YU Y J, et al. Co-existence of organophosphate di- and tri-esters in house dust from South China and Midwestern United States: Implications for human exposure [J]. Environmental Science & Technology, 2019, 53(9): 4784-4793.
- [32] DOMINGO J L. Health risks of human exposure to chemical contaminants through egg consumption: A review [J]. Food Research International, 2014, 56: 159-165.
- [33] CHEN D, LETCHER R J, CHU S G. Determination of non-halogenated, chlorinated and brominated organophosphate flame retardants in herring gull eggs based on liquid chromatography-tandem quadrupole mass spectrometry [J]. Journal of Chromatography A, 2012, 1220: 169-174.
- [34] ZHENG X B, XU F C, LUO X J, et al. Phosphate flame retardants and novel brominated flame retardants in home-produced eggs from

an e-waste recycling region in China [J]. Chemosphere, 2016, 150: 545-550.

- [35] SU G Y, CRUMP D, LETCHER R J, et al. Rapid *in vitro* metabolism of the flame retardant triphenyl phosphate and effects on cytotoxicity and mRNA expression in chicken embryonic hepatocytes [J]. Environmental Science & Technology, 2014, 48(22): 13511-13519.
- [36] XU F C, GARCÍA-BERMEJO Á, MALARVANNAN G, et al. Multi-contaminant analysis of organophosphate and halogenated flame retardants in food matrices using ultrasonication and vacuum assisted extraction, multi-stage cleanup and gas chromatography-mass spectrometry [J]. Journal of Chromatography A, 2015, 1401: 33-41.
- [37] GREAVES A K, LETCHER R J. Comparative body compartment composition and in ovo transfer of organophosphate flame retardants in North American Great Lakes herring gulls [J]. Environmental Science & Technology, 2014, 48(14): 7942-7950.
- [38] GUO J H, SIMON K, ROMANAK K, et al. Accumulation of flame retardants in paired eggs and plasma of bald eagles [J]. Environmental Pollution, 2018, 237: 499-507.
- [39] HUANG Q H, WEI L, BIGNERT A, et al. Organophosphate flame retardants in heron eggs from Upper Yangtze River Basin, southwest China [J]. Chemosphere, 2019, 236: 124327.
- [40] POMA G, SALES C, BRUYLAND B, et al. Occurrence of organophosphorus flame retardants and plasticizers (PFRs) in Belgian foodstuffs and estimation of the dietary exposure of the adult population [J]. Environmental Science & Technology, 2018, 52(4): 2331-2338.
- [41] STUBBINGS W A, GUO J H, SIMON K, et al. Flame retardant metabolites in addled bald eagle eggs from the great lakes region [J]. Environmental Science & Technology Letters, 2018, 5(6): 354-359.