DOI:10.7524/j.issn.0254-6108.2016.03.2015101303

张翠, 胡学锋, 骆永明.模拟太阳光下水中土霉素的光化学降解[J].环境化学,2016,35(3):430-438 ZHANG Cui, HU Xuefeng, LUO Yongming. Aqueous photodegradation of oxytetracycline under simulated sunlight irradiation[J].Environmental Chemistry,2016,35(3):430-438

模拟太阳光下水中土霉素的光化学降解*

张 翠1,2 胡学锋1** 骆永明1

(1. 中国科学院烟台海岸带研究所,海岸带环境过程与生态修复重点实验室,烟台,264003; 2. 中国科学院大学,北京,100049)

摘 要本文考察了水中重要的可溶性物质对土霉素(OTC)光解效率的影响,评估了直接光解和活性氧(HO·、¹O₂、O₂⁻)对土霉素光解的贡献,鉴定了OTC不同降解路径下的产物,探究了模拟太阳光照射下水中 土霉素的光化学降解机理.结果表明,pH 对土霉素的降解具有显著影响;不同反应条件下,土霉素的降解均符 合准一级动力学;降解过程中,78%的土霉素降解与溶解氧无关,Fe³⁺、HCO₃和腐殖酸的存在有利于土霉素的 光降解,而 NO₃则对降解无显著影响.除此之外,基于自由基捕获实验及高效液相电喷雾质谱联用仪(HPLC-ESI-MS)检测,推导出了土霉素 7 种主要光降解产物的分子结构及 4 条可能的降解途径. 关键词 抗生素,土霉素,光降解,产物.

Aqueous photodegradation of oxytetracycline under simulated sunlight irradiation

ZHANG Cui^{1,2} HU Xuefeng^{1**} LUO Yongming¹

(1. Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; 2. University of Chinese Academy of Sciences, Beijing, 100049, China)

Abstract: Photodegradation of oxytetracycline (OTC) under simulated sunlight irradiation was investigated with attention given to (1) the effects of major solutes in water on OTC photolysis; (2) the contribution of direct photolysis and reactive oxygen species (HO \cdot , ${}^{1}O_{2}$, O_{2}^{-}) to OTC degradation; and 3) the products of OTC photolysis under different photolysis pathways in water. The results showed that OTC photolysis was highly pH-dependent and followed pseudo first-order model kinetics, with about 78% of OTC phototransformation being independent of dissolved oxygen. In addition, enhanced OTC was observed in the presence of Fe³⁺, HCO₃⁻ and HA, whereas the presence of NO₃⁻ showed no effect on OTC photo-degradation. Additionally, four possible photolysis pathways and seven corresponding products were proposed, based on the analysis of radical quenching results and photoproducts detected by high-performance liquid chromatography electrospray ionization mass spectrometry (HPLC-ESI-MS).

Keywords: antibiotic, oxytetracycline, photolysis, photoproducts.

药品和个人护理用品(Pharmaceuticals and personal care products, PPCPs)作为一类新型污染物正日 益受到人们的广泛关注.据欧盟(EU)统计,现在约有 3000 种 PPCPs 被用于医药,如止痛药、抗生素、

²⁰¹⁵年10月13日收稿(Received: October 13, 2015).

^{*}国家自然科学基金(41076040, 41230858)资助.

Supported by the National Natural Science Foundation of China (41076040, 41230858).

^{* *} 通讯联系人,Tel:+86 535 210 9080, E-mail:xfhu@yic.ac.cn

Corresponding author, Tel:+86 535 210 9080, E-mail: xfhu@yic.ac.cn

β受体阻滞剂和镇静剂等^[1].其中抗生素在人类医疗、水产和家禽养殖上的频繁使用,使其不断进入环境中,表现为"持续存在"状态^[2].抗生素生物利用性较低,进入动物体内的抗生素约有 30%—90% 随粪、尿等排泄物排出,已经排入环境中的抗生素代谢物仍具有生物活性,且在一定条件下可以转化为母体化合物形式^[3].

土霉素(Oxytetracycline, OTC)作为一种广谱型抗生素,因其杀菌和抑菌作用而被广泛用于水产养 殖业和畜牧养殖业中^[4].据 Zhang 等调查发现,仅 2013 年中国 OTC 的使用量就高达 1360 吨^[5].目前, OTC 已在多种环境介质中被检测到,澳大利亚城市水中 OTC 含量可达 0.35 μg·L^{-1[6]},河北省抗生素生 产公司污水处理厂出水中浓度可达 20—800 mg·L^{-1[7]},丹麦土壤中 OTC 的范围为 2.5—50 mg·kg^{-1[8]}. OTC 在环境中不断积累,会产生耐土霉素细菌,影响微生物生态系统平衡,从而间接地危害人类安全^[9].

OTC 的基本化学结构如下:

在畜禽粪便和土壤介质中,OTC 降解主要依靠生物降解^[10],而在自然的水生环境,光降解被认为是 抗生素降解最重要线路之一^[11].已有研究结果表明,相较于噁喹酸、氟甲喹和氟苯尼考,土霉素更易发 生水解和光化学降解^[12];在不同 pH 值、温度以及光强度条件下,土霉素可发生不同类型的反应,如差向 异构化、异构化、脱水和氧化^[13],从而产生不同的降解产物,其中 4-差向土霉素(4-Epi-OTC)、α-载脂蛋 白土霉素(α-Apo-OTC)和β-载脂蛋白土霉素(β-Apo-OTC)被认为是 3 种主要的转化/降解产物^[14];此 外,Jiao 等使用发光细菌对降解过程中的毒理变化进行了探究,结果发现,随着光反应的进行,发光细菌 的抑制率增加,说明在 OTC 光解过程中有毒性高于母体的产物生成^[15].

对于 OTC 光化学降解的研究目前主要集中于光催化降解方面,对于自然条件下各因素作用的降解 机理研究较少.本文通过对不同环境因素下 OTC 的降解动力学、活性氧物种和中间降解产物的检测,对 水中 OTC 可能存在的光降解途径进行了研究,从而推测光照条件下 OTC 在水中的光降解机理,为深入 理解 OTC 在自然水体中的光化学转化提供基础数据.

1 实验部分(Experimental section)

1.1 试剂与仪器

试剂:盐酸土霉素(Oxytetracycline hydrochloride,OTC·HCl,纯度>97%,德国),超氧化物歧化酶 (SOD),甲醇和乙腈为 HPLC 级,腐殖酸(HA)、氯化钠、氯化镁、氯化钙、氯化铁、硝酸钠和叠氮化钠 等试剂,购于国药集团化学试剂有限公司,均为 AR 级.

仪器:ACQUITY 超高效液相色谱仪(Waters,美国)配备 C18 反相色谱柱(2.1 mm×50 mm, 1.7 μm); Agilent 1200 液相系统和 Fisher LCQ-Flee 离子阱质谱光谱仪系统(Thermo Fisher Scientific Inc., 美国)联用,配备 sunfire C18 反向色谱柱(250 mm×4.6 mm, 5 μm)(Agilent,美国);紫外可见分光光度 计(Genesys 10S, Thermo,美国).

1.2 实验方法

适量盐酸土霉素溶于超纯水中(18.2 MΩ·cm),配制浓度为 100 mg·L⁻¹的母液.反应液是通过取适 量母液到容量瓶中用超纯水稀释得到.母液和反应液都是现用现配,以防止水解和光降解作用的影响. 反应液使用 0.2 mol·L⁻¹ NaOH 或 0.1 mol·L⁻¹ HCl 溶液调节至所需要的 pH 值.

1.3 光解实验

将配置好的 20 mL 反应液置于石英反应管内进行光化学实验,全程均使用磁子搅拌.根据暗反应实

验结果,24 h内 OTC 在水溶液中的水解作用及生物作用可以忽略不计.实验采用 350 W 氙灯作为光源, 并根据实验设计定时取样,取出的样品直接用于超高效液相色谱分析,以监测 OTC 浓度变化.部分样品 会使用 HPLC-MS/MS 检测,以观察 OTC 降解产物.所有动力学实验均设置 3 次平行,取平均值计算.

1.4 分析测定方法

超高效液相色谱条件:流动相为甲醇/乙腈/0.01 mol·L⁻¹草酸水溶液(10/10/80, V/V),流速为 0.3 mL·min⁻¹,柱温维持在 40 ℃,PDA 检测器的检测波长为 355 nm.

HPLC-MS 检测条件:注射量是 10 μL, 仪器的扫描范围为 m/z 50—1000. 流动相采用的是 A (0.1% 甲酸水溶液)和 B(0.1%甲酸甲醇溶液) 混合流动相, 梯度见表 1.

	Table 1 III	LC-MS enfoliatographic (conditions
t∕min	A/%	B/%	流速 Flow rate/(mL·min ⁻¹)
0.00	80	20	0.8
4.00	80	20	0.8
5.00	55	45	0.8
15.00	40	60	0.8
20.00	40	60	0.8
25.00	20	80	0.8
30.00	20	80	0.8
33.00	80	20	0.8
43.00	80	20	0.8

表1 HPLC-MS 色谱条件 Table 1 HPLC-MS chromatographic conditions

二级质谱条件:正离子串联质谱模式,喷雾电压为5 kV,以 N₂作为鞘气,鞘气压 30 arb,离子传输管 温度 300 ℃,碰撞能量为 35 eV.

2 结果与讨论 (Results and discussion)

2.1 土霉素初始浓度的影响

为探究 OTC 初始浓度对降解速率的影响,特将 OTC 的初始浓度范围设为 5—60 mg·L⁻¹.分别对不同初始浓度的 OTC 以 ln(*C_t*/*C*₀)对时间 *t* 作图(*C*₀和 *C_t*分别代表 0 h 和 *t* 时 OTC 的浓度),可以得到一条直线,且校正决定系数 *R*²均大于 0.98,可见在模拟太阳光照射下 OTC 的光降解遵循准一级反应动力学.由表 2 可以看出,随着初始浓度的提高光降解速率常数降低,且 *k* 值呈现良好的线性关系(*k* = -0.0014 *C*_{orc} + 0.1089).这是有机化合物光化学降解过程中一个普遍的现象,造成这种现象的原因是在相同光源照射时,光子的数量是基本恒定的,造成高浓度下单位分子所得到的光子量减少;除此之外,反应到一定阶段后,浓度高的溶液反应产生的光解产物也会增多,这些反应产物可以吸收光子和 OTC 形成竞争吸收,也可以消耗活性物种使活性物种和 OTC 的碰撞几率降低,从而导致光降解效率降低^[16].

Table 2	Kinetics of OTC photolysis at	different initial concentrations u	inder simulated sola	r irradiation
OTC 浓度	动力学方程 Kinetic equation	速率常数	半衰期	校正决定系数
OTC concentration/		Rate constant	Halt-life	Adj. R-Square
$(mg \cdot L^{-1})$		k/h^{-1}	$t_{1/2}/h$	R^2
5	$\ln (C/C_0) = -0.1032t$	0.1032 ± 0.0011	6.71	0.9993
10	$\ln (C/C_0) = -0.0939t$	0.0939 ± 0.0014	7.39	0.9988
20	$\ln (C/C_0) = -0.0818t$	0.0818 ± 0.0028	8.47	0.9930
30	$\ln (C/C_0) = -0.0692t$	0.0692 ± 0.0036	10.01	0.9840
40	$\ln (C/C_0) = -0.0580t$	0.0580 ± 0.0032	11.95	0.9822
50	$\ln (C/C_0) = -0.0358t$	0.0358 ± 0.0010	19.38	0.9956
60	$\ln (C/C_0) = -0.0308t$	0.0308 ± 0.0010	22.53	0.9934

表2 模拟太阳光下不同 OTC 初始浓度光解动力学(pH=8.0)

2.2 水环境因素对 OTC 的光化学降解的影响

2.2.1 pH影响

如图 1 所示,随着 pH 值的增加,OTC 降解速率加快,且 *k* 值在 pH = 2.0 到 pH = 6.0 之间变化较小, 但是当 pH>6.0 时,*k* 值迅速从 0.0186 h⁻¹升高至 0.2892 h⁻¹.OTC 存在 3 个电离平衡(pK_a值分别为 3.22、 7.46 和 8.94)和 4 种质子化/去质子化形态(H₃OTC⁺、H₂OTC、HOTC⁻和 OTC²⁻)^[17].在 pH<7.46 时,OTC 主要以质子化形态存在,而在 pH>7.46 时,OTC 的去质子化形态比例随着 pH 值的升高而增加.去质子 化可以增加 OTC 的电子密度,有利于活性氧物种的亲电攻击,从而促进 OTC 降解^[15].除此之外,图 2 显 示,随着 pH 值的增加 OTC 的吸收光谱存在明显的红移现象,与模拟太阳光的光谱存在更多的重叠,加 快 OTC 的降解速率.自然水环境中 pH 通常在 pK_{a2}± 1 左右^[18],此时 OTC 的主要存在形态为 HOTC⁻和 OTC²⁻.因此,OTC 的存在形态是初步预测 OTC 光降解速率的一个重要参数.相同的 pH 效应已在其他四 环素类抗生素的光降解过程中被观察到^[19].

图 1 不同 pH 下 4 种形态 OTC 的分布情况(左)及光解动力学(右)(*C*_{0(OTC)} = 50 mg·L⁻¹) **Fig.1** Different ionization equilibriums and its kinetics under different pH

图 2 不同 pH下 OTC 的紫外可见吸收光谱(*C*_{0(OTC)} = 50 mg·L⁻¹) **Fig.2** UV-Vis Absorbance spectra of OTC at different pH

2.2.2 离子强度的影响

在 OTC 初始浓度为 50 mg·L⁻¹的条件下,采用不同浓度 NaCl 探究离子强度对 OTC 光降解的影响, 结果见表 3.从表 3 可以看出,不同离子强度下 OTC 的光降解动力学很好地符合准一级反应动力学方 程,且随着离子强度的增加,OTC 的降解速率加快.这是因为溶剂性质可以通过控制扩散速率和建立溶 剂笼来影响电子转移速率^[20].高离子强度可以降低溶剂笼的半径,使得反应物之间发生更多的有效碰 撞,从而加快降解速率.因此,在高 NaCl 浓度的水中,OTC 的光降解具有更短的半衰期.

Table 3	Pseudo-first order rate const	ant (k) and half-life $(t_{1/2})$ at	different NaCl conc	entrations
离子强度	动力学方程 Kinetic equation	速率常数	半衰期	校正决定系数
Ionic strength/		Rate constant	Half-life	Adj. R-Square
$(\operatorname{mol} \cdot L^{-1})$		k/h^{-1}	$t_{1/2}/h$	R^2
0	$\ln (C/C_0) = -0.0358t$	0.0358 ± 0.0010	19.38	0.9956
0.001	$\ln (C/C_0) = -0.0391t$	0.0391 ± 0.0015	17.71	0.9908
0.01	$\ln (C/C_0) = -0.0441t$	0.0441 ± 0.0018	15.73	0.9907
0.1	$\ln (C/C_0) = -0.0497t$	0.0497 ± 0.0022	13.95	0.9879
0.6	$\ln (C/C_0) = -0.0515t$	0.0515 ± 0.0010	13.45	0.9977

表 3 不同离子强度下 OTC 光降解的速率常数和半衰期(pH=8.0, C_{0(OTC)}= 50 mg·L⁻¹)

2.2.3 其它可溶性物质的影响

Fe³⁺、NO₃和腐殖酸(HA),是广泛存在于水环境中的光活性物种,它们可以吸收光辐射转化为激发态,产生活性氧物种(如羟基自由基(HO・),超氧自由基(O₂⁻⁻)和单线态氧(¹O₂))及其他非活性氧物种,从而引发有机污染物的间接光解^[21].图3(a)表明,Fe³⁺的加入对 OTC 光解有轻微的促进作用,而NO₃ 对 OTC 的光化学降解无显著影响.原因可能是因为实验用 NO₃ 浓度较低(0.1 mmol·L⁻¹),光吸收弱(ε<10 (mol·L⁻¹)⁻¹·cm⁻¹),HO・量子产率低(Φ=0.009)^[22].图3(b)显示的是不同浓度 HA 对 OTC 光降解速率的影响.与不添加 HA 的反应相比,添加 2 mg·L⁻¹ HA 时,OTC 的光降解率显著增加(~24%);随着 HA 浓度的升高,OTC 的降解速率常数有所降低.但总体上来说,HA 的添加对 OTC 的光化学降解具有明显的促进作用.这是因为在低浓度时,HA 可以吸收光子转化为激发态并产生活性氧物种,促进目标物质的降解;而随着 HA 浓度的增加,HA 会捕获活性氧物种,且光屏蔽作用也会增加,因此促进作用减弱.

广泛存在于水体中的 HCO₃可以捕获 HO ·,从而对有机物的降解产生抑制作用.然而,在本研究中, 添加 HCO₃的反应的速率常数(*k*=0.2416±0.0072)是对照组(*k*=0.0358±0.0010)的 7 倍(图 3(a)).前面 研究已经指出 pH 对 OTC 的降解具有显著影响,因此 HCO₃对光降解的促进主要归结为其对反应体系的 缓冲作用.

Fig.3 OTC photolysis (a) in the absence and presence of 0.1 mmol·L⁻¹ NO₃⁻, 5 μ mol·L⁻¹ Fe³⁺ and 8 mmol·L⁻¹ HCO₃⁻ and (b) at different HA concentrations

2.3 溶解氧及活性氧对 OTC 降解的影响

为了探究溶解氧在 OTC 光降解过程中的作用,整个反应过程中持续向光反应管中通入高纯 O_2 或 N_2 以保证整个反应在 O_2 或 N_2 氛围下进行.从表 4 可以看出,在 N_2 环境下 OTC 的降解速率大幅减少.比 较 N_2 环境下(k=0.0280±0.0007 h⁻¹)与空气中(k=0.0358±0.0010 h⁻¹)的降解速率常数可以推断出^[21], 约 78% OTC 发生直接光解,表明在 pH=8.0 时,OTC 的光降解主要为直接光解反应.此外,相比于空气氛围下,OTC 在 O_2 氛围下的降解速率常数增加了约 180%,明显的差异表明氧分子在 OTC 的光化学转

化过程中具有重要作用.

为了进一步探究 OTC 光降解机理,光解过程中有针对性地添加了活性氧捕获剂.如表 4 所示,加入 甲醇 (HO· 淬灭剂) 和超氧化物歧化酶 (SOD, O₂⁻猝灭剂) 后,OTC 的降解率分别降低了 8%和 4%; 添加 NaN₃(¹O₂捕获剂) 对 OTC 的降解速率影响不大,仅约 3%.这些结果表明,在模拟太阳光下水中 OTC 的光降解是直接光解(78%)和活性氧物种(HO·、O₂⁻和¹O₂)导致的间接光解的综合作用.

	Table 4 OTC photodegradation	4 OTC photodegradation efficiency with different gas and ROS scavenger		
试剂	反应浓度	作用	速率常数 k	
Reagents	Concentration	Function	Rate constant/h ⁻¹	
空气	0	对照	0.0358 ± 0.0010	
N_2	持续通气	除氧环境	0.0280 ± 0.0007	
O_2	持续通气	富氧环境	0.0988 ± 0.0009	
甲醇	$0.1 \text{ mol} \cdot \text{L}^{-1}$	捕获 HO・	0.0328 ± 0.0006	
SOD	初始为 600 U,每 0.5 h 添加 300 U	捕获 O2-	0.0344 ± 0.0013	
NaN ₃	8 mmol·L ⁻¹	淬灭 ¹ O ₂ (主要) + HO・	0.0348 ± 0.0035	

表 4 不同气氛及淬灭剂添加情况下 OTC 的光降解速率常数变化($C_{0(OTC)}$ = 50 mg·L⁻¹, pH=8.0)

2.4 OTC 降解产物及路径

总有机碳(TOC)结果显示,经过6h的光照射,OTC的总有机碳去除率仅为14.7%(图4).这表明, 光解没有导致OTC的完全矿化,可能是由于OTC化学结构的稳定性.为了更好地探究OTC的光降解机 理,使用LC-ESI(+)-MS/MS对降解产物结构进行了分析.

Fig.4 TOC evolution during OTC photolysis under simulated light irradiation condition and in dark condition

通过质谱分析,确定了7个主要产物,其m/z分别为433、447、461a、475a、475b、477a、477b,7种主 产物生成量随时间的变化见图5.因产物缺乏标准品对照,不能对其进行定量分析,因此采用产物的峰面 积作为生成量参照.本研究探明了4条降解路径,分别为烯醇-酮互变、脱甲基、羟基化及光致加醛氧化 (图6).产物2(m/z447)是OTC的脱甲基产物,这主要是因为N—C键具有较低的键能^[23],容易断裂. 从图5中可以看出产物2随光照时间的增加峰面积出现升高,但在产物1(m/z433)出现后,峰面积持 续降低,结合两者分子量上的差异,说明产物1是产物2进一步脱甲基的产物.产物3(m/z461a)被认为 是OTC的烯醇-酮互变异构,主要有以下原因:(1)与OTC有相同的m/z;(2)在N2气氛和O2氛围下均 可以生成;3)MS/MS结果发现具有[M+H-NH₃]⁺和[M+H-NH₃-H₂O]⁺子离子峰,而OTC的子离子峰 为[M+H-H₂O]⁺和[M+H-H₂O-NH₃]⁺.烯醇-酮互变异构可能发生在'环A'(C3)或'环B'(C12). MS/MS结果表明酮-烯醇互变异构应该发生在'环B',因为'环A'不利于[M+H-NH₃]⁺子离子的生成. 产物6(m/z477a)和产物7(m/z477b)的荷质比比OTC高16,这可能是OTC活性部位加—OH的结果. 基于共轭结构的稳定性,加—OH的可能位置为OTC的酚醛二酮部分以及三羰基部分^[24].对于产物6, 加—OH的位置为OTC 酚羟基基团的邻位(C9)或/和对位(C7),形成邻苯二酚和间苯二酚结构;产物6 可以经过进一步氧化形成具有醌结构的产物 4(m/z 475a).OTC 的 C1—C3 位是羟基化的另一个可能的 位点,因为此处存在两个吸电子基团,更利于活性氧的进攻,从而产生产物7(m/z 477b).同时,观察到另 外一种 m/z 475b(产物5)产物,MS/MS 谱图表明,产物5有3个主要片段(-17、-35和-46 m/z),分别 对应[M+H-NH₃]⁺、[M+H-NH₃-H₂O]⁺以及[M+H-NH₃-CHO]⁺,这表明光解过程中有醛基生成.Chen 等^[25]认为此产物是¹O₂将二甲基胺上的一个甲基氧化为醛基的结果.结合自由基捕获实验结果,在添加 NaN₃的反应中,产物5的产率大幅减少(图7).随后采用向反应液中添加孟加拉红(RB),在λ >420 nm 光照下敏化生成¹O₂的方法,进一步明确产物5的产生路径.正如所料,在添加 RB 的反应液中,产物5的 产率升高了约 10 倍(图7),从而验证了产物5是¹O₂氧化的结果.

图 6 模拟太阳光条件下 OTC 的降解产物及可能的路径(*C*_{0(OTC)} = 50 mg·L⁻¹, pH=8.0) **Fig.6** Degradation products and the proposed pathways of OTC photolysis under simulated sunlight

图 7 产物 m/z 475b 的生成量在不同反应条件下的变化(*C*_{0(OTC)} = 50 mg·L⁻¹, pH=8.0) **Fig.7** Product m/z 475b from OTC samples collected at different condition

3 结论(Conclusion)

(1)模拟太阳光作用下,添加不同影响因素的 OTC 光化学降解均符合准一级动力学模型.

(2)高 pH、高离子强度及 Fe³⁺、HCO₃和 HA 的存在会在不同程度上对 OTC 的降解产生促进作用, 而 NO₃对光降解几乎没有影响.

(3) OTC 的光降解是其直接光解和活性氧物种(HO・、O₂⁻⁻和¹O₂) 进攻引起的间接光解共同作用的 结果.

(4)使用 LC-ESI(+)-MS/MS 检测到了 7 种降解产物,并推测了其可能的结构;提出了水中 OTC 的可能降解途径,主要为烯醇-酮互变、脱甲基、羟基化及光致加醛氧化.

参考文献(References)

- TERNES T A, Joss A, SIEGRIST H. Peer reviewed: Scrutinizing pharmaceuticals and personal care products in wastewater treatment [J]. Environmental Science & Technology, 2004, 38(20): 392A-399A.
- [2] 葛林科,任红蕾,鲁建江,等. 我国环境中新兴污染物抗生素及其抗性基因的分布特征[J]. 环境化学,2015,34(5):875-883
 GELK, RENHL, LUJJ, et al. Occurrence of antibiotics and corresponding resitance genes in the environment of China[J].
 Environmental Chemistry, 2015, 34(5): 875-883(in Chinese).
- [3] SARMAH A K, MEYER M T, BOXALL A B A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment[J]. Chemosphere, 2006, 65(5): 725-759.
- [4] 李圆杏,黄宏,刘臻,等. 模拟日光照射下三种抗生素的光降解行为[J]. 环境化学,2013,32(8): 1513-1517.
 LIYX, HUANG H, LIUZ, et al. Photodegradation behavior of three antibiotics with solar simulator[J]. Environmental Chemistry, 2013, 32(8): 1513-1517(in Chinese).
- [5] ZHANG Q, YING G, PAN C, et al. A comprehensive evaluation of antibiotics emission and fate in the river basins of china: Source analysis, multimedia modelling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11): 6772-6782.
- [6] YAN C, YANG Y, ZHOU J, et al. Antibiotics in the surface water of the yangtze estuary: Occurrence, distribution and risk assessment [J]. Environmental Pollution, 2013, 175: 22-29.
- [7] LI K, YEDILER A, YANG M, et al. Ozonation of oxytetracycline and toxicological assessment of its oxidation by-products [J]. Chemosphere, 2008, 72(3): 473-478.
- [8] KONG W D, ZHU Y G, LIANG Y C, et al. Uptake of oxytetracycline and its phytotoxicity to Alfalfa (*Medicago Sativa* L.) [J]. Environmental Pollution, 2007, 147(1): 187-193.
- [9] ELIA A C, CICCOTELLI V, PACINI N, et al. Transferability of oxytetracycline (OTC) from feed to carp muscle and evaluation of the antibiotic effects on antioxidant systems in liver and kidney[J]. Fish Physiology and Biochemistry, 2014, 40(4): 1055-1068.
- [10] WANG Q, YATES S R. Laboratory study of oxytetracycline degradation kinetics in animal manure and soil[J]. Journal of agricultural and Food Chemistry, 2008, 56(5): 1683-1688.
- [11] STURINI M, SPELTINI A, MARASCHI F, et al. Photodegradation of fluoroquinolones in surface water and antimicrobial activity of the photoproducts[J]. Water Research, 2012, 46(17): 5575-5582.

- [12] POULIQUEN H, DELÉPÉE R, LARHANTEC-VERDIER M, et al. Comparative hydrolysis and photolysis of four antibacterial agents (oxytetracycline oxolinic acid, flumequine and florfenicol) in deionised water, freshwater and seawater under abiotic conditions [J]. Aquaculture, 2007, 262(1): 23-28.
- [13] TJØRNELUND J, HONORÉHANSEN S. Validation of a simple method for the determination of oxytetracycline in ointment by non-aqueous capillary electrophoresis[J]. Journal of Pharmaceutical and Biomedical Analysis, 1997, 15(8): 1077-1082.
- [14] XUAN R, ARISI L, WANG Q, et al. Hydrolysis and photolysis of oxytetracycline in aqueous solution [J]. Journal of Environmental Science and Health Part B, 2009, 45(1): 73-81.
- [15] JIAO S, ZHENG S, YIN D, et al. Aqueous oxytetracycline degradation and the toxicity change of degradation compounds in photoirradiation process[J]. Journal of Environmental Sciences, 2008, 20(7): 806-813.
- [16] 何占伟.环丙沙星在水溶液中的光化学降解研究[D].新乡:河南师范大学硕士学位论文,2011.
 HE Z W. Study on the photodegradation of ciprofloxacin in water[D]. Xinxiang: Henan Normal University (Master Thesis), 2011(in Chinese).
- [17] PEREIRA JHOS, REIS AC, QUEIRÓS D, et al. Insights into solar TiO₂-assisted photocatalytic oxidation of two antibiotics employed in aquatic animal production, oxolinic acid and oxytetracycline[J]. Science of the Total Environment, 2013, 463-464: 274-283.
- [18] CHEN Y, HU C, QU J H, et al. Photodegradation of tetracycline and formation of reactive oxygen species in aqueous tetracycline solution under simulated sunlight irradiation [J]. Journal of Photochemistry and Photobiology a-Chemistry, 2008, 197(1): 81-87.
- [19] CHEN Y, LI H, WANG Z, et al. Photolysis of chlortetracycline in aqueous solution: Kinetics, toxicity and products [J]. Journal of Environmental Sciences, 2012, 24(2): 254-260.
- [20] CLARK C D, HOFFMAN M Z. Effect of solution medium on the rate constants of excited-state electron-transfer quenching reactions of ruthenium (II)-diimine photosensitizers[J]. Coordination Chemistry Reviews, 1997, 159: 359-373.
- [21] CHOWDHURY R R, CHARPENTIER P A, RAY M B. Photodegradation of 17β-estradiol in aquatic solution under solar irradiation: Kinetics and influencing water parameters[J]. Journal of Photochemistry and Photobiology a-Chemistry, 2011, 219(1): 67-75.
- [22] MACK J, BOLTON J R. Photochemistry of nitrite and nitrate in aqueous solution: A review [J]. Journal of Photochemistry and Photobiology A: Chemistry, 1999, 128(1/3): 1-13.
- [23] DELÉPÉE R, MAUME D, LE BIZEC B, et al. Preliminary assays to elucidate the structure of oxytetracycline's degradation products in sediments: Determination of natural tetracyclines by high-performance liquid chromatography-fast atom bombardment mass spectrometry[J]. Journal of Chromatography B: Biomedical Sciences and Applications, 2000, 748(2): 369-381.
- [24] CHEN W, HUANG C. Transformation kinetics and pathways of tetracycline antibiotics with manganese oxide[J]. Environmental Pollution, 2011, 159(5): 1092-1100.
- [25] CHEN Y, LI H, WANG Z, et al. Photoproducts of tetracycline and oxytetracycline involving self-sensitized oxidation in aqueous solutions: Effects of Ca²⁺ and Mg²⁺[J]. Journal of Environmental Sciences-China, 2011, 23(10): 1634-1639.