聚合氯化铝中 Al,和 Al,3的形态分布规律

宁寻安1,2 李润生3 温琰茂1

(1 中山大学环境科学与工程学院,广州, 510275; 2 广东工业大学环境科学与工程学院,广州, 5100063 深圳市中润水工业技术发展有限公司,深圳, 518057)

关键词 聚合氯化铝,形态,盐基度.

关于铝的水解聚合形态与混凝效能的关系已有很多研究,相当多的研究者认为,Al,或Al,含量 愈高,混凝效果愈好,因此,聚合氯化铝的制备应当确保获得最大的Al,或Al,含量^[1-17].但是通过 对工业系列聚氯化铝样品的研究,发现聚合氯化铝混凝效果与Al含量没有明显的正相关关系,而与 盐基度呈现正相关关系^[18,20].

本文模拟国内外工业聚合氯化铝 (PAC)的生产条件和慢速滴碱法制备了四个系列 33个 PAC样品,并采用 A HF erron 络合比色法和核磁共振²⁷ A 1-NMR法研究 PAC 的形态分布规律.

1 材料与方法

1.1 聚合氯化铝的制备

A 系列: 纯 PAC样品,采用分析纯氢氧化铝和盐酸加压反应,调整盐基度制得,稀释至 A l浓度为 2.50m ol• l¹.A 系列代表国外主要生产工艺的工业产品.

B系列: 慢速滴碱法样品,将一定体积一定浓度的分析纯氯化铝溶液倒入烧杯中,控制一定的温度,在强烈搅拌下,于 1.0 mol·l¹的氯化铝溶液中用 0.5 mol·l¹的 NaOH 溶液以 \leq 0.1 ml·min¹速度 滴定,直到达到预定盐基度为止,继续搅拌反应 0.5 h,熟化 24 h.样品中 A1铝浓度为 0.150 mol·l¹ - 0.336 mol·l¹. B系列代表国内外研究者使用的实验室样品.

C系列: 铝酸钙调整法样品 (一),将一定体积一定浓度的分析纯氯化铝溶液倒入反应容器中,控制 一定的温度,在强烈搅拌下,一次性缓慢加入达到预定盐基度所需要的铝酸钙量,同时引入 SO₄²等多价 阴离子,搅拌反应,过滤,熟化 24h后得到 PAC 样品,样品中 A l浓度稀释至 2.50m oŀ ĺ¹.

D系列: 铝酸钙调整法样品 (二),将一定体积一定浓度的分析纯氯化铝溶液倒入反应容器中,控制一定的温度,在强烈搅拌下,一次性缓慢加入达到预定盐基度所需要的铝酸钙量,搅拌反应,过滤,熟化 24h.样品中 A l浓度稀释至 2.50m o l 1¹.产品中含有氯化钙杂质, C系列和 D系列是目前中国最主要的工业生产方法.

1.2 实验方法

Ferron逐时络合比色法参见文献[8].

核磁共振²⁷A HMR 法采用德国 Bruker公司的 DSX-300型核磁共振仪, 共振频率为 78.2MH z 翻 转角为 10°, 脉冲延迟时间为 0.2 s.测试中将内标处峰的积分面积定为 100.

2 结果与结论

2.1 Ferron逐时比色法分析结果

A, B, C, D系列样品的结果见表 1. 分析结果表明:

(1) A, B, C, D 四个系列所有样品的 A 1 均随盐基度的升高而减小, A 1 则随盐基度的升高而增加.

(2)相同盐基度的不同系列样品中 A l值大小变化规律为: 盐基度等于 20% 时, C > D > A > B, 盐基度等于 30% 时, A > D > B > C; 盐基度大于 30% 时, B > A > D > C.

(3) 所有样品 Al,的变化规律则为: A 系列在盐基度范围为 0% - 30% 时, Al,随盐基度的升高 而升高,在盐基度范围为 30% -92% 时, Al,随盐基度的升高而降低,且 Al,的最大值出现在盐基度为 30% 时的 27.15% · C系列在盐基度范围为 0% - 20% 时, Al,随着盐基度的升高而升高,在盐基度范围 为 20% - 85% 时, Al,随着盐基度的升高而降低,且 Al,的最大值出现在盐基度为 20% 时的 23.12% · D 系列在盐基度范围为 0% - 40% 时, Al,随着盐基度的升高而升高,在盐基度范围为 40% - 92% 时, Al,随着盐基度的升高而降低,且 Al,的最大值出现在盐基度为 40% 时的 28.41% · B系列在盐基度范围 0% -92%, Al,-直随盐基度的升高而升高,在盐基度为 92% 时, Al,最大值为 74.02% ·

	A系列				B系列				C系列				D系列			
血基浸 №	编号	A l_ l_a	A l _b /%	A l _e <i>1</i> %	编号	A l_ l_{a} l_{b}	A l _b /%	A l _e <i>1</i> %	编号	A l_ l_a	A l _b <i>1</i> %	Al _c /%	编号	$\mathrm{A}\mathrm{l}_{\mathrm{a}}/\!\!\%$	A l_ /%	A l _e <i>1%</i>
0	A0	100	0	0	B0	100	0	0	C0	100	0	0	D0	100	0	0
20	A 1	90.87	9.13	0	B1	91. 93	8.17	0	C1	74.03	23. 12	2. 85	D 1	87.90	12 10	0
30	A 2	72.85	27.15	0	B2	83.18	16.82	0	C2	67.79	14.81	17.66	D2	78.38	21.62	0
40	A 3	66.85	22.16	10.99	B3	64.92	26.97	8.11	C3	58.44	14.55	26.75	D3	65.17	28 41	6.42
50	A4	48.35	19. 76	31.89	B4	54.11	33. 93	11.96	C4	49.87	12.73	37.40	D4	60.84	24 80	14. 36
60	A 5	38.02	17.60	44. 38	В5	38. 98	48.11	12.91	C5	38. 70	9.87	51.43	D5	42.10	17.60	40.30
70	A6	23.36	14. 95	61.69	B6	26.01	61.32	12.67	C6	27.79	8.83	63.38	D6	33.69	14 47	51.84
80	Α7	12.16	15.65	72.19	B7	16.49	69.70	13.81	C7	20. 52	7.01	72.47	D7	19.97	12 28	67.75
85	_	_	_	-	_	-	_	_	C8	17.66	6.62	75.72	_	-	_	—
90	A 8	3 75	6.88	89.37	_	_	_	_	—	—	_	—	—	—	_	—
92	—	_	—	_	B8	2.07	74.02	23. 91	—	_	_	_	D 8	10.91	4.94	84.15

表 1 A, B, C, D系列 PAC 样品的 Ferron 实验结果 Table 1 The result of series A, B, C, D of PAC by Alt ferron timed complexation spectrophotometry

注: 四个系列盐基度为 0的样品均为 1.026m ol 1¹的纯氯化铝溶液.

2.2 核磁共振²⁷A HMR 分析结果

根据核磁共振图谱,化学位移 0pm 处的共振峰代表单聚态铝;化学位移 63pm 处的共振峰代表聚 合阳离子 A l₃的四面体成分,80pm 处的共振峰代表 A l(OH) $\frac{1}{4}$ 组分,即内标的响应峰,其它组分则为一 些低聚组分(以 A l₄表示)和聚合程度更高的羟铝络合大分子(以 A l₄他表示).PAC的形态分布计算方 法参见文献资料^[8].通过计算得到各个系列样品中 A l₄, A l₃和 A l₄他含量,计算结果见表 2.

由表 2可以看出: (1) A系列样品的 Al₃值变化范围为 0% -5.50%, 从盐基度为 60% 的 A5样 品开始出现 Al₃共振峰, 最大值为盐基度为 80% 的 A5样品的 5.50%, 然后逐渐降低 (2) B系列样 品的 Al₃随着盐基度的升高而不断提高, 从盐基度为 40% 的 B3样品开始出现 Al₃共振峰, 最大值为 B8样品的 68.69% (3) C系列样品的 Al₃值均为 0 即图谱中没有出现 Al₃共振峰 (4) D系列样 品中只有盐基度等于 70%, 80% 和 92% 的三个样品出现 Al₃共振峰, 且含量很小, 最大值为 D8样品 的 2.62% (5) 相同盐基度的不同系列样品中 Al₃值大小顺序为 B>A>C>D (6) A, B, C, D 四 个系列所有样品的 Al₂均随盐基度的升高而减小 A, C, D系列样品的 Al₄他均随盐基度的升高而增 © 1994-2010 China Academic Journal Electronic Publishing House, All rights reserved. http://www.cnki 加, B系列样品的 A _{其他}则先随盐基度的升高而增加,达到最大值后开始降低,然后再开始上升,最 大值为 B4样品的 44.40%.

表 2 A, B, C, D系列样品²⁷A HNM R 谱图分析计算结果 Table 2 The result of ²⁷A HNM R spectrum of series A, B, C, D of PAC

盐基度 /%·		A系列用	修态分布		B系列形态分布				C系列形态分布				D 系列形态分布			
	编号	A ⊫µ /%	A l_{13} /%	A _{其他} /%	编号	A⊾ <i>l</i> %	A $l_{13}/\!\!\%$	A _{其他} /%	编号	A⊾ /%	A l_{13} 1%	A _{其他} /%	编号	A ⊑µ /%	A $l_{13}l\%$	A _{其他} /%
0	A 0	100	0	0	В0	100	0	0	С0	100	0	0	D0	100	0	0
20	A 1	76.25	0	23 75	B1	87.78	0	12.22	C 1	71.54	0	28.46	D1	77. 78	0	22. 22
30	A 2	60.00	0	40 00	B2	70 38	0	29.62	C2	60.72	0	39. 28	D2	64 0	0	35. 99
40	A 3	52.76	0	47.24	В3	57.93	1.83	40.24	С3	46.10	0	53.90	D3	50.44	0	49.56
50	A 4	39. 71	0	60 29	B4	47.73	7.87	44.40	C4	38.85	0	61.15	D4	43. 73	0	56.27
60	A 5	31. 33	0.07	68 60	В5	36 13	23 83	40.04	С5	28.21	0	71.79	D5	33. 39	0	66.61
70	A 6	20.09	0. 98	78 93	B6	26 82	43 62	29.56	C6	22.62	0	77.38	D6	23. 37	0.31	76.32
80	A 7	12. 14	5.50	82 36	B7	13 78	60 36	25.86	C7	15.70	0	84. 30	D7	18.06	0.29	81.65
85	—	-	-	—	—	-	_	-	C 8	14.60	0	85.40	-	-	—	_
90	A 8	0	4. 85	95 15	—	—	—	—	—	—	—	—	—	—	_	_
92	_	_	_	_	B8	0	68 69	31. 31	_	_	_	_	D8	4.08	2.62	93. 30

2.3 A 1与 A 1a比较结果

比较表 1和表 2可以得到:四个系列样品中 A l, ≥A l₃,并且不同系列样品的变化规律也各不相同, 为了方便比较,可以通过计算二者之间的差值来分析 .同一样品的 (A l, – A l₃)计算结果 (见表 3).

表 3	(Al, – Al,) 计算结果
Table 3	The result of $(A l_{1} - A l_{13})$

盐基度 /%	A 系列 /%	B系列 /%	C系列 /%	D系列 /%	盐基度 1%	A系列 1%	B系列 /%	C系列 /%	D系列 /%
0	0	0	0	0	70	13 97	17.71	8 83	14 16
20	9. 13	8.17	23 12	12.10	80	10 15	9.34	7.01	11.99
30	27.15	16. 82	14 81	21.62	85	_	_	6 62	_
40	22 16	25. 14	14 55	28.41	90	2 03	—	—	_
50	19.76	26.06	12 73	24.80	92	_	5. 33	—	2. 32
60	17.54	24. 28	9.87	17.60					

综上所述, A系列工业样品中 A h和 A ha的绝对数值均不大, A h最大值 27.15% 和 A ha最大值仅 5.50%, 因此, A 系列工业样品中 A h和 A ha并不是其中的优势形态 . A 系列样品的 (A h – A ha)值先 随盐基度的增加而增加, 在盐基度为 30% 时达到最大值 27.15%, 然后差值逐渐减小, 直到盐基度为 90% 时的 2.03%.

B系列样品中 A l_a和 A l_a的绝对数值较大, A l_a最大值 74.02%, A l_a最大值 68.69%, 盐基度大于 60%时, A l_a和 A l_a成为优势形态 . B 系列样品的 (A l_a – A l_a)值也是先随盐基度的增加而增加, 在盐基 度为 50% 时达到最大值 26.06%, 然后差值逐渐减小, 直到盐基度为 92% 时的 5.33%.

C系列样品中 A l和 A la的绝对数值均不大, A l最大值 23.12%, A la值均为 0%, 因此, C系列 工业样品中 A l和 A la并不是其中的优势形态 . C 系列样品的 (A la – A la)值也是先随盐基度的增加而增 加, 在盐基度为 20% 时达到最大值 23.12%, 然后差值逐渐减小, 直到盐基度为 85% 时的 6.62%.

D系列工业样品中 Al₃最大值仅 2.62%, Al₃数值也不大, Al₆最大仅 28.41%, 因此, D系列工 业样品中 Al₆和 Al₃并不是其中的优势形态 .D系列样品的 (Al₆ – Al₃)值也是先随盐基度的增加而增 加,在盐基度为 40% 时达到最大值 28.41%, 然后差值逐渐减小, 直到盐基度为 92% 时的 2.32%.

许多研究者认为缓慢"中和"有利于 A li的形成,而快速"中和"则更趋向于 A l形成,水解过 程的加热也有利于 A lig的形成,并认为 A l或 A lig是 PAC中发挥混凝作用的优势形态,我们认为该观 © 1994-2010 China Academic Journal Electronic Publishing House, All rights reserved.

26卷

点只适合于慢速滴碱法制得的样品,不适用于工业样品,工业样品中的优势形态应当是 A l或 A $_{let}$, 而不是中间形态 A l,或 A l₃. 如本研究 A, B, C, D系列样品的形态分布所揭示的那样.慢速滴碱法 是使用结晶氯化铝 (A C l[•] GH_2O)溶液与氢氧化钠溶液缓慢滴定得到的,由于溶液配制以及滴定过程 的稀释作用,最终得到的 PAC 样品中 A l浓度一般比工业产品要低很多,即采用慢速滴碱法不可能制 得浓度很高的样品,加上其反应温度较低 (常温)、滴定时间也较长,反应条件比较温和,可以允许 铝盐发生充分的水解,因此水解产物的中间形态 A l,或 A $_{l_3}$ 为优势形态.本研究的 A 系列样品采用纯 氢氧化铝和盐酸加压反应,调整盐基度制得, C 和 D 工业系列样品均为铝酸钙调整法生产,铝的水解 聚合是在高铝浓度 (> 2.50m ol* l^1)、高温 (> 100°C)、短时间 (< 3h)条件下进行.温度愈高, 浓度愈高,愈有利于高聚合度的 A l,或 A $_{let}$ 形态的生成.

3 结论

(1) A, B, C, D 四个系列样品的 A l均随盐基度的升高而减小, A l则随盐基度的升高而增加.
 相同盐基度的不同系列样品中 A l值大小变化规律为: 盐基度等于 20% 时, C > D > A > B, 盐基度等
 于 30% 时, A > D > B > C, 盐基度大于 30% 时, B > A > D > C.

(3) A, C, D 三个工业系列样品中 A l,和 A l,的绝对数值均不大,在所研究的盐基度范围内 A l,和 A l,均不是其中的优势形态.B系列样品在盐基度大于 60% 时, A l,和 A l,成为其中的优势形态.

参考文献

- [1] PaulM Bertsch, Conditions for Al₁₃ Polymer Formation in Partially Neutralized A luminum Solutions. Soil Sci. Soc. Am. J., 1987, 51 (3): 825-828
- [2] David R Parker, Paul M Bertsch, Identification and Quantification of the "A l₁₃" Tridecameric Polycation Using Ferron. Environ. Sci. Technol., 1992, 26 (5): 908-914
- [3] Lionel Allouch e Corine G rardin, Thierry Loiseau et al, Al₅₀: A Giant Aluminium Polycation. Angew. Chem. Int. Ed., 2000, 39 (3): 511-514
- [4] Carole C Perry, Kirill L Shafran, The System atic of A lum inum Speciation in M edium Concentrated Aqueous Solutions. Journal of Inorganic B ioch on istry, 2001, 87: 115-124
- [5] Bi Shup ing Wang Cheny, i Cao Q ing et al., Studies on the Mechanism of Hydrolysis and Polymerization of A lum inum Salts in A queous So lution: Correlations between the "Core-Links" Model and "Cage-Like" K egg in A l₁₃M odel Coordination Chemistry Reviews, 2004
 248 441-455
- [6] Vogek R JM J Kloprogge JT, Geus JW, Hanogen eous Forced Hydrolysis of Alum inum through the Thermal Decomposition of Urea Journal of Colloid and Interface Science 2005, 285: 86-93
- [7] 汤鸿酉,栾兆坤,聚合氯化铝与传统混凝剂的凝聚一絮凝行为差异.环境化学,1997.16(6):497-504
- [8] 汤鸿霄, 无机高分子絮凝理论与絮凝剂.北京:中国建筑工业出版社, 2006, 1-149
- [9] 冯利,汤鸿霄,铝盐最佳凝聚形态及最佳₁H范围.环境化学,1998,17(2):163-169
- [10] 栾兆坤,汤鸿霄,聚合铝的凝聚絮凝特征及作用机理.环境科学学报,1992,12 (2): 129-137
- [11] 高宝玉,岳钦艳,王炳建等,高Al₁,纳米聚合氯化铝的结构表征及混凝效果.中国环境科学,2003,23(6):657-660
- [12] 高宝玉,张子健,马建伟等,固固共混法制备聚合氯化铝混凝剂 [J].环境化学,2005 24 (5): 569-572
- [13] 石宝友,汤鸿霄,聚氯化铝与有机高分子复合絮凝剂的形态分布研究-AlFerron和²⁷AlMAR相结合.环境科学学报,2000, 20(4): 391-396
- [14] 路光杰,曲久辉,汤鸿霄,电渗析法合成高效聚氯化铝的研究.中国环境科学,2000,20(3):250-253
- [15] 赵华章,彭凤仙,栾兆坤等,微量加碱法合成聚氯化铝的改进及 Al, 形成机理.环境化学, 2004, 23 (2): 202-207
- [16] 赵华章,蔡固平,栾兆坤,高浓度聚合氯化铝的合成及其形态分布与转化规律.环境科学,2004 25 (5): 80-83
- [17] HUANG Li TANG Hongxia, WANG Dongsheng et al., A l(III) Speciation Distribution and Transformation in High Concentration

PACLSo http://www.cnki.net

[18] 李润生,李凯,聚氯化铝水解形态与混凝效果研究.中国给水排水,2002,18 (10):45-48

[19] 李凯,李润生,宁寻安,不同聚氯化铝系列的水解聚合形态研究.中国给水排水,2003 **19** (10): 55—57

[20] 宁寻安,李润生,温琰茂,工业聚合氯化铝的形态分布及混凝效果.环境化学,2006,**25**(6):739-742

THE STUDY OF A L & A L SPECIES DISTRIBUTION OF POLYALUM INUM CHLORIDE

 $NNG Xun an^{1/2}$ $LI Run sheng^3$ $WEN Yan mao^1$

(1 School of Environmental Science & Engineering Sun Yat University, Guangzhou, 510275, China,

2 School of Environmental Science & Engineering Guangdong University of Technology, Guangzhou, 510006, China

3 Shen zhen Zhong zun Water Industry Technology Development Co., Ltd., Shen zhen, 518057, China)

ABSTRACT

Three series of polyalum num chloride (A, C, D three series and 24 specimen in total) with a lum num concentration 2.50 mol• Γ^{-1} have been prepared under simulated industrial production conditions and a series 8 specimen with A1 concentration 0.150 mol• Γ^{-1} —0.336 mol• Γ^{-1} has been obtained using a bw-speed alkaline titrin etry(B series), and the maximum value of the basicity is 92% among all specimens. The Ferron experiment results show: (1) for different specimen series at the same basicity the changing regulation of A l, value is: when basicity is 0—20%, C > D > A > B; when basicity is 20% —30%, A > D > B > C; when basicity is over 30%, B > A > D > C, (2) for all specimens of four series A l_a decreases with rising of basicity. A l increases with rising of basicity the A l₃ value order is B > A > D > C, (2) for all specimens of series B, A l_{others} increases with rising of basicity. For specimens of series B, A l_{others} increases with rising of basicity at first after reaching the maximum it begins to decrease, and then increases again, and its maximum value is 44.40% of specimen B4. The A l₄& A l₃ in the A, C, D specimens is not the main species, but when the basicity is over 60%, the A l₄ & A l₃ in the B series is them ajor species.

Keywords polyalum num ch bride, species distribution, basicity

© 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net