DOI:10.7524/j.issn.0254-6108.2013.08.014

锐钛 $\overline{001}$ 面 TiO, 纳米片对 NO, 的光催化氧化性能*

林春敬 胡 芸** 韦朝海

(华南理工大学环境与能源学院,工业聚集区污染控制与生态修复教育部重点实验室,广州,510006)

摘 要 以钛酸丁酯为前驱物,HF为形貌控制剂,采用水热法合成{001}面 TiO₂光催化材料.通过 X 射线衍射、紫外\可见光吸收光谱、扫描电镜及透射电镜等手段对样品形貌及结构进行表征,并在紫外光下考察其对NO_x的光催化氧化活性.结果表明,{001}面 TiO₂具有良好的锐钛矿晶型,为{001}面暴露率约 50%的纳米级片状结构,在紫外波段具有强烈的光吸收.经过碱液洗涤去除表面 F 离子后的{001}面 TiO₂与{101}面 TiO₂及 P25 相比,其对 NO_x去除效果显著.在催化反应达到平衡后,其 NO 转化率为{101}面 TiO₂的 2 倍及 P25 的 3 倍.并且 NO 去除量增加的同时 NO₂的相对生成量却减少,导致光催化反应进行得更彻底. **关键词** {001}面, TiO₂纳米片,光催化氧化, NO_x.

氮氧化物(NO_x)作为大气主要污染物之一,不仅会引起酸雨、臭氧层空洞、光化学烟雾以及城市灰 霾等一系列环境问题,而且危害人体健康,因此对 NO_x的控制显得尤为重要.光催化去除 NO_x作为一种 颇具前景的环境友好型技术,受到研究者的广泛关注^[1-3]. TiO₂以其安全无毒、化学性质稳定、能效高等 优点成为光催化剂研究的热点.如朱孝强^[4]等人通过 ZrO₂对 TiO₂的掺杂改性,并对 NO_x光催化处理.目 前大多数锐钛 TiO₂为热稳定性能较好的 { 101 } 面 TiO₂^[5](含量大于 94%),但 TiO₂中 { 001 } 面相较于 { 101 } 面具有更高的活性.然而 { 001 } 面锐钛矿 TiO₂的表面能平均为 0.90 J·m⁻²,远大于 { 101 } 面的 0.44 J·m^{-2[6-7]},因此在合成过程中 { 001 } 面极不易形成.Yang^[8]等利用 HF 作为形貌控制剂,合成了 { 001 } 面暴露率为 47% 的微米级单晶锐钛矿 TiO₂,为深入研究 { 001 } 面的物化性质提供了可能.Han^[9] 等合成了锐钛矿 { 001 } 面 TiO₂,在光催化降解甲基橙反应中, { 001 } 面暴露的纳米单晶片光催化活性比 { 101 } 面暴露的锐钛矿相更高.Liu^[10]等利用水热法合成纳米级锐钛矿相 { 001 } 面 TiO₂.目前对纳米 { 001 } 面 TiO₂材料的应用研究集中在光催化降解污染物、光催化制氢和燃料敏化太阳能电池等领 域^[11-13],主要应用于液相环境中,鲜有报道其应用于气相环境中.特别是其光催化氧化 NO_x的研究几乎 未有报道.因此,研究 { 001 } 面 TiO,纳米材料光催化氧化 NO_x具有重要意义.

本研究采用钛酸丁酯为前驱物,HF为形貌控制剂,采用水热法合成锐钛矿{001}面TiO₂纳米材料. 通过X射线衍射光谱(XRD)、紫外-可见光吸收光谱(UV-vis)、扫描电镜(SEM)及透射电镜(TEM)对其 形貌及光物理化学性能进行表征,并考察其对NO_x的光催化氧化活性.

1 实验部分

1.1 催化剂的制备

锐钛矿{001}面 TiO₂制备方法:取 20 mL 钛酸丁酯置于高压反应釜中,向反应釜中加入一定量的 HF,混合均匀后,于 200 ℃下高压反应 24 h.反应完毕后冷却至室温,用无水乙醇、蒸馏水洗涤数次, 100 ℃干燥 4 h,研磨成粉状,所得白色粉末即为锐钛矿{001}面 TiO₂纳米材料,记为{001}TiO₂.所得材 料经过 0.1 mol·L⁻¹ NaOH 溶液洗涤处理后记为{001}TiO₂-NaOH.

²⁰¹³年2月18日收稿.

^{*}国家自然科学基金项目(21277051,20807015);广州市科技计划(12C62081602);华南理工大学中央高校基本科研业务费专项资金 (2012ZZ0049)资助.

^{**}通讯联系人, Tel:020-39380573; E-mail: huyun@scut.edu.cn

锐钛矿 {101} 面 TiO₂制备方法:上述操作过程中用 H₂O 替代 HF,其余方法同上,制得白色粉末后于 马弗炉中 500 ℃下氧气气氛下煅烧 3 h,即得锐钛矿 {101} TiO₂.

1.2 催化剂的表征

XRD 测试在德国 Bruker AXS/D8 衍射仪上进行,采用 CuKα($\lambda = 0.15406 \text{ nm}$),管电压 40 kV,管电 流 40 mA,2 θ 扫描范围为 10°—80°(步长 0.02°).可根据 Scherrer 公式计算催化剂的平均粒径 *D*,*D* = *K*₁ $\lambda/(\beta_{1/2} \cdot \cos\theta)$,其中 *K*₁为晶体的形状因子,为 0.89, λ 为 X 射线的波长,为 0.15418 nm, $\beta_{1/2}$ 为半峰宽 (弧度), θ 为衍射角.

SEM 采用德国 Carl Zeiss EVO LS10 型扫描电子显微镜测得,用于观察催化剂的微观形貌,相关参数:分辨率为1.0 μm (15 kV),放大倍数为10—500000,加速电压为0.5—30 kV. TEM 采用日本 JEM-1010 型透射电子显微镜测得.

UV-vis 分析在日本岛津 UV2550PC 型紫外可见分光光度计上进行,以光谱纯硫酸钡作为参比,扫描范围 220—800 nm.

1.3 光催化氧化 NO_x活性评价

光催化氧化 NO_x实验装置如图 1 所示. 通过 NO、N₂和干洁空气混合来调节进气 NO_x浓度,利用鼓水 泡的方式来调节气流相对湿度为 70%,进气 NO 浓度控制在 40—45 mg·L⁻¹. 反应器采用石英玻璃制 作,体积为 4.5 mL,进气流速控制在 200 mL·min⁻¹. 催化剂用量为 20 mg,均匀分布在反应器底部. 光源 采用高压汞灯(上海亚明 125 W),光强控制为 1.6 mW·cm⁻². 进出口气体采用 NO 分析仪(GXH-1050E, 北京均方)和 NO₂分析仪(GXH-1050E,北京均方)进行在线监测.

图1 光催化氧化 NO,实验装置图

Fig. 1 The experimental setup of photocatalytic oxidation of NO_x

催化剂的催化性能以稳定状态下的 NO 转化率及 NO 的去除量、NO₂的生成量和 NO_x的总去除量来 评价. 光催化氧化反应的稳定状态为出口 NO_x的浓度变化小于 5% 的状态,即为光催化反应 60 min 以 后. 计算公式如下式:

NO 转化率(%) = $\frac{\text{NO}_{\text{in}} - \text{NO}_{\text{out}}}{\text{NO}_{\text{in}}} \times 100\%$ NO 去除量 = $\int (\frac{f}{22.4}) \times ([\text{NO}_{\text{in}}] - [\text{NO}_{\text{out}}]) dt$ NO₂生成量 = $\int (\frac{f}{22.4}) \times [\text{NO}_2] dt$

 NO_x 总去除量 = NO 去除量 - NO₂ 生成量

其中,NO_{in}和 NO_{out}分别指反应器进出口 NO 浓度,NO₂指反应器出口中 NO₂浓度,f 为转换为标准状态的 气体流量.

2 结果与讨论

2.1 催化剂的 XRD 分析

图 2 为{001}TiO₂、{001}TiO₂-NaOH、{101}TiO₂以及商用 P25 TiO₂(Degussa Co. Ltd, Germany)的 XRD 谱图. 由图 2 可以看出,25.4°、37.7°以 48°处衍射峰分别对应 TiO₂锐钛矿相{101}面、{004}面以及 {200}面^[14],可以看出 4 种样品在此处均有明显衍射峰,说明四者均有良好的锐钛矿晶型.{001}TiO₂、{001}TiO₂-NaOH 和{101}TiO₂均无金红石相的特征峰,而 P25 中则有明显的金红石相特征峰,表明合成 材料均为锐钛矿相型,而商用 P25 样品则由锐钛矿相与金红石相组成.{001}TiO₂及{001}TiO₂-NaOH 与 {101}TiO₂相比,有着显著的{004}衍射峰宽,表明其晶相沿{001}面方向生长规模较大,{200}面衍射峰 峰宽更窄且强度更大,这些结果表明,合成的锐钛矿{001}面 TiO₂具有各向异性的片状结构,并且晶面 朝{001}轴向生长^[15].在{001}TiO₂的 XRD 图谱中没有发现任何其他的结晶相,并且其{101}面衍射峰 没有任何的偏移,表明合成过程中 HF 对 TiO₂晶型没有影响.图中可以看出碱洗前后{001}面 TiO₂的 XRD 图谱基本保持一致,表明碱洗并不会破坏材料的晶体结构.根据 Scherrer 公式计算了催化剂的平均 粒径,催化剂{001}面暴露率采用现行国际标准法-表面积比例法^[8,16]计算所得,结果如表 1 所示,详细 计算过程见下文.

图 3 中 A 为锐钛矿 {001 } TiO₂理想模型, B 为锐钛矿 {101 } TiO₂理想模型. 其中 *a* 为 001 晶面的边 长、*b* 为 101 晶面的边长, *a* 和 *b* 通过 Scherrer 公式计算所得, *θ* 角为锐钛矿晶相中 {001 } 面与 {101 } 面的 理论晶面夹角.

图 2 不同催化剂的 XRD 图谱

图 3 锐钛矿 {001} TiO₂模型(A)及 {101} TiO₂模型(B) Fig. 3 Slab model of anatase {001} TiO₂ single crystal(A) and {101} TiO₂ single crystal(B)

$$S_{001} = 2a^{2}$$

$$S_{101} = 8\left(\frac{1}{2}EG \times b - \frac{1}{2}EF \times a\right)$$

$$S_{001} \% = \frac{S_{001}}{S_{001} + S_{101}} \times 100\% = \frac{2a^{2}}{2a^{2} + 8\left(\frac{1}{2}EG \times b - \frac{1}{2}EF \times a\right)} \times 100\%$$

$$= \frac{2a^{2}}{a^{2} + 4\left(\frac{1}{2} \times \frac{1}{2}\frac{b}{\cos\theta} \times b - \frac{1}{2} \times \frac{1}{2}\frac{a}{\cos\theta} \times a\right)} \times 100\% = \frac{a^{2}}{a^{2} + \frac{b^{2} - a^{2}}{\cos\theta}} \times 100\%$$

$$= \frac{1}{1 + \frac{b^{2}}{\cos\theta}} \times 100\% = \frac{\cos\theta}{\cos\theta + \frac{b^{2}}{a^{2}} - 1} \times 100\% = \frac{\cos\theta}{\cos\theta + \left(\frac{a}{b}\right)^{-2} - 1} \times 100\%$$

其中, S_{001} 为{001}面面积, S_{101} 为{101}面面积, S_{001} %为{001}面暴露率, EF、EG分别为模型顶点到 {001}{101} 晶边的距离.

由表1可以看出,碱洗前后{001}面TiO₂在{101}方向上的平均粒径约为16 nm,{001}面暴露率均在50%以上,碱洗前后均无明显变化,表明碱洗对{001}面TiO₂结构及晶面均无较大影响.

	Table 1 Structural parameter of different catalysts			
样品	$\{001\}TiO_2$	$\{001\}$ TiO ₂ -NaOH	$\{101\}$ TiO ₂	P25
相组成	Α	А	А	A &R
晶格尺寸/nm	15.65	15.94	10.9	22.9
{001} 面百分含量/%	51.62	54.46	—	_

表1 不同催化剂的结构参数

注:A 为锐钛矿相;R 为金红石相

2.2 催化剂的 SEM 和 TEM 分析

图 4 A 和 B 分别为样品 {001 } TiO₂的 SEM 和 TEM 图谱. 从 SEM 与 TEM 图中均可以看出其形貌主 要为正方形纳米薄片状,纳米片长度平均在 50 nm 左右. 这与样品的 XRD 分析结果一致,进一步表明所 合成的 {001 } 面 TiO₂催化剂为纳米片状结构. 综合 XRD 与电镜分析,结果表明所制备的催化剂为 {001 } 面暴露率约 50% 的锐钛矿 {001 } 面 TiO₂纳米片.

2.3 催化剂的 UV-vis 分析

各样品的 UV-vis 图谱如图5 所示. 由图5 可以看出所有样品均对紫外波段的光有强烈的吸收,这主要归因于锐钛矿 TiO₂吸收能带带隙的位置^[17]. 由于水热反应是一个溶解再沉积的过程,能加速 TiO₂结晶,减小 TiO₂晶型缺陷,在合成过程中不易掺入杂质,因此,{001} TiO₂材料中 F 仅以离子态存在,F 离子 仅吸附在样品表面^[18],样品{001} TiO₂在可见光区域并没有明显的吸收. Wang^[19]等报道,样品表面吸附 的 F 离子,在碱液的洗涤过程中很容易被羟基基团取代而被去除. 而对比碱洗前后{001} TiO₂的 UV-vis 图谱,发现其并无明显变化,进一步说明表面吸附 F 离子对 TiO₂禁带并无影响. 所有样品 UV-vis 图谱表现出的光吸收波段与样品颜色相吻合.

图 5 不同催化剂的 UV-vis 图谱 Fig. 5 UV-vis spectra of different catalysts

2.4 光催化氧化 NO_x活性

图 6 为不同样品在紫外光下对 NO_x的光催化氧化效率随时间变化的曲线图. 从图 6 可以看出,在光催化反应的前 10 min,所有样品对 NO 的转化率都迅速上升,然后逐渐下降,直至 60 min 时达到稳定. 归因于在光催化反应前段,由于催化剂表面对 NO 的化学吸附作用,大量 NO 被吸附在催化剂表面直至吸附饱和,随着催化反应的进行,氧化 NO 生成的 NO₂吸附在样品上,占据样品表面的活性位点,而促使转化率进一步降低直至平衡. 样品 {001 } TiO₂-NaOH 的 NO 转化率一直维持在较高的水平(65% 以上),在反应的前 30 min 甚至达到 80% 以上; {101 } TiO₂稳定在 35% 左右,商用 P25 TiO₂约为 25%, 而 {001 } TiO₂却为最低,一直维持在 5% 左右. 催化反应达到平衡后(60 min 后), {001 } TiO₂-NaOH 的 NO 转化率

维持在 66%,是{101} TiO₂的 NO 转化率(约 34%)的2倍,是商用 P25 TiO₂的(约 23%)的3倍,主要归因于其拥有其他两种材料不具有的高效能面{001}面,{001}面上具有更多、活性更高的光催化氧化表面活性位点,有助于光催化反应的进行.而碱洗前后{001}TiO₂的光催化活性却呈现出巨大的差异,未碱洗的样品对 NO 几乎没有催化效果,归因于碱洗处理前吸附在{001}TiO₂材料表面上的 F离子,而 NO_x的光催化氧化过程为 NO→NO₂→NO₂→NO₃^{-[2]},大量表面 F离子的存在,促进光催化氧化的活性物质HO•的产生量减少.从 NO_x光催化氧化机理可以看出,催化剂表面HO•生成量减少,光催化反应很难朝NO₃ 方向进行,从而抑制了整个反应过程进行.Yu 等人研究表明锐钛矿当 TiO₂催化剂表面上无 F离子时,光催化过程中其表面形成的HO•更多^[20-22].

图 7 为不同样品对 NO_x的光催化氧化活性图.由图 7 可以看出,在反应进行 60 min 后, {001} TiO₂-NaOH对 NO_x光催化氧化活性显著高于{101} TiO₂和 P25.碱洗处理前后的{001} TiO₂对 NO_x 的降解效果差异明显,呈数量级变化.{001} TiO₂-NaOH 相较于其他样品,其 NO 去除量更多的同时 NO₂ 生成量却相对较少,导致其对 NO_x的净去除量(336 µmol·g⁻¹ TiO₂)约为{101} TiO₂(42 µmol·g⁻¹TiO₂) 的2.5倍,约为 P25 TiO₂(11 µmol)的 30倍.归因于{001} TiO₂-NaOH 催化剂的高能活性面{001} 面的作用.

3 结论

通过水热法合成的{001} TiO₂光催化剂具有良好的锐钛矿晶型,为{001} 面暴露率约 50% 的纳米薄片,在紫外波段具有强烈的光吸收.{001} 面上吸附的表面 F 离子呈电负性,抑制了整个 NO_x的光催化氧化过程,经过碱液处理去除其表面 F 离子之后,其对 NO_x的光催化氧化活性得到显著提高,表现出较{101} 面 TiO₂及商用 P25 TiO₂更高的光催化活性.并且其对 NO 去除量增加的同时 NO₂的生成量却相对降低,对 NO_x的光催化氧化程度更彻底.

参考文献

- [1] Ibusuki T, Takeuchi K. Removal of low concentration nitrogen oxides through photoassisted heterogeneous catalysis [J]. Journal of Molecular Catalysis, 1994, 88(1): 93-102
- [2] Devahasdin S, Fan C, Li K Y, et al. TiO₂ photocatalytic oxidation of nitric oxide: Transient behavior and reaction kinetics [J]. Journal of Photochemistry and Photobiology Chemistry, 2003, 156(1/3): 161-170
- [3] Ao C H, Lee S C, Yu J C. Photocatalyst TiO₂ supported on glass fiber for indoor air purification: Effect of NO on the photodegradation of CO and NO₂[J]. Journal of Photochemistry and Photobiology Chemistry, 2003, 156(1/3): 171-177
- [4] 朱孝强, 黄亚继, 沈凯, 等. ZrO₂掺杂的 V₂O₅/TiO₂催化剂表征及催化还原 NO_x[J]. 环境化学, 2012, 31(4): 443-449
- [5] Reuter K, Scheffler M. Composition structure and stability of RuO₂(110) as function of oxygen pressure[J]. Journal of Physical Review B, 2002, 65(3): 1-11
- [6] Lazzeri M, Vittadini A, Selloni A. Erratum: Structure and energetic of stoichiometric TiO₂ anatase surfaces [J]. Journal of Physical Review B, 2002, 65(15): 1-5

- [7] Diebold U. The surface science of titanium dioxide[J]. Journal of surface Science, 2003, 48(5/8): 53-229
- [8] Yang H G, Sun C H, Qiao S Z, et al. Anatase TiO₂ single crystals with a large percentage of reactive facets [J]. Nature, 2008, 453 (7195): 638-U4
- [9] Han X G, Kuang Q, Jin M S, et al. Synthesis of titania nanosheets with a high percentage of exposed {001} facets and related photocatalytic properties[J]. Journal of the American Chemical Society, 2009, 131(9): 3152-3153
- [10] Liu G, Sun C H, Yang H G, et al. Hierarchical structures of single-crystalline anatase TiO₂ nanosheets dominated by {001} facets[J]. Journal of Chemical Communications, 2010, 46: 755-756
- [11] Amano F, Prieto-Mahaney O O, Terada Y, et al. Decahedral single-crystalline particles of anatase titanium (IV) oxide with high photocatalytic activity[J]. Journal of Chemical Materials, 2009, 21: 2601-2602
- [12] Alivov Y, Fan Z Y. A method for fabrication of pyramid-shaped TiO₂ nanoparticles with a high {001} facet percentage[J]. Journal of Physical Chemistry C, 2009, 113: 12954-12957.
- [13] Yu J G, Qi L F, Jaroniec M. Nitrogen and sulfur co-doped TiO₂ nanosheets with exposed {001} facets: Synthesis, characterization and visible-light photocatalytic activity[J]. Journal of Physical Chemistry C, 2010, 114: 13118-13119
- [14] Liu M, Piao L Y, Lu W M, et al. Flower-like TiO₂ nanostructures with exposed {001} facets: Facile synthesis and enhanced photocatalysis[J]. Journal of Nanoscale, 2010, 2(7): 1115-1117
- [15] Yang W G, Li J M, Wang Y L, et al. A facile synthesis of anatase TiO₂ nanosheets-based hierarchical spheres with over 90% {001} facets for dyesensitized solar cells[J]. Journal of Chemical Communications, 2011, 47(6): 1809-1811
- [16] D Q Zhang, G S Li, X F Yang, et al. A micrometer-size TiO₂ single-crystal photocatalyst with remarkable 80% level of reactive facets[J]. Journal of Chemical Communications, 2009, 36: 4381-4385
- [17] Cai C L, Wang G, Gao G L, et al. Synthesis and photocatalytic activity of F/TiO₂ nanocrystals with exposed (001) facets via a nonhydrolytic solvothermal toute[J]. Chinese Journal of Catalysis, 2011, 32(5): 862-871
- [18] Xu Y M, Lv K L, Xiong Z G, et al. Rate enhancement and rate inhibition of phenol degradation over irradiated anatase and rutile TiO₂ on the addition of NaF: New insight into the mechanism[J]. Journal of Physical Chemistry C, 2007, 111: 19024-19032
- [19] Wang Q, Chen C C, Zhao D, et al. Change of adsorption modes of dyes on fluorinated TiO₂ and Its effect on photocatalytic degradation of dyes under visible irradiation [J]. Langmuir, 2008, 24: 7338-7339
- [20] Yu J G, Wang W G. Study of TiO₂ anatase nano and microstructures with dominant {001} facets for NO oxidation[J]. Environ Sci Pollut Res 2012, 19: 3719 - 3726
- [21] Wang X N, Huang B B, Wang Z Y, et al. Synthesis of anatase TiO₂ tubular structures micro-crystallites with a high percentage of 001 facets by a simple one-step hydrothermal template process[J]. Chem Eur J, 2010, 16: 7106-7109
- [22] Wang Z, Lv KL, Wang G, et al. Study on the shape control and photocatalytic activity of high-energy anatase titania [J]. Appl Catal Environ, 2010, 100; 378 - 385

Photocatalytic oxidation of NO_x on anatase titania nanosheets with exposed $\{001\}$ facets

LIN Chunjing HU Yun* WEI Chaohai

(The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education,

College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China)

ABSTRACT

Anatase TiO₂ with exposed {001} facets were synthesized by a hydrothermal route using tetrabutyl titanate as the precursor and HF solution as the solvent. The prepared catalysts were characterized by X-ray diffraction, UV-vis diffuse reflectance spectroscopy, scanning electron microscopy and transmission electron microscopy techniques. The photocatalytic activity of samples for NO_x oxidation was investigated under UV light irradiation. The results showed that the TiO₂ nanosheets with about 50% {001} facets had good anatase crystal and strong light absorption in the ultraviolet range. Compared to {101} TiO₂ and P25, {001} TiO₂ washed with NaOH to remove surface F ions had higher photocatalytic activity for NO_x oxidation under UV light irradiation. After the reaction reached equilibrium, the NO conversion was twice of that on {101} TiO₂ and 3 times of that on P25. Furthermore, with the increase of NO removal the NO₂ yield decreased on the alkali washed {001} TiO₂ sample, promoting the photocatalytic reaction more thoroughly.

Keywords: $\{001\}$ facets, TiO₂ nanosheet, photocatalytic oxidation, NO_x.