对硫磷的紫外光解研究

梁舒萍 关少玲

(佛山科技学院化学系、佛山、528000)

摘 要

采用³¹P NMR 诺推测对硫磷的光解机理,拟合了对硫磷初级光解的动力学方程。 详细地研究了光催化剂、酸度、溶解氧等因素对光解速率的影响。

关键词:对硫磷,光解,机理、31P NMR 清.

光解作用是农药在环境中消解的一个重要过程,对农药在大气及水环境中的残留与 归宿起着决定性作用.对硫磷农药在环境中的降解人们已作了比较多的研究^[1-2],但从 机理方面来阐述较少.本文用³¹P NMR 研究对硫磷农药的光催化降解机理,并研究各种 光解催化剂、酸度及溶解氧的浓度对光解速率的影响.

1 实验部分

1.1 仪器与试剂

DRX-400 型核磁共振仪 (德国-瑞士 BRUKER 公司) pHS-2 型酸度计,紫外灯,光解器 (自制). 对硫磷标准样品,TiO₂,WO₃,ZnO (分析纯).

1.2 实验方法

^{31P} NMR 谱的测定 取新鲜配制的浓度为 2.5 × 10mol·1⁻¹的对硫磷丙酮溶液 500ml 置于光解器中(铝片做成,内装紫外灯,选波长 254nm 的紫外线照射),实验控制恒温水浴温度 25℃,光照过程中定时取样,用核磁共振仪测定其³¹P NMR 谱。实验所用的溶剂为(CD₁)₂CO,85% H₄PO₄作外标。

光解产物的测定 对硫磷光解完全后以磷酸根的形式存在,用钼蓝法 $^{[3]}$ 测定 PO_4^{3-} 的含量。

2 结果与讨论

2.1 对硫磷在酸性水溶液中光解反应历程的初步推测 对硫磷在酸性水溶液中光解反应历程的初步推测如下:

由图 1 可以看出,随着光解反应的进行,³¹ P NMR 谱中峰的数量和面积均发生了相应的变化. 反应开始阶段,图 1 中有一很强的 A 吸收峰和一个很弱的 B 吸收峰;随着光解反应的进行,B 峰的强度逐渐增强,C, D 峰也相继出现;当反应了相当长的时间后,A 峰几乎完全消失,B 峰相应也变小,只有 D 峰的强度最大.

综观整个光解过程的³¹P NMR 谱,共有四个位置上出现³¹P 峰,为此可以确定光解过程分三步完成,且每一步骤得到的光解产物均可得到验证.

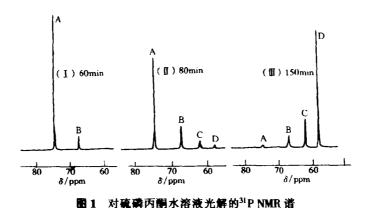


Fig. 1 31 P NMR spectrum observed during photodecomposing of paration in the acetone aqueous solution

未光解反应前,原始物 A 在丙酮溶液中的 31 P 化学位移为 74.38ppm; 中间产物 B, C 的 31 P 化学位移分别为 67.00ppm 和 61.80ppm; 光解最后产物 D 的 31 P 化学位移为 58.08ppm. 从文献中查得 $[PO_4]^{3-}$ 的 31 P NMR 谱化学位移为 58 ppm $^{[4]}$, 正好与图 1 中 D

的化学位移较原始物 A 向高场移动、根据 David 提出的化学位移公式可以计算³¹P 的化学位移^[5],计算值与实测值也完全吻合。由此证实了前面关于对硫磷光解步骤的推论。 2.2 光催化过程

在上述反应体系中加入半导体氧化物 TiO_2 作光催化剂,测定 ^{31}P NMR 谱,见图 2. 比较图 1(II)和图 2 可知,加入 TiO_2 后,光解反应的速率明显加快. 其他几种半导体氧化物如 ZnO, WO_3 均可以加速光解反应,结果见表 1.

表1 催化剂类型对对硫磷光解的影响

Table 1 The effect of catalyst type on paration photodecomposition

催化剂类型	TiO ₂	ZnO	WO ₃
P/mg·l ⁻¹	0.324	0.214	0.156

反应条件: 光照 30min, 催化剂用量 0.1%, pH = 4, 对硫磷 1×10⁻⁴mol·1⁻¹.

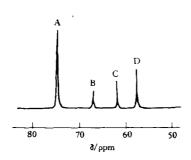


图 2 TiO₂ 存在时对硫磷光解 80min 的³¹P NMR 谱

Fig. 2 ³¹P NMR spectrum of paration photodecomposing after 80min in the presence of TiO₂

半导体氧化物之所以对光解反应具有催化作用,是由于光照半导体表面时,能量大于半导体禁带宽度 E_g 的光电子被吸收而将价带电子激发到导带。如果溶液中有一底物 X^{n+1} ,其能级(氧化还原电位)处于价带,此时,半导体 M^{m+1} 可以使底物 X^{n+1} 活化,从而实现了电子转换反应:

$$X^{n+1} + M^{m+} \longrightarrow X^{n+} + M^{m+1}$$

对于不同的半导体、 WO_3 , ZnO, TiO_2 , 禁带宽度的能量分别是 4.8, 4.2, 3.0eV. 因而 TiO_2 的价电子最容易激发、催化活性最大; ZnO 次之; WO_3 最小.

2.3 光解过程的动力学方程

光解反应为一连串反应,分析各光解产物出现所需的时间,反应速度为第一步所控制. 当对硫磷的 初始浓度 $C_0 = 2.5 \times 10^{-4}$ mol·l·l·l, 以 TiO_2 作光催化剂,用气相色谱法测定不同光照时间 t 相应对硫磷的浓度 C,以 lnC 对 t 作图得一直线(如图 3),回归方程为 $lnC = -1.589 \times 10^{-3} t - 8.294$,表观反应速率常数 $K = 1.589 \times 10^{-3}$. 可以看出,对硫磷的光催化降解符合一级动力学方程,拟合得到的动力学方程为:

$$C = 2.5 \times 10^{-4} e^{-0.001589t}$$

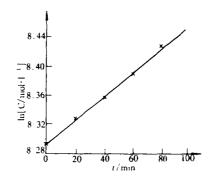


图 3 - ln C-t 关系

Fig. 3 Relationship between $-\ln C$ and t

2.4 酸度及溶解氧对光解反应的影响

固定 TiO₂ 的含量为 0.1%, 分别调节对硫磷的起始 pH 值, 光催化分解得到的无机

磷浓度用钼蓝法测定.图 4 是不同 pH 下所得无机磷浓度与光照时间的关系图.由图 4可见,酸度越大,对光解反应越有利.考虑到酸度过大,消耗较多的酸,本实验取 pH4.

有研究表明,当 TiO₂ 被波长小于 415nm 的光照射时, TiO₂ 就会具有潜在的光催化能力,被光激发到导带上的电子部分被氧获得而形成羟基自由基.总过程可写成:

$$2e^{-\frac{2O_2}{2}}2O_2 \cdot \xrightarrow{H^*} O_2 \cdot + H_2O \longrightarrow O_2 + OH^*$$

羟基自由基是很强的氧化剂,它能将有机磷氧化成无机磷. 羟基的产生与溶液中的 H^+ 有关. 酸度越大, 生成的 OH^- 越多, 对光解反应则越有利. 此外, 由于 e^- 需要 O_2 才能转化为有氧化能力的 OH^- . 固定 TiO_2 的含量为 0.1%, pH 为 4,分别通人 N_2 空气,测得不同时间无机磷的含量,所作的曲线如图 5 所示. 由于通人空气,反应液中溶解氧升高,因而对光解反应有利.

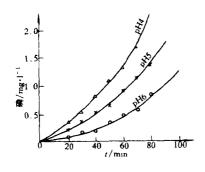


图 4 对硫磷在不同 pH 下的光解结果 Fig. 4 Photodecomposition result of paration in defferent pH

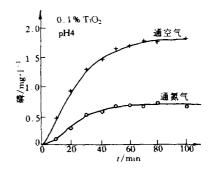


图 5 溶解氧对对硫磷光解的影响 Fig. 5 The effect of dissolving oxygen on paration photodecomposing

通过对对硫磷光解反应机理的研究,进一步明确对硫磷光解需要一定波长的光源、光催化剂、一定的酸度及溶解氧.至于如何寻找活性更高的催化剂,有待进一步研究.

参考 文献

- [1] 陈士夫,越梦月等,光催化降解有机磷农药的研究。环境科学,1995,16(5):61—63
- [2] 陈士夫,赵梦月等,有机磷农药光催化降解动力学的研究.郑州工学院学报、1995,16(5):42-46
- [3] 陈耀祖,有机分析,北京:高等教育出版社,1981
- [4] Lerner D B, Kearns D R, Phosphorus-31 NMR of Phosphorus Acid. J. Am. Chem. Soc., 1980, 102:7611
- [5] David G G, Phosphorus-31 NMR Principles and Application. Academic Press, 1984, 167

1998年4月27日收到.

STUDY OF PARATION PESTICIDE PHOTODECOMPOSITION

Liang Shuping Guan Shaoling
(Foshan Science and Technology Institute, Foshan, 528000)

ABSTRACT

Mechanism that paration pesticide photodecomposed was reasoned by ³¹P NMR. Kinetic equation of paration primary photodecomposition was fitted. Various factors affecting photodecomposition, such as photocatalyst, acidity and oxygen in solution so on, were studied in detail.

Keywords: paration pesticide, photodecompose, ³¹P NMR.