SO_4^2 / TiO_2 光催化还原 Cr(VI)的研究^{*}

江 芳 郑寿荣 郑 正** 郭照冰 袁守军 帖靖玺 陈立强 (南京大学环境学院, 污染控制与资源化研究国家重点实验室, 南京, 210093)

摘 要 将溶胶-凝胶法制备的 SO_4^{-}/TiO_2 在不同温度下焙烧得到了具有不同特性的催化剂,用 X 射线衍射 (XRD)、热重-差热分析(TG-DTA)、氨气程序升温脱附(NH₃-TPD)、静态吸附等手段对催化剂进行了表 征.研究了不同特性的 SO_4^{-}/TiO_2 催化剂光催化还原 Cr(VI)的行为,并对其影响因素进行了分析.结果表 明: SO_4^{-}/TiO_2 在 300—600°C 下焙烧均具有较高的催化效率,而在 700℃及 800℃下焙烧其催化活性显著降 低. SO_4^{-}/TiO_2 的这种催化特性是由其吸附性能、晶相组成及表面酸量决定的. 关键词 SO_4^{-}/TiO_2 ,光催化,Cr(VI),还原,焙烧温度.

目前,处理废水中 Cr(Ⅵ)的方法主要有:化学还原法、离子交换法、活性炭吸附法等.其中化 学还原法操作复杂,会消耗大量的还原药剂并产生难以回收的含铬污泥,而离子交换法和吸附法只是 从废水中分离出 Cr(Ⅵ),并未使 Cr(Ⅵ)还原成毒性较小的 Cr(Ⅲ). SO₄²⁻/TiO₂因具有制备工艺简单、 热稳定性好、能抑制颗粒随焙烧温度升高快速长大等优势,有效地提高了 TiO₂的催化效率,已被用于 催化降解环境中的有机污染物^[1-4].

本文通过采用不同的焙烧温度,获得了具有不同特性的 SO₄²⁻/TiO₂催化剂,并将其和 Cr(VI)的光催化还原行为进行了关联.

1 实验部分

1.1 催化剂的制备

室温下将 40ml 钛酸丁酯 (CP) 溶解在 200ml 异丙醇 (AR) 中, 接着缓慢加入 20ml 异丙醇和 20ml 蒸馏水的混合液, 搅拌 30min 后, 过滤、洗涤、烘干得到 TiO₂干凝胶.

将 1g 干凝胶加到 5ml 的 0. 2mol · 1⁻¹稀硫酸中浸渍 24h,浸渍后的凝胶经 80°C,12h 烘干后分别在 300—800°C 下焙烧 4h,得到不同特性的 SO₄²⁻/TiO₂催化剂,以 SO₄²⁻/TiO₂-x 表示, x 表示焙烧温度.

1.2 催化剂的表征

样品的 XRD 分析使用日本理学 RigaKu 公司 D/max-RA 型 X 射线衍射仪, Cu 靶 (K_{a1} , λ = 1.54056Å).操作条件: 40kV, 100mA, 扫描范围: 20—75°; TG-DTA 分析在 NETZSCH STA 449C 型 热重-差热分析仪上进行:加热速度: 10℃ · min⁻¹,温度范围: 20—800℃; NH₃-TPD 实验在一个自制的 TPD 装置上进行. 100mg 样品在 N₂氛围中于 450°C 活化 1h,冷却到 100°C 后开始吸附 NH₃,吸附 15min 后于 150°C 吹扫 1h,接着以 10°C · min⁻¹的加热速度从 150°C 升温至 450°C, NH₃的脱附量采 用热导检测器检测.

1.3 吸附实验

将 50ml pH 为 2.5,初始浓度为 1—70 mg · l⁻¹的含 Cr(VI)溶液置于 100ml 的锥形瓶中,加入 0.05g 的 SO₄²⁻/TiO₂催化剂,于恒温振荡器上(20℃)振荡 24h. 过滤除去催化剂后用分光光度法分 析溶液中 Cr(VI)的浓度. Cr(VI)在 SO₄²⁻/TiO₂催化剂上的吸附量可用方程(1)计算:

$$Q_{\epsilon} = (C_0 - C_{\epsilon}) \quad V/M \tag{1}$$

式中, Q_{\circ} 为平衡吸附量 (mg·g⁻¹); C_{0} 与 C_{\circ} 分别为 Cr(VI)的初始浓度与平衡浓度 (mg·l⁻¹); V 为

²⁰⁰⁴年11月18日收稿.

^{*}国家自然科学基金(10275034)资助项目. * * 通讯联系人.

溶液的体积 (1); M 为所用的催化剂的质量 (g).

1.4 光催化反应实验

光催化反应实验在自制的 NDC 型光反应器中进行,用 500W 高压汞灯作为光源.取 500ml pH 为 2.5, Cr (Ⅵ) 浓度为 40mg · 1⁻¹的溶液与 0.5g 的 SO₄²⁻/TiO₂催化剂在反应器中混合,搅拌 100min,达到吸附平衡后,开启汞灯,每隔一定时间取样一次,过滤除去催化剂颗粒后用分光光度法分析溶液 中 Cr (Ⅵ) 的浓度.总的光反应时间约为 180min.

2 结果与讨论

2.1 催化剂的 XRD 和 TG-DTA 分析

图 1 为不同焙烧温度下 SO₄²⁻/TiO₂催化剂的 XRD 图谱. 其中衍射角 20 为 25.4°, 37.8°, 48°分别 归属为锐钛矿相的(101), (004), (200)晶面的衍射峰, 27.5°, 36.4°, 41.2°为金红石相的 (110), (101), (111) 晶面的衍射峰. 从图 1 可以看出:随着焙烧温度的升高,样品中的锐钛矿相含量逐渐 增加,结晶愈来愈完全. 到 800°C 时,锐钛矿全部转变成金红石.

选取 CuO 作为内标物,以 950°C 焙烧下 TiO₂中所含金红石的量为 100% 计,将一定质量比的催化 剂和 CuO 粉末充分混合后作 XRD 分析^[5],通过催化剂与 CuO 最强衍射峰相对二者质量的比较,可以 得到相应的晶相含量 (图 2).

催化剂的平均晶粒尺寸大小可以根据 Scherrer 公式^[6]求得:

$$d = k\lambda / (B \cdot \cos\theta) \tag{2}$$

式中, d为晶粒的平均直径(Å); k是常数(0.89); λ 为X射线的波长($\lambda = 1.54056$ Å); B为最强 衍射峰的半峰宽(弧度); θ 为最强衍射峰对应的角度(度).计算结果列于表1.从表1可以看到: 随着焙烧温度的增加,催化剂晶粒尺寸逐渐增大,800℃焙烧后的SO₄²⁻/TiO₂晶粒的直径是300℃下焙 烧的11倍多.晶粒尺寸的增大将使颗粒的比表面积减小,从而影响催化剂的吸附性能.

表 1 不同焙烧温度下 SO;"/TiO。的半均晶	粒上	र न	•
---------------------------	----	-----	---

Tabie 1	Average crystallite size of SC	P_4^2 /TiO ₂ catalysts at different	calcination temperatures
---------	--------------------------------	--	--------------------------

晶粒尺寸/nm 5.7 6.0 6.2 10.3 31.3 67.4	焙烧温度/℃	300	400	500	600	700	800
	晶粒尺寸/nm	5.7	6.0	6.2	10. 3	31.3	67.4

图 3 为催化剂的 TG-DTA 曲线. TG 曲线上有两个失重峰,从室温到 250°C 附近有一个 13.6% 的重量损失,这主要是催化剂中吸附水的损失;此外,在 560—750°C 还有一个 6.64% 的重量损失,这主要是因为催化剂上的 SO²⁻ 的分解或脱附; DTA 曲线显示:在 760°C 左右有一个尖锐的放热峰,这是锐钛矿相向金红石相的晶相转变过程中的放热所致^[2].

390

2.2 吸附等温线

不同焙烧温度下, SO_4^2 / TiO₂对 Cr(VI)的吸附等温线可按 Langmuir 吸附等温方程拟合, 拟合结果 列于表 2. Langmuir 吸附等温方程^[7] 如式(3) 所示:

$$Q = Q_0 bC/(1+bC) \tag{3}$$

式中, Q 为平衡浓度为 C 时的吸附量 (mg・g⁻¹); Q_0 为催化剂的最大吸附量 (mg・g⁻¹); b 为吸附 常数 ($1 \cdot mg^{-1}$).

从表2可以看出,随着焙烧温度的升高,催化剂的吸附能力(Q₀)逐渐降低,这主要是因为随 着焙烧温度的升高晶粒逐渐聚集长大,造成比表面积的减少所致.

表2 Langmuir 吸附等温方程的参数

Table 2 Parameters of Langmuir adsorption isotherms

催化剂	$SO_4^2 - /TiO_2 - 300$	$SO_4^2 - /TiO_2 - 400$	$SO_4^2 - /TiO_2 - 500$	$SO_{2-4}/TiO_{2} - 600$	$SO_4^{2-}/TiO_2 - 700$	$SO_4^2 - /TiO_2 - 800$
$Q_0/\mathrm{mg}\cdot\mathrm{g}^{-1}$	4.25	4.15	3.93	2.40	0. 77	0. 24
b∕l • mg ⁻¹	0. 032	0. 0325	0. 036	0. 051	0. 05	0.18

2.3 Cr(VI)的光催化降解

经分析: SO_4^2 /TiO₂光催化降解 Cr(VI)的反应符合假一级反应动力学,这与 Ku 等^[8]采用 TiO₂为催化剂获得的结果一致. 速度方程可表示如下:

$$r = dC/dt = K_{\rm app}C \tag{4}$$

式中, K_{aso} 为表观速度常数, C 为光照时间为 t 时 Cr(Π)的浓度 (mg·l⁻¹).

两边积分可得:

$$\ln C = \ln C_0 - K_{\rm app} \cdot t \tag{5}$$

根据直线斜率可以求出表观速度常数 K_{app},不同焙烧温度下催化剂的 K_{app}列于表 3.

表3 不同焙烧温度下 SO_4^2 / TiO_2 的表观速度常数 (K_{app})

Table 3	K	of SO_4^2	/TiO ₂	catalysts	at	different	calcination	temperature
---------	---	-------------	-------------------	-----------	----	-----------	-------------	-------------

焙烧温度/℃	300	400	500	600	700	800
K_{app}/min^{-1}	0.0063	0. 0067	0. 0079	0.0073	0.0032	0.002

从表 3 可以看出,催化剂在 300—600°C 下焙烧,其 K_{app} 变化不大,继续升高焙烧温度将使 K_{app} 明显降低,其中 SO₄²⁻/TiO₂-500 的 K_{app} 值最大(0.0079min⁻¹),这一表观的降解效果可以从以下三个方面进行分析.(1)吸附量:一般来说,催化剂吸附量增大将会提高光催化的效率^[9],这主要是因为光催化反应都是发生在催化剂的表面,吸附是光催化反应的前提步骤.然而从表 2 和表 3 中发现,吸附量和 K_{app} 并不呈线性关系,如:SO₄²⁻/TiO₂-500 的最大吸附量为 3.93mg · g⁻¹(低于 SO₄²⁻/TiO₂-300和 SO₄²⁻/TiO₂-400),却具有最大的 K_{app} 值,因此,除了吸附量外,还有其它因素影响光催化效果.

(2) 晶相组成:通常认为锐钛矿相的催化活性高于金红石相,为了直观的分析催化剂中锐钛矿晶型 对光催化效果的影响,我们引入了内在速度常数(K_{i_n})这一概念,以消除吸附量的影响:

 $K_{in} = K_{ann} / (Q_0 \cdot b)$

(6)不同催化剂的锐钛矿含量与内在速度常数(K_{in})的关系见图 4,从图 4 可以看出,随着锐钛矿含量的 增加,内在速度常数逐渐增大,说明锐钛矿含量的增加有利于光催化活性的提高.注意到 SO₄⁻/TiO₅-700 偏离了该线性增加,这主要是由于 SO_4^{2-}/TiO_2 催化剂上的 SO_4^{2-} 的分解或脱附造成了催化剂表面酸 性位的减少. (3) 表面酸量的影响:苏文悦等^[10]用 IR 和 Raman 光谱研究了 SO₄²⁻/TiO₂催化剂表面的 酸性,结果表明:由于 TiO₂上的 S = O 键具有很强的诱导效应,使得表面 Ti⁴⁺的 Lewis 酸性增强,当 催化剂吸附少量水时,水分子中的 H⁺极易解离出来而形成 Bronsted 酸中心,从而使催化剂表面酸度 增强.为了直观的说明 SO4-/TiO,表面的酸量对光催化还原 Cr(VI)的影响,我们采用 Na,CO,溶液将 SO₄⁻/TiO₂表面的 SO₄⁻洗脱下来, 然后在相同晶型条件下(XRD 结果显示洗脱前后催化剂具有相同

图 5 为 SO₄⁻⁻/TiO₂-500 用 Na₂CO₃溶液洗脱前后的 NH₃-TPD 曲线,曲线的积分面积代表催化剂表 面酸量的大小,从图5可以看出,用 Na,CO,溶液可以有效的降低 SO₄⁻/TiO,催化剂表面的酸量.

的晶型)分析表面酸性的影响.

图 5 用 Na₂CO₃ 洗脱 SO₄⁻/TiO₂-500 前后的 NH₃-TPD 曲线 Fig. 5 NH₃-TPD profiles of SO_4^{2-}/TiO_2 -500 catalyst before and after washed with Na, CO, solution

图 6 为 SO₄⁻/TiO₂-500 用 Na₂CO₃溶液洗脱前后 Cr(N)的吸附等温线和光催化降解曲线. 图 6 (a) 表明, SO₄⁻/TiO₂-500 用 Na₂CO₃溶液洗脱后, Cr(VI) 在催化剂上的吸附量大大增加(从 3.93 mg·g⁻'增加到 5.51mg·g⁻¹),这主要是因为洗脱后,SO₄²⁻从催化剂表面洗脱下来让出了吸附位的缘 故;然而,从图6(b)中可以清楚的看出:虽然洗脱后 SO²⁻/TiO,-500 对 Cr(VI)的吸附量增加,但 是去除率却比洗脱前低(180min 对 Cr(Ⅵ)的去除率从洗脱前的 80% 降到洗脱后的 60%).因此, SO_4^2 /TiO₂表面酸量的多少直接影响到催化剂活性的高低。

图 6 用 Na₂CO₃ 洗脱 SO₄²⁻/TiO₂-500 前后 Cr(VI) 的吸附等温线和光催化降解曲线 (a) 吸附等温线, (b) 光催化降解曲线; (1) Na₂CO₃ 洗脱前, (2) Na₂CO₃ 洗脱后 Fig. 6 Adsorption isotherms and photo-reduction efficiency of Cr(VI) on SO_4^2/TiO_2-500

catalyst before and after washed with Na₂CO₃ solution

4期

3 结论

(1) SO_4^{2-}/TiO_2 表面的 SO_4^{2-} 从 560°C 开始分解或脱附,在 750°C 左右分解或脱附完全.而用 Na_2CO_3 溶液洗脱 SO_4^{2-}/TiO_2 -500 后将使催化剂还原 Cr(VI)的效率降低,表明 SO_4^{2-}/TiO_2 表面较高的酸 量有利于 Cr(VI)催化还原效率的提高.

(2) SO_4^{2-}/TiO_2 光催化还原 Cr(Π)的效率是由催化剂的吸附量、锐钛矿含量以及表面酸量共同 决定的.

参考文献

- [1] 徐自力,张家骅,杨秋景等,SO₄²⁻/TiO₂对SO₂ C₇H₁₆ TiO₂复相光化学反应的影响.环境化学,2003,22 (5):450-453
- [2] Yamazaki S, Fujinaga N, Araki K, Effect of Sulfate Ions for Sol-gel Synthesis of Titania Photocatalyst. Appl. Catal. A, 2001, 210 (3): 97-102
- [3] Colon G, Hidalgo M C, Navio J A, Photocatalytic Behaviour of Sulphated TiO₂ for Phenol Degradation. Appl. Catal. B, 2003, 45 (1): 39-50
- Samantaray S K, Mohapatra P, Parida K, Physico-Chemical Characterisation and Photocatalytic Activity of Nanosized SO₄²⁻/TiO₂ towards Degradation of 4-Nitrophenol. J. Mol. Catal. A, 2003, 198: 277-287
- [5] 胡恒亮,穆祥祺,X射线衍射技术.北京:纺织工业出版社,1988,74-77
- [6] Gervais C, Smith M E, Pottier A et al., Solid-State Ti NMR Determination of the Phase Distribution of Titania Nanoparticles. Chem. Mater., 2001, 13: 462-467
- [7] Chen H Y, Zahraa O, Bouchy M et al., Adsorption Properties of TiO₂ Related to the Photocatalytic Degradation of Organic Contaminants in Water. J. Photochem. Photobiol. A, 1995, 85: 179-186
- [8] Ku Y, Jung I, Photocatalytic Reduction of Cr (VI) in Aqueous Solutions by UV Irradiation with the Presence of Titanium Dioxide. Water Res., 2001, 35 (1) : 135-142
- [9] Fox M A, Dulay M T, Heterogeneous Photocatalysis. Chem. Rev., 1993, 93 (1): 341-357
- [10] 苏文悦,傅贤智,魏可镁,SO^{4~}/TiO₂固体酸的红外和拉曼光谱研究.光谱学与光谱分析,2000,20(6):840-841

STUDY ON PHOTO-REDUCTION OF Cr(VI)CATALYZED BY SO_4^{2-}/TiO_2

JIANG Fang ZHENG Shou-rong ZHENG Zheng GUO Zhao-bing

YUAN Shou-jun TIE Jing-xi CHEN Li-qiang

(State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210093)

ABSTRACT

In this study, SO_4^{2-}/TiO_2 photocatalysts were prepared using the sol-gel method followed by calcination at different temperatures. The behavior of Cr (VI) photo-reduction catalyzed by these catalysts was studied. XRD, TG-DTA, NH₃-TPD and static adsorption were used to characterize SO_4^{2-}/TiO_2 catalysts. Results revealed that SO_4^{2-}/TiO_2 catalysts calcined at 300°C to 600°C showed good photocatalytic efficiency. For catalysts calcined at 700°C to 800°C, a decreased catalytic activity was observed. The catalytic efficiencies of the photocatalysts are related to their Cr (VI) adsorption capacities, crystalline phase content and surface acidity.

Keywords: sulfated titania, photocatalysis, Cr(VI), photo-reduction, calcination temperature.