# 燃煤电厂冲灰水系统防垢技术研究\*

唐永明 陈 敏 杨文忠 尹晓爽 刘 瑛 俞 斌 王锦堂 (南京工业大学理学院 南京, 210009)

摘 要 研究了粉煤灰在水中的溶解行为,结果表明: (1) 灰水混合液在不同转速下搅拌 20m in后,pH 值、电导率、碱度、C  $a^{2+}$  浓度等指标不再明显变化; (2) 向混合液中加入 N  $a_2$   $CO_3$  可有效降低 C  $a^{2+}$  的浓度,而且 N  $a_2$   $CO_3$  的投加量与 C  $a^{2+}$  浓度之比(摩尔比)为 0 8 1 时,混合液中 C  $a^{2+}$  即可降至 15m g  $\bullet$   $\Gamma$  1以下; (3) 向灰水分离后的清液中通入  $CO_2$  (6m in) 可将全部碱性物质转化为  $HCO_3$  , 并溶入大量  $CO_2$  ,用此水冲灰可达到与投加 N  $a_2$   $CO_4$ 相似的效果.

关键词 冲灰水, 结垢, 碳酸钠, 二氧化碳.

水力输灰是燃煤电厂最常用的除灰方式,其工作方式是将燃烧后的粉煤灰用水稀释,再用灰浆泵送往储灰场中,灰和水自然分离后,水用泵输回场区再冲灰<sup>[1]</sup>,这种闭路循环的方式正在被广泛采用<sup>[2]</sup>.在上述的除灰系统中,往往伴随着输灰管和输水管的结垢问题,将影响系统的正常运行.

通过向灰水中加入碳酸钠可有效降低灰水中  $Ca^{2+}$  的浓度,使生成的  $CaCO_3$ 与煤灰在沉降池中一同沉降,防止  $CaCO_3$ 灰垢在灰管中形成.如果在沉降出水中通入  $CO_2$ 则可大大提高冲灰水中  $HCO_3$  的浓度,在冲灰时  $HCO_3$  将转化为  $CO_2^{2-[3]}$ ,起到与碳酸钠相似的效果,可降低碳酸钠的消耗量.

本文研究了粉煤灰与水混合后搅拌速度和时间对冲灰水的影响. 通过向冲灰水中加入碳酸钠, 研究碳酸钠的投加量对冲灰水水质的影响. 并通过向沉降上清液中通入  $CO_2$ , 研究  $HCO_3$  的生成及其对冲灰水水质的影响.

### 1 实验方法

将粉煤灰在 120℃下烘干 2h,然后进行 X射线荧光光谱 (XRF,瑞士 ARL9800XP+ ) 分析,粉煤灰的 组 成 为: SiO<sub>2</sub> 49.87%; A ½O<sub>3</sub> 31.00%; Fe<sub>2</sub>O<sub>3</sub> 4.22%; CaO 3.36%; MgO 0.76%; K<sub>2</sub>O 1.31%; Na<sub>2</sub>O 0.42%; T O<sub>2</sub> 1.27%; M nO<sub>2</sub> 0.032%; P<sub>2</sub>O<sub>5</sub> 0.21%.

将粉煤灰与水按照水灰比为 20:1投入机械搅拌器中,在转速分别为 500 r\* m in 1, 800 r\* m in 1, 80

在转速为  $800\,\mathrm{r}^{\bullet}$   $\mathrm{m}\,\mathrm{in}^{-1}$ 时,向混合液中加入不同量的碳酸钠  $(\mathrm{A}\,.\,\mathrm{R}\,)$ ,搅拌  $30\mathrm{m}\,\mathrm{in}$ ,测定加入碳酸钠后混合液中电导率、碱度和  $\mathrm{Ca}^{2^{+}}$ 浓度随时间的变化.

保持水灰比 20: 1、转速  $800\,\mathrm{r}^{\bullet}$  m in  $^{-1}$ 、搅拌  $20\mathrm{m}$  in,向混合液中加入不同量的阴离子聚丙烯酰胺 (PAM,法国 SNF公司),在  $100\mathrm{r}^{\bullet}$  m in  $^{-1}$ 下搅拌  $30\mathrm{s}$  沉降  $10\mathrm{m}$  in,取上层清液,测定  $\mathrm{Ca}^{2^{+}}$ 、碱度.

### 2 转速和搅拌时间对混合液的影响

图 1表明,在较低转速下,如  $500r^{\bullet}$  m in  $^{-1}$ 和  $800r^{\bullet}$  m in  $^{-1}$ , pH 值、碱度、电导率和  $Ca^{2+}$ 浓度均随搅拌时间的增加而增大,但增大的幅度在 20m in后趋缓;而在  $1200r^{\bullet}$  m in  $^{-1}$ ,搅拌 20m in后, pH 值、碱度、电导率和  $Ca^{2+}$ 浓度基本趋于稳定;若转速增至  $1500r^{\bullet}$  m in  $^{-1}$ ,搅拌 20m in n pH 值、碱

<sup>2005</sup>年8月23日收稿.

<sup>\* &</sup>quot;十五" 国家科技攻关项目 (Na 2004BA 313B14).

# 度、电导率和 $Ca^{2+}$ 浓度均达到最大值,再继续延长搅拌时间,4种指标均出现不同程度的下降。

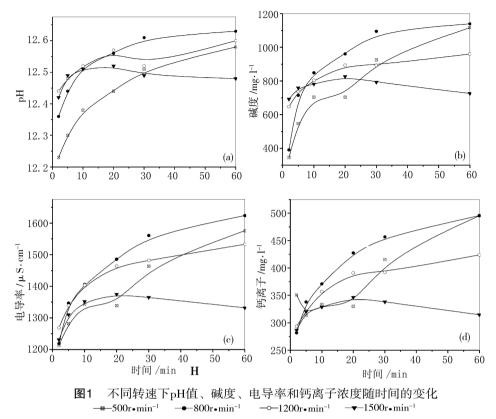
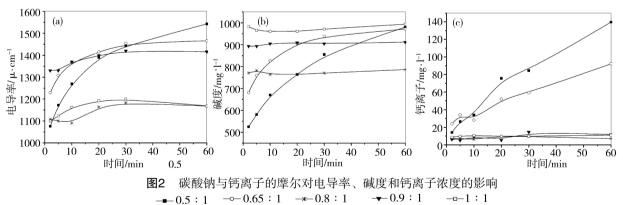




Fig.1 Curves of pH, alkalinity, conductance and Ca<sup>2+</sup> concentration depending on time at different rotat speed

# 3 加入 Na<sub>2</sub>CO<sub>3</sub>对混合液的影响

加入  $Na_2CO_3$ 可增加混合液中  $CO_3^{2-}$  的浓度,并与  $Ca^{2+}$  反应生成  $CaCO_3$ 沉淀,降低混合液中  $Ca^{2+}$  的浓度,减缓灰管结垢的趋势。图 2为不同  $Na_2CO_3$ 与  $Ca^{2+}$  的比值(摩尔比)下的实验结果。



**Fig.2** Effect of Na<sub>2</sub>CO<sub>2</sub>:Ca<sup>2+</sup>(mol) on conductance alkalinity and Ca<sup>2+</sup> concentration

图 2(a, b)表明,向混合液中加入的  $N_{a_2}CO_3$ 量与  $Ca^{2^+}$ 量之比为 0.5:1和 0.65:1时,电导率和碱度均随搅拌时间的增加而增大,且在搅拌 30m in后趋于稳定,说明此时  $CaCO_3$ 的沉淀反应已基本完成,但残余  $Ca^{2^+}$ 量仍然较大(图 2c).继续增加  $Na_2CO_3$ 量至其与  $Ca^{2^+}$ 量之比为 0.8:1,混合液的电导率和碱度最低,说明  $CaCO_3$ 的沉淀已全部完成,混合液中  $Ca^{2^+}$ 浓度已低于  $15mg^{\bullet}$   $\Gamma^1$ ,若再增大  $Na_2CO_3$ 量,并不能增加  $Ca^{2^+}$ 的去除程度,甚至会使混合液中  $Ca^{2^+}$ 的浓度略有增大.这是由于加入  $Na_2CO_3$ 将对混合液中  $Ca^{2^+}$ 浓度产生两种相反的影响:一方面  $Na_2CO_3$ 的加入造成  $Ca^{2^+}$ 的浓度下降,另一方面, $Ca^{2^+}$ 浓度的下降又导致游离  $CaO_3$ 的加速溶解生成更多的  $Ca^{2^+}$ ,因此,必然存在一个  $Na_2CO_3$ 的

最佳用量,在此用量下混合液中  $Ca^{2+}$  浓度最低,低于或高于此用量都将使混合液中  $Ca^{2+}$  浓度偏高.

向混凝沉淀上清液中通入  $CO_2$ , 6m in E1. E1 值降至 7.0以下,酚酞碱度降至 9, 此时水中所有的碱性物质均转化为 E1E20; 并存在大量溶解 E20; 向通气 1020 向通气 1030 1030 加 in 1030 104 加 in 104 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 1050 105

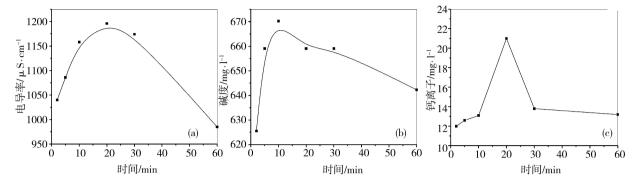



图 3 混合液的电导率、碱度和钙离子浓度随时间的变化

Fig. 3 Curves of conductance, a kalin ity and Ca<sup>2+</sup> concentration depending on time in mixed soliution

在搅拌 20n in之前,混合液的电导率和碱度均随时间的增加而增大,这是由于游离的  $CO_2$ 与煤灰中游离的 CaO反应生成  $Ca(HCO_3)_2$ 造成的。但随游离 CaO 溶解量的增大,  $CO_2$ 迅速被消耗和逸出,混合液中  $Ca^{2+}$ 浓度迅速增大, $HCO_3^-$  迅速转化为  $CO_3^{2-}$  ,  $Ca^{2+}$  与  $CO_3^{2-}$  结合生成  $CaCO_3$ 沉淀,使混合液电导率和碱度迅速下降。混合液中的  $Ca^{2+}$  也显示了相似的趋势。搅拌 30m in后,混合液中  $Ca^{2+}$  浓度已降至 14m g•  $\Gamma^1$ 以下。因此,通过通入  $CO_2$ 可达到与投加碳酸钠相似的效果。

综上所述,在水灰比为 20:1、搅拌速度 800 r• m in<sup>-1</sup>下,向混合液中加入 N a CO<sub>3</sub>,使 N a CO<sub>3</sub>与 Ca<sup>2+</sup>浓度之比为 0.8:1,搅拌 30m in 可将 Ca<sup>2+</sup> 浓度降至 15m g•  $\Gamma$  以下.另外,向混凝上清液中通入 CO<sub>2</sub> (6m in) 可使碱性物质全部转化为  $HCO_3$ ,并溶入大量  $CO_2$ ,达到与投加 N a CO<sub>3</sub>相似的效果.

#### 参考文献

- [1] 周晓蔚, 罗运柏, 何蓉, 火电厂灰水系统防垢技术的现状 [J]. 工业水处理, 1999, 19 (5): 3-5
- [2] 朱志平、刘明、陈云清、燃煤电厂灰水闭路循环系统防垢新技术 [J] . 热力发电、1994 (6): 47-49
- [3] 陈亚非、高翔、方梦祥等,火电厂水力输灰系统阻垢防垢研究 [J] . 热能动力工程、1999、14 (4): 260—262

# STUDY OF SCALE INHIBITION IN ASH WATER OF POWER STATION

TANG Yong ming CHEN M in YANG Wen-zhong YN X iao-shu ang LIU Ying YU B in WANG Jin-tang (College of Science, Nan jing U n ivers ity of Technology, Nan jing 210009, China)

#### **ABSTRACT**

The dissolution behavior of coal ash was studied, and in order to reduce concentration of  $Ca^{2+}$  in composite solution of ash and water,  $Na_2CO_3$  was added.  $CO_2$  was aerated in the solution after ash was separated, and new ash was dissolved again. It was found that 1) pH, conductance, a kalinity and  $Ca^{2+}$  achieved stability after composite solution was stirred for 2Om in, 2) Concentration of  $Ca^{2+}$  in composite solution was reduced by addition of  $Na_2CO_3$ , and when the mol ratio of  $Na_2CO_3$  and  $Ca^{2+}$  was 0. 8: 1, concentration of  $Ca^{2+}$  was reduced to less than  $15 \text{ mg}^{\bullet}$   $\Gamma^{-1}$ ; 3) All a kalinity was converted to  $HCO_3^-$ , and  $CO_2$  was dissolved in the solution in which ash was separated after  $CO_2$  was aerated for 6m in. The effect of  $CO_2$  on ash dissolution resembled of  $Na_2CO_3$ .

Keywords ash water, scale, Na<sub>2</sub>CO<sub>3</sub>, CO<sub>2</sub>.