蜡烛燃烧产生的亚微米颗粒物的数量排放因子

孙在黄震王嘉松

(上海交通大学燃烧与环境技术中心,上海,200030)

摘 要 蜡烛燃烧产生的亚微米颗粒物 (在 10mm—500nm 范围内),稳定燃烧排放的颗粒物呈单峰正态分 布,而非稳定燃烧呈近似双峰正态分布.将现场测得的浓度数据通过气溶胶动力方程转化为排放因子.结 果表明,蜡烛燃烧产生的颗粒物在经过一段时间历程后,粒径谱会发生较大的变化,纳米级颗粒物逐渐消 失,颗粒物的粒径有所增大.蜡烛在稳定燃烧环境下产生的亚微米颗粒物的数量排放因子为 4.05 ×10¹² ± 0.73 ×10¹²个 ·g⁻¹,在非稳定燃烧下的排放因子为 1.49 ×10¹² ± 0.32 ×10¹²个 ·g⁻¹. 关键词 蜡烛,亚微米颗粒物,排放因子,粒径分布.

作为一种室内污染源,蜡烛燃烧产生的污染对人体健康的影响不能忽视^[1,2],而且在蜡烛烟雾中 发现了一些有害的物质,如甲醛、铅以及有机碳化合物等^[3-5].然而,作为一种燃烧产生的颗粒物, 蜡烛颗粒物的粒径非常细小,在排放过程中,细微颗粒物的凝并、沉积效应非常明显.因此,蜡烛颗 粒物的粒径分布特征和数量排放因子还很少被揭示.

本文研究的主要目的,一是建立实验平台,结合高精密的数量浓度测试仪器监测蜡烛燃烧过程中 颗粒物的数量浓度及粒径分布特征;二是通过数学模型方法将数量浓度转化为排放因子.

1 实验部分

1.1 测量方法

蜡烛安放在一个内表面光滑的木箱 (0.78m ×1.17m ×1.17m)底部.木箱底部侧面有进风口, 以保持气压平衡.进风口内安置 0.5µm聚四氟乙烯滤膜,除去进入的空气微粒.用小风扇搅动空气, 使木箱内烟气均匀分布.蜡烛燃烧产生的颗粒物密度在本文中设为单位密度,即 1g·cm⁻³.

蜡烛 (普通红色照明蜡烛) 燃烧前要称重,在模拟室底部稳定燃烧,在燃烧时开动 SMPS—3034 (scanning mobility particle sizer, TSI Inc.,测量粒径范围在 0.01µm—0.487µm),扫描迁移率粒径分析仪分辨率为 32 (channels/decade),流量为 1 L·min⁻¹.两台抽气泵 (流量为 1.7L·min⁻¹) 以允 许新鲜空气进入和稀释颗粒物浓度.大约 10min后熄灭蜡烛,重新进行称重.同时,记录此时的浓度.实验重复 3次,结果进行平均处理.

1.2 数学模型

带粒径分辨率的颗粒物数量传输模型方程为:

$$\frac{\mathrm{d}N_{i}(t)}{\mathrm{d}t} = \frac{E_{ti}}{V} - \frac{E_{ti}}{V_{i}}N_{i}N_{i} + C_{gi} - N_{i} - (N_{i} + P_{i}N_{out,i})$$
(1)

式中: N 代表数量浓度 (个 · cm⁻³); E_i 是颗粒物的排放率 (个 · s⁻¹); V是模拟室体积 (cm³); K 为颗粒物凝并系数 (cm³ · s⁻¹), 其具体表达式可以参考文献 [6]; C_g 是颗粒物的凝并增长; *i*, *f*代 表第 *i*个和第 *f*个粒径段; l是颗粒物粒径段的总数; 是颗粒物表面沉积率 (s⁻¹); *P*为室外颗粒物 的渗透效率; 是空气换气率 (s⁻¹).

Cgi为当两个颗粒物碰撞时产生的新颗粒物:

$$C_{gi} = \prod_{m=1, i, k=1, i} K_{m, k} N_m N_k$$
(2)

2006年 6月 11日收稿.

同时满足条件:

$$d_i = \sqrt[3]{d_m^3 + d_k^3}$$

方程 (1) 中需要确定沉积率 , 按照 Klepeis等^[7]确定香烟烟雾颗粒物的沉积率的方法, 通过实 验与模型模拟并结合数值优化得到.

2 结果与讨论

2.1 粒径分布

图 1为蜡烛稳定燃烧时的形态,以及蜡烛在模拟室内燃烧 10m in 后微粒的粒径分布图和统计直径,测量时的环境温度为 295K,相对湿度为 50. 从图 1可以看出,稳定燃烧的蜡烛微粒直径多数在 100 nm 以内,数量浓度呈类似单峰对数正态分布,峰直径在 25 nm 左右,总数量浓度达到 10 个 · cm⁻³.表 1列出了包括数量当量、直径当量、表面积当量和体积当量等各种统计的直径.

如果有干扰的流场存在, 蜡烛火焰会出现摇摆, 从火焰顶部可以观察到明显的黑烟, 如图 2 这 种黑烟为未完全燃烧烷烃的中间产物. 粒径分析表明, 黑烟中的颗粒物数量并没有稳定燃烧的颗粒物 多 (这主要是因为稳定燃烧产生的纳米级颗粒物非常多), 但 100mm 以上的颗粒物数量有所增多, 而 且如数量当量、直径当量、表面积当量和体积当量直径 (表 1) 也都比蜡烛在稳定燃烧时产生的颗粒 物直径要大. 不稳定燃烧产生的粒径谱呈近似双峰形态的对数正态分布.

图 1 稳定燃烧的蜡烛产生的微粒的粒径分布与统计直径 Fig.1 The size distribution and statistic diameters of particles from a steady burning candle

图 2 不稳定燃烧的蜡烛产生的微粒的粒径分布与统计直径

2.2 模型方程求解

方程 (1) 是一个粒径分辨率的模型,将蜡烛燃烧产生的亚微米颗粒物分为 54个子方程.对这 些方程应用数值离散方法,通过 Fortran编程计算.应用实验数据对模拟结果进行对比.结果如图 3 所示.由图 3可见,颗粒物的浓度随时间的延长逐渐降低,颗粒物的粒径也由小增大.模型计算的粒 径谱演变与测量结果在 4个时间点的值都非常接近,这说明模型和计算方法具备相当的准确性.

26卷

Table 1 Summary of size and concentration of the particles from candle combustion								
	稳定燃烧的蜡烛				不稳定燃烧的蜡烛			
	数量当量	直径当量	表面积当量	体积当量	数量当量	直径当量	表面积当量	体积当量
直径 (中值) /mm	25.3	38.2	63.3	130.9	40.9	136.5	303.5	354.9
平均直径 /nm	32.4	50.7	93.5	182.3	72.7	175.6	285.4	341.1
几何平均值 /mm	27.0	39.5	66.8	132.9	47.7	116.6	242.0	320.6
峰值 / nm	24.6	28.4	67.3	469.8	40.7	305.1	469.8	469.8
几何标准偏差 (GSD)	1.77	1.94	2.20	2.31	2.30	2.67	1.97	1.49
总浓度	1.12 ×10 ⁶	36.4	5.79 ×10 ⁹	9.02 $\times 10^{10}$	6.38 ×10 ⁵	46.4	2.56 ×10 ¹⁰	1.22×10^{12}
	$(\uparrow \cdot \operatorname{cm}^{\cdot 3}) (\operatorname{mm} \cdot \operatorname{cm}^{\cdot 3}) (\operatorname{nm}^{2} \cdot \operatorname{cm}^{\cdot 1}) (\operatorname{nm}^{3} \cdot \operatorname{cm}^{\cdot 1}) (\uparrow \cdot \operatorname{cm}^{\cdot 3}) (\operatorname{nm} \cdot \operatorname{cm}^{\cdot 3}) (\operatorname{nm}^{2} \cdot \operatorname{cm}^{\cdot 1}) (\operatorname{nm}^{3} \cdot \operatorname{cm}^{\cdot 1}) (\operatorname{nm}^{2} \cdot \operatorname{cm}^{\cdot 1}) (\operatorname{nm}^{3} \cdot \operatorname{cm}^{\cdot 1}) (\operatorname{nm}^{2} \cdot \operatorname$							

表 1 蜡烛颗粒物的粒径及浓度统计

Fig. 3 Comparison between the mathematic model and the experimental measurement of the size spectrum of the candle particles

2.3 排放因子

应用经过验证的模型方程得到的参数和实验测量的数量浓度,并结合 Klepeis等^[7]的优化数值方法,计算蜡烛燃烧产生的颗粒物的数量排放率(*E_r*). 结果如图 4所示,蜡烛燃烧时产生的颗粒物的排放率的粒径分布显示其纳米级颗粒物非常多,稳定燃烧时粒数其中值直径 CMD 值大约为 17nm, GSD 为 2.13nm,不稳定燃烧时 CMD和 GSD 分别为 30.2nm和 2.26nm. 对比图 1和图 2可以看出,蜡烛燃烧产生的颗粒物谱在排放过程中有比较大的变化,颗粒物的粒径有所增大,这正是由亚微米颗粒物的凝并和沉积效应所致. 这也反映了通过模型(1)将实验测量得到的浓度数据转化为排放率的必要性.

根据排放率,通过下式计算排放因子:

 $E_{\rm f} = 3600 E_{\rm r} / B$

式中, *E*为排放因子 (个 · g⁻¹), *B*为蜡烛的燃烧率 (g · h⁻¹). 将排放率与排放因子单位统一为小时单位制,并将三次重复的实验进行平均统计,蜡烛燃烧产生

将排放率与排放因子单位统一为小时单位制,开将二次重复的头验进行平均统计,蜡烛燃烧产生 直径范围在 10mm—500nm的亚微米颗粒物. 蜡烛在稳定燃烧时,燃烧率为 6.05 ±0.1 (g·h⁻¹), 每 小时产生的亚微米颗粒物为 2.45 ×10¹³ ± 5.72 ×10¹²个,每克蜡烛燃烧产生的微粒数量为 4.05 ×10¹² ± 0.73 ×10¹²个. 在不稳定燃烧时,燃烧率为 7.02 ± 0.65 (g · h⁻¹),每小时产生的亚微米颗粒物为 1.05 ×10¹³ ± 2.4 ×10¹²个,每克蜡烛燃烧产生的微粒数量为 1.49 ×10¹² ± 0.32 ×10¹²个.

3 结论

(1) 蜡烛稳定燃烧会产生大量的亚微米颗粒物,其粒径谱呈对数单峰正态分布,平均峰直径在 25mm 左右.

(2) 蜡烛燃烧产生的颗粒物在经过一段的时间历程后,粒径谱会发生较大的变化,表现在纳米级颗粒物逐渐消失,颗粒物的粒径有所增大.

(3) 蜡烛在稳定燃烧情况下每小时产生的亚微米颗粒物为 2.45 $\times 10^{13} \pm 5.72 \times 10^{12}$ 个,每克蜡 烛燃烧产生的微粒数量为 4.05 $\times 10^{12} \pm 0.73 \times 10^{12}$ 个.在不稳定燃烧情况下,每小时产生的亚微米颗 粒物为 1.05 $\times 10^{13} \pm 2.4 \times 10^{12}$ 个,每克蜡烛燃烧产生的微粒数量为 1.49 $\times 10^{12} \pm 0.32 \times 10^{12}$ 个.

参考文献

- [1] Fan Chengwei, Zhang Junfeng, Characterization of Emissions from Portable Household Combustion Devices: Particle Size Distributions, Emission Rates and Factors, and Potential Exposures A mospheric Environment, 2001, 35 (7) 1281–1290
- [2] Kuhn Thomas, Knidysz Margaret, Zhu Yifang et al, Volatility of Indoor and Outdoor Ultrafine Particulate Matter Near a Freeway. Journal of Aerosol Science, 2005, 36 (3) 291-302
- [3] Fine PM, Cass GR, Simoneit B R T, Characterization of Fine Particle Emissions from Burning Church Candles Environmental Science and Technology, 1999, 33 2352-2362
- [4] Nriagu J O, Kin M J, Emissions of Lead and Zinc from Candles with Metal-Core Wicks Science of the Total Environment, 2000, 250 37-41
- [5] Wasson S J, Jenia Z G, McBrian A et al, Lead in Candle Emissions The Science of the Total Environment, 2002, 296 159-174
- [6] Fuchs N A, The Mechanics of Aerosols Pergamon Press, 1964
- [7] Klepeis N E, Apte M G, Gundel L A, et al, Determining Size-Specific Emission Factors for Environmental Tobacco Smoke Particles Aerosol Science and Technology, 2003, 37 780–790

THE NUMBER EM ISSIDN FACTOR OF SUBMICRON PARTICLES FROM CANDLE COMBUSTION

SUN Zai HUANG Zhen WANG Jia-song

(Research Center for Combustion and Environmental Technology, Shanghai JiaoTong University, Shanghai, 200030, China)

ABSTRACT

Large amount of submicron particles are found from candle combustion, and within the range of 10nm— 500nm, the size spectrum is log-normally distributed for a stable burning candle, and a bimodal log-normal distribution is found under unstable combustion. The field concentration data can be translated into emission factor through an aerosol dynamic model. The results indicate, the size spectrum of candle particles changes significantly after a segment time of evolution, and the nano-particles disappear gradually with the diameter increase. Under the current stable combustion environment, the emission factor is 4.05 10^{12} ±0.73 × 10^{12} units \cdot g⁻¹ for a steady burning candle, and that the unstable burning candle is 1.49 × 10^{12} ±0.32 × 10^{12} units \cdot g⁻¹.

Keywords: candle, submicron particle, emission factor, size distribution