介质阻挡放电降解 SF₆ 的研究^{*}

沈燕黄丽张仁熙** 侯惠奇

(复旦大学环境科学研究所,复旦大学温室气体研究中心,上海,200433)

摘 要 采用 GC-TCD考察介质阻挡放电技术 (DBD)处理 SF₆ 的效果,并采用红外吸收光谱进行产物分析. 结果表明,电源电压的增加、放电时间的延长、气体介质分压的降低,以及少量其它气体 (Ar N₂ O₂, H₂O,空气)的加入能够提高转化效果.另外,SF₆ 的降解率随着空气湿度的增加而增加,28.2 kPa相对湿 度为 51% 的空气与 2.0 kPa SF₆ 的混合气体放电后 SF₆ 降解率达 92%.放电产物包括 SiF₄,SF₄,SOF₂, SOF₄,SO₂F₂.

关键词 六氟化硫,介质阻挡放电,降解.

由于六氟化硫(SF₆)极为稳定,甚至O(¹D)和OH自由基都不能与之反应,因此,使用化学方法 对SF₆进行降解极为困难^[1].降解SF₆的方法主要有热解^[2],射频等离子体^[3]等方法.热解过程将SF₆与CaOO₃在1100[°]C以上进行反应从而转化为CaF₂,但耗能显著;而射频等离子体(RF)则是在负压环境中进行,存在电极腐蚀以及能耗大的缺点.介质阻挡放电(DBD)等离子体发生在两层介质之间,放电气体不与金属电极直接接触,因此,具有不损伤电极且结构简单,能耗小等优点^[4].

本文采用介质阻挡放电对 SF₆ 的转化过程进行实验室研究,以期对使用等离子体方法处理 SF₆ 进行探索,为长寿命温室气体 SF₆ 的最终处置提供思路.

1 实验部分

1.1 实验装置与仪器

DBD等离子体反应器 (石英材质)长 120 mm, 内管外径 8 mm, 外管内径 28 mm, 壁厚均为 1 mm, 内外电极 (不锈钢箔)连接等离子电源 (电压范围在 0-7500V).

GC102型气相色谱 (上海分析仪器厂),采用热导池作为检测器,高纯氮作为载气 (流量为 0.7 m l• m m⁻¹),色谱柱为 3 m × 2 mm 不锈钢柱,填充剂为 GDX-502,气化室温度 110 ℃,柱温 90 ℃.

AVATAR-360 R型傅立叶红外光谱仪 (美国 N icolet公司), 其扫描范围: 400-4000 cm⁻¹, 分辨率 1 cm⁻¹.

1.2 实验方法

使用配气系统 (玻璃无油真空系统)将反应气体充入反应器中,连接高压电源,放电若干时间后 连接气相色谱进样系统,进样后观察色谱的出峰情况,以出峰的峰高表示 SF。的分压.

$$D = (P_0 - P_t) / P_0 \times 100\%$$

式中, D为 SF₆的降解率 (%), P₀为 SF₆的初始分压 (Pa), P_i为放电后 SF₆的分压 (Pa).

反应器通过 T型接口与红外样品池相连,通过真空系统使产物扩散至红外反应池,然后送入傅立 叶红外光谱仪进行产物分析.

2 结果与讨论

2.1 操作条件对 SF。降解率的影响

²⁰⁰⁶年 9月 16日收稿.

^{*} 国家自然科学基金资助项目 (20507004). * * 通讯联系人, zn@ fudan. edu. en

^{© 1994-2011} China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

反应器中充入 2.0 kPa SF。改变外施电压放电 5 m i 时的降解率如图 1(A)所示.外施电压在 2100—3900 V 范围内变化,降解率随着外施电压的增大而增加,外施电压为 3900 V 时 SF₆的降解率 为 56%.外施电压的增加对应于放电区域的电场强度 (*E*)与介质气压 (*P*)之比 (*E*/*P*)增加,使得电场 平均电子能量增加^[5],因此,可用于降解 SF₆的能量增加从而提高了降解率.本文实验均采用 3000 V 外施电压.

反应器内充入 2.0 kPa SF₆, 在外施电压为 3000 V 的条件下, SF₆的降解率随放电时间的变化如图 1(B)所示. 在 0—10 m in 内, 随着放电时间的延长, SF₆的降解率逐步增加, 经过 10 m in 放电后 SF₆ 的降解率可达 80%.

由此可见, 在 SF。浓度一定的情况下, 放电时间对其处理效果影响较大. 由于以上反应时间是静态条件下 SF。的反应停留时间, 若应用到流动态 SF。废气处理时, 可通过延长 SF。放电时间来提高降解效果.

改变反应器中 SF₆的初始分压,在外施电压为 3000 V 的条件下,放电 5 m in 降解率变化如图 1 (C)所示.在相同的放电条件下,随着反应器内 SF₆初始分压的增加,其降解率逐渐变小,初始浓度为 1.3 kP a的 SF₆在放电 5m in后可降解 62%,而初始浓度为 2.6 kP a的 SF₆降解率却减少到 29%.气体分压的增加会导致反应的大部分能量用于加热气体,而非用于等离子反应^[5];同时,对于一定的外施电压,实验中 *E* /P 的减小导致平均电子能量 ε 的减小^[6],从而使 SF₆降解率下降.

Fig.1 Effect of dischange voltage, dischange time and initial pressure of SF₆ on the decomposition rate of SF₆

2.2 反应器中外加气体的影响

由于实际处理中不可能在完全干燥的环境下进行,因此,有必要考虑水气对放电效果的影响.从 图 2(A)可以看出,水气的加入使降解率明显提高,当其与 SF₆的初始分压比为 1:1时,放电 5 m in可 使降解率接近 90%.在 0.5-2.0 kPa范围内,水气可使 SF₆的降解率维持在 80% 以上.在充入水气 2.0 kPa时,混合气体放电 5 m in后已不能检出 SF₆

根据 Ravishankara的实验结果^[1], OH 自由基和 H 原子与 SF₆不能直接反应,但可与等离子体中 SF₆分解产生的 SF₅和 SF₄等发生反应^[7,8]. 有效防止了 SF₅与 F 的复合反应,使得 H₂O(g)-SF₆体系中 SF₆的降解明显.

分别向含 2.0 kPa SF。的反应器中充入一定量的 N₂ O₂或 A₃;混合均匀后分别在外施电压为 3000 V 的条件下放电 5 m in,观察外加气体量及种类对降解率的影响,结果如图 2(B)所示. 少量气体的加入 (外加气体的分压小于 SF。的初始分压)均可使降解率不同程度的提高. 但过量 N₂ O₂或 A₃的加入则 使得大部分电子的能量用于加热气体,而非为降解 SF₃提供能量^[5],从而表现为 SF₆降解率下降.

Ar在等离子体中会被激发^[6]:

$$Ar + e Ar + e$$

被激发的 A r原子与 SF。碰撞发生反应:

$$A\mathbf{\ddot{r}} + SF_6 = A\mathbf{r} + SF_5 + F$$

因此, 在加入少量 Ar的情况下, SF拥有了更多与带有能量的粒子碰撞的机会, 从而略微提高了其降

解率.

N2虽然也可以发生类似的激发过程:

 $N_2 + e$ $N_2^* + e$ N + N + e

但由于同时存在 N_2 的断键也会消耗电场中部分电子的能量^[9],因此,在 SF_6-N_2 体系中, SF_6 的降解效 果劣于 SF_6-A r体系.

由图 2(B)还可以看出, O₂对 SF₆的降解效果优于 N₂和 A₅, 当加入 2.0 kPaO₂时, 即与 SF₆的初始 分压比为 1:1时, SF₆的降解率可达 80%.

而 O_2 在等离子体中的初步反应与 N_2 类似^[4].

$$O_2 + e = O_2^* + e = O + O + e$$

虽然 O不能与 SF₆发生反应^[2], 但其可与 SF₆的分解产物 SF₅, SF₄和 SF₂等进行反应^[8,10,11], 使得 SF₆-- O_2 体系中 SF₆的降解率明显提高.

采用空气作为外加气体与 SF₆进行放电,如图 2(C)所示,初始分压在 1.3—28.2 kPa范围内,空 气 (采用钢瓶中的压缩空气,相对湿度 17%)的加入均可使降解率维持在 60% 以上.与图 2(B)比较可 以看出,加入初始分压为 5.0—28.2 kPa范围内的空气,降解效果要好于单纯加入 N₂,O₂或 A r

进一步分析可知, 8.2 kPa空气的加入使得 SF₆-A ir体系中的 SF₆降解率最大可达 7*3*%, 而占空气 20. *5*% 的 O₂此时分压为 1.7 kPa, 与 SF₆-O₂体系 (图 2(B)) 中的降解率最大时 O₂的分压值十分接近. 由此可见, O₂是空气中对 SF₆降解起主要作用的组分.

对于 SF₆-A i体系,考虑空气中的主要成分包括 78% N₂, 20.5% O₂, 0.934% A r,在 SF₆-A ir等离 子体中, N₂与 O₂还会发生以下反应^[4],

$$e + N_2 + O_2$$
 $N_2O + O + e$
 $e + N_2 + O_2$ $N_2 + 2O + e$

从而增加了放电气氛中 O的含量^[12],使得 O与 SF₄和 SF₄反应的几率增大,从而提高了 SF₀的降解率. © 1994-2011 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.nd 因此,外加空气在 5.0—28.2 kPa范围内, SF6的降解率好于外加 N2, O2或 A r 与其它体系类似,在 气压逐步增大之后降解率也存在略为下降的现象.实验结果表明,采用空气作为外加气体对 SF6进行 DBD降解,可以在比较大的气压范围内达到比较高的降解率.

图 2(A)的实验结果表明,水气对于 SF₆降解有明显贡献,因此,提高其在空气中的含量即空气 湿度的增加考察 SF₆-A ir体系对 SF₆降解率的影响.采用 28.2 kPa具有不同水气分压的空气与 2.0 kPa SF₆在外施电压 3000 V 的条件下放电 5 m in,结果如图 2(D)所示.随着空气中水气分压的升高,SF₆ 降解率明显增加.在 27℃时,水气分压为 1.3 kPa的空气(相对湿度 37%)可使 SF₆的降解率达 87%, 水气分压为 1.8 kPa的空气(相对湿度 51%)使 SF₆的降解率达 92%,此后降解逐渐趋于饱和,降解 率变化不大.由此可见,使用一定湿度的空气即可使 SF₆达到较好的 DBD 降解效果. 2.3放电产物分析

在外施电压 3000 V 的条件下,反应器内充入 2.0 kPa SF₆放电 5m in 采用红外光谱仪进行分析. SF₆的放电产物在 500—1600 cm^{-1} 区段的吸收光谱如图 3所示. SF₆-A ir体系与 SF₆体系放电产物的红 外吸收光谱相似,只是 SF₄和 SF₄峰面积有所增加,表现出 SF₆在空气气氛中降解更加明显.

a SO₂F₂, h SOF₂, c SF₆ d SF₄, e SOF₄, f SF₄ **Fig 3** FT-IR spectrum of discharge product of SF₆

按照所得的吸收光谱,通过相应物种的特征吸收峰^[12]可以辨识出放电产物包括: SF₄(1285 m⁻¹),SF₄(734 m⁻¹),SOF₂(1291—1352 m⁻¹),SOF₄(780—830 m⁻¹),SO₂F₂(1470—1530 m⁻¹),这与Kurte和 Huang等人^[9,11,13,14]通过火花放电降解 SF₆所得产物类似.与Huang^[9]的结果不同的是,放电产物中检测到了 SF₄的存在,尤其是与空气一起放电的产物吸收光谱中 SF₄(734 m⁻¹)更加明显,这与 Kurte的结果一致.

3 结论

介质阻挡放电处理 SF₆的结果表明,在没有其它气体存在的条件下,水气与 SF₆的初始分压比例 接近 1:1时,可使降解率接近 90%,而添加 28.2kPa水气、分压为 1.8 kPa的空气可使 SF₆降解 92%. 因此,将 SF₆与一定的空气混合进行 DBD降解效果明显,对空气加湿即可提高 SF₆降解率.纯 SF₆体 系与 SF₆-A ir体系的放电均会产生 SF₄, SF₄, SOF₂, SOF₄和 SO₂F₂等产物.

参考文献

- [1] Ravishankara A R, Sohmon S, Tumipseed A A et al., Atmospheric Lifetimes of Long-Lived Halogenated Species [J]. Science 1993, 259 (5092): 194–199
- [2] Dervos Constantine T, Vassiliou Panayota, Sulfur H exafluoride (SF₆): G bbal Environmental Effect and Toxic Byproduct Formation
 [J]. Journal of A ir and Waste M anage A sociation, 2000, 50: 137-141
 © 1994-2011 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

- [3] A mold Susan T, Viggiano A A, Turbu lent Ion Flow Tube Study of the Cluster M ediated R eactions of SF₆⁻ with H₂O, CH₃OH, and C₂H₅OH from 50 to 500 Torr [J]. Journal Physical Chemistry A sociation, 2001, 105 3527-3531
- [4] 徐学基,诸定昌,气体放电物理 [M].上海:复旦大学出版社, 1996
- [5] Zhao Gui-Bing Janardhan Garik ipati S V B, Hu Xudong et al, The Effect of G as Pressure on NO Conversion Energy Efficiency in Nonthermal Nitrogen Plasma [J]. Chemical Engineering Science, 2005, 60: 1927–1937
- [6] Shih M in liang Lee W en-Jhy, Chen Chuh-Yung Decomposition of SF₆ and H₂ SM ixture in R adio Frequency Plasma Environment [J]. Ind Eng Chem. Res., 2003, 42: 2906–2912
- [7] Stankiew iczM, Rius i Riu J. Alvarez Ruiz J et al. Relaxation Dynamics of SF₆ Studied by Energy-Resolved Electron Ion Coincidence Technique [J]. Journal of Electron Spectroscopy and Related Phenomena, 2004, 137–140: 369–375
- [8] Van Brunt R J. Herron JT. Fundamental Processes of SF₆ Decomposition and Oxidation in G low and Corona D ischarges [J]. Transactions on Electrical Insulation, 1990, 25 75-94
- [9] Huang Li, Zhu Lili, Pan Xunxi et al., One Potential Source of the Potent Greenhouse G as SF₅ CF₃: The Reaction of SF₆ with Fluorocarbon under Discharge [J]. A two pheric Environment 2005, 39, 1641–1653
- [10] Lee H M, Chang M B, W u K Y, A batement of Sulfur H exafluoride Emissions from the Semiconductor M anu facturing Process by A tn ospheric Pressure P has as [J]. Journal of the Air& Waste M anagement A ssociation, 2004, 54: 960-970
- [11] Pradayol C, Casanovas A M, Aventin C et al, Production of SO₂F₂, SOF₄, (SOF₂ + SF₄), S₂F₁₀, S₂OF₁₀ and S₂O₂F₁₀ in SF₆ and (50-50) SF₆-CF₄ Mixtures Exposed to Negative Coronas [J]. Journal of Physics Applied Physics, 1997, **30**, 1356-1369
- [12] PepiFederico, RicciAndreina, DiStefan o Marco et al., Sulfur H exafluoride Corona Discharge Decomposition Gas-phase Ion Chemistry of SOF_x^+ (x = 1-3) Ions [J]. Chemical Physics Letters, 2003, **381**: 168–176
- [13] Kutte R, Heise H M, Klockow D, Analysis of Spark Decomposition Product of SF₆ Using Multivariate M id Infrared Spectrum Evaluation
 [J]. Journal of Molecular Structure, 1999. 480-481: 211-217
- [14] Kurte R, Heise H M, Klockov D, Quantitative Infrared Spectroscopic Analysis of SF₆ Decomposition Products Obtained by Electrical Partial D ischarges and Spark s U sing PLS-C alibration [J], Journal of M olecular Structure, 2001, 565-566: 505-513

DECOMPOSITION OF SF6 BY DIELECTRIC BARRIERS DISCHARGE

SHEN Yan HUANG Li ZHANG Ren-xi HOU Hui-qi

(h stitute of Environmental Science, Greenhouse Gas Research Center, Fudan University, Shanghai 200433, China)

ABSTRACT

The optimal parameters of the decomposition of SF_6 were investigated by changing the reaction conditions of dielectric barriers discharge(DBD) such as the applied voltage discharge time initial pressure of SF_6 , and pressure of different additive gases(Ar, N₂, O₂, H₂O, air). GC-TCD was used to quantitative determ ination of SF_6 . The results indicated that decomposition of SF_6 can be improved by increasing applied voltage prolonging discharge time, reducing the pressure of medium gas or mixing trifle amount of additive gases Further study on discharging with air in different hum if ity demonstrated that the addition of 28. 2 kPa air with a relative hum if ity of 51% can make the decomposition rate of 2.0 kPa SF_6 up to 92%. SF_4 , SF_4 , SOF_2 , SOF_4 , SO_2F_2 were detected by FT-R as discharge by products

Keywords SF₆, dielectric barriers discharge (DBD), decomposition.