

第 19卷第1期2025年1月 Vol. 19, No.1 Jan. 2025

(www) http://www.cjee.ac.cn

E-mail: cjee@rcees.ac.cn

(010) 62941074

DOI 10.12030/j.cjee.202407093 中图分类号 X703 文献标识码 A

Pb²⁺、Cd²⁺、Ni²⁺在改性纳米纤维素上的竞争吸附

韩校,唐婧[∞],张驰,苏杨

沈阳建筑大学市政与环境工程学院,沈阳110168

摘 要为研究改性纳米纤维素(RCA-NC)对水溶液中Pb²⁺、Cd²⁺、Ni²⁺的单一吸附效果及其竞争吸附特性,以稻草为原料制备纳米纤维素(NFC)并通过丙烯酸接枝改性得到RCA-NC。应用SEM、XRD和FTIR对RCA-NC微观结构进行了表征分析。结果表明,引入羧酸基团的RCA-NC表观纤维分布更密集,束状结构更规则,并未彻底改变NFC的内部结晶结构。单一吸附实验结果表明,在最佳实验条件下,20mg·L⁻¹的Pb²⁺、Cd²⁺、Ni²⁺在RCA-NC中的去除率分别为93.88%、90.41%、91.28%;在阳离子(Ca²⁺、Mg²⁺、Na⁺、K⁺)、阴离子(Cl⁻、CO₃²⁻)、有机物以及3种重金属离子混合体系中,竞争吸附能力均为Pb²⁺>Cd²⁺>Ni²⁺。Pb²⁺去除率在71.7%~93.88%。Pb²⁺、Cd²⁺、Ni²⁺在RCA-NC上的吸附符合Langmuir等温吸附和准二级动力学,吸附机理主要为离子交换、表面官能团络合及静电吸附。 关键词 改性纳米纤维素;竞争吸附;重金属离子

随着冶炼、农药、电池、油漆制造等工业活动日益增多,目前我国已有 80% 的水体受到重金属污染^[1]。 常见的重金属 Pb、Cd、Ni 等半衰期长,难生物降解,会持续累积到地下水、土壤、河流湖泊以及农作物 中,对周围生物体造成潜在危害^[2]。因此,重金属污染治理是保证生态安全与人类健康的重要研究课题 之一。

纳米纤维素 (nanofiber-cellulose,NFC) 作为环境友好型吸附材料,具有生物可降解、比表面积大等优 点^[3],但其表面含有大量羟基,不易与重金属子稳定配位络合,对重金属离子吸附能力较差^[4]。因此,通过直 接改性或接枝共聚改性,在 NFC 表面引入羧基、氨基等活性官能团及有效活性吸附位点来提升 NFC 的吸附 性能成为研究热点^[5]。ZHANG 等^[6]将丙烯酸聚合接枝到竹纳米纤维素上,发现产物对 Cu²⁺的吸附容量 (0.727 mmol·g⁻¹) 明显高于竹纳米纤维素 (0.286 mmol·g⁻¹)。WAFA 等^[7]将甲基丙烯酸和顺丁烯二酸聚合接 枝到 NFC 上,改性获得的纳米纤维素气凝胶对 Pb²⁺、Cd²⁺、Ni²⁺的去除率分别可达 95% 以上。

实际废水是一个复杂的多组分体系,通常含有多种阴阳离子及有机物^[8],不同物质与重金属离子在吸附 剂表面可能存在竞争或协同作用,影响吸附剂对重金属离子的选择性和吸附量,目前关于改性纳米纤维素 (acrylic acid modified rice nano-cellulose,RCA-NC)对单一重金属离子吸附研究不能全面反映其在实际废水中 的吸附性能。因此,本研究以稻草为原料制备 NFC 并通过丙烯酸接枝改性得到 RCA-NC,以 RCA-NC 为吸 附剂,重点探讨了 Pb²⁺、Cd²⁺、Ni²⁺重金属离子在多离子共存或有机物溶液中的吸附竞争关系,同时结合 FTIR 谱图和准动力学模型等探讨了吸附机理,发现 Pb²⁺、Cd²⁺、Ni²⁺在 RCA-NC 上的去除规律。通过对农 业废物资源的利用,为 RCA-NC 在实际重金属污染废水中的应用提供一定的参考,同时为 NFC 复合吸附材 料的开发提供实验依据。

1 材料与方法

1.1 纳米纤维素制备

取一定量的稻草放入植物破碎机中粉碎成每段 0.4 cm 左右后反复清洗。充分干燥,取 30 g 形状均匀的 稻草样品于烧杯中,加入蒸馏水浸泡 24 h 后将其加入到质量百分比为 2% 的 NaOH 溶液中,放置在水浴锅

收稿日期: 2024-07-23 录用日期: 2024-12-17

基金项目: 辽宁省教育厅重点攻关项目 (LJKZZ20220081)

第一作者:韩校(2002—),女,硕士研究生,研究方向为水污染防治,hanhx0109@163.com **⊠通信作者:**唐婧(1980—), 女,博士,教授,研究方向为污水处理,fairy_ben@163.com 最后反复清洗至滤液为中性。 在1L去离子水中一定质量的 Na₂CO₃和 NaHCO₃溶液,形成摩尔比为 7:3 的缓冲溶液。向预处理后 的稻草悬浮液加入 1 mmol·L⁻¹ 的 TEMPO 试剂和 0.1 mo·L⁻¹ 的 NaClO₂,在 50 ℃ 条件下搅拌 12 h,自然冷

的稻草悬浮液加入 1 mmol·L⁻¹ 的 TEMPO 试剂和 0.1 mo·L⁻¹ 的 NaClO₂,在 50 °C 条件下搅拌 12 h,自然冷却至室温后将反应产物洗涤数次至溶液为中性,最后得到质量分数为 5% 的悬浮液。将得到的悬浮液加入到高压均质机中调节压力参数为 100 MPa,均质 3 次后干燥得到样品。

1.2 纳米纤维素改性

取 10 gNFC 使其缓慢分散在 1 L 去离子水中,加入 2 mmol·L⁻¹ 过硫酸钾为引发剂,在 40 ℃ 水浴加热 条件下搅拌 15 min,期间不断用 0.1 mol·L⁻¹ 的 HNO₃ 使体系 pH 始终为 1.0,接着在 40 ℃ 条件下加入 200 mL 丙烯酸进行接枝反应 2 h 后,采用布氏漏斗抽滤,得到产物 RCA-NC,反复清洗至中性后干燥备用。

1.3 改性纳米纤维素表征

采用扫描电子显微镜(Gemini-500型)观察改性前后纳米纤维素的微观形貌;使用 X 射线衍射仪(D8型)测定改性前后纳米纤维素的晶体结构;使用傅里叶红外光谱仪(is50型)分析改性前后纳米纤维素的官能团。

1.4 溶液中 Pb²⁺、Cd²⁺、Ni²⁺的分析方法

首先使硝酸铅、氯化镍和氯化镉分别溶解在 200 mL 水中,溶解过程中可加入硝酸促进重金属离子溶 解,再加入蒸馏水至 1 L,得到质量浓度为 100 mg·L⁻¹ 的 Pb²⁺、Cd²⁺、Ni²⁺溶液。后续实验所用重金属离子 溶液均由 100 mg·L⁻¹ 高质量浓度溶液稀释配制。取 50 mL 吸附实验完成后的重金属离子水样离心后用 0.45 μm 薄膜过滤,测定离心上清液的吸光度,根据原子吸收分光光度计制作标准曲线,得到残留在上清液中的 Pb²⁺、Cd²⁺、Ni²⁺浓度。分别根据式 (1) 和式 (2) 计算对 Pb²⁺、Cd²⁺、Ni²⁺的去除率和吸附量。

$$Q = \frac{C_0 - C_t}{m} \times V \tag{1}$$

$$R = \frac{C_0 - C_t}{C_0} \times 100\%$$
 (2)

式中: R 为去除率, %; Q 为吸附量, mg·g⁻¹; C_0 为溶液初始质量浓度, mg·L⁻¹; C_i 为吸附后溶液中残留的 重金属离子质量浓度, mg·L⁻¹; V 为溶液体积, L; m 为吸附剂用量, g。

1.5 Pb²⁺、Cd²⁺、Ni²⁺单一体系吸附去除

RCA-NC 吸附重金属离子的主要影响因素有溶液初始 pH、吸附时间和吸附剂投加量。采用 3 因素 3 水 平正交实验明确各重金属离子单一体系下的最佳吸附条件,在最佳吸附条件下考察 Pb²⁺、Cd²⁺、Ni²⁺的去除 率。实验中 Pb²⁺、Cd²⁺、Ni²⁺溶液质量浓度均为 20 mg·L⁻¹。

1.6 共存离子及有机物对 Pb²⁺、Cd²⁺、Ni²⁺单一体系的吸附影响

分别以 20 mg·L⁻¹的阳离子溶液 (Ca²⁺和 Mg²⁺混合溶液、Na⁺和 K⁺混合溶液以及 Ca²⁺、Mg²⁺、Na⁺、 K⁺混合溶液) 和阴离子溶液 (Cl⁻、CO₃²) 为背景溶液,在各重金属离子的最佳吸附条件下,分别进行 3 种重 金属离子(质量浓度为 20 mg·L⁻¹)的吸附实验,得到 15 组竞争体系。吸附 75 min 后,测定上清液中 Ni²⁺、Cd²⁺、Pb²⁺浓度。同理,分别以 COD 值为 500 mg·L⁻¹和 1 000 mg·L⁻¹的蔗糖溶液模拟有机物干扰废 水,吸附 75 min 后,测定上清液中 Ni²⁺、Cd²⁺、Pb²⁺浓度。

1.7 Pb²⁺、Cd²⁺、Ni²⁺混合体系的竞争吸附

配制 20 mg·L⁻¹ 的 Pb²⁺、Ni²⁺、Cd²⁺混合溶液,将 pH 调为 6.5,将 0.5、0.6、0.7、0.8、0.9、1.0 g 的 RCA-NC 分别加入混合溶液中,实验温度为 25 ℃,在吸附 75 min 后收集 0.45 μm 膜过滤液,检测滤液中三 种重金属离子浓度。

1.8 吸附等温线

取 5 个 250 mL 锥形瓶,分别加入 10、20、30、40、50 mg·L⁻¹ 的 Pb²⁺溶液 100 mL,调节各溶液 pH 为 6.5,加入 0.7 gRCA-NC,在 25 ℃ 条件下水浴恒温振荡 90 min,提取样品上清液,测定 Pb²⁺浓度。 RCA-NC 吸附 Cd²⁺、Ni²⁺等温模型测定方法同上,但需分别将 Cd²⁺、Ni²⁺溶液中 RCA-NC 投加量变为 0.5 g 和 0.9 g,同时 Ni²⁺溶液 pH 变为 4.5。利用 Langmuir(式 (3)) 和 Freundlich 吸附等温模型 (式 (4)) 对上 述实验数据进行拟合。

$$\frac{C_{\rm e}}{q_{\rm e}} = \frac{C_{\rm e}}{a} + \frac{1}{ab} \tag{3}$$

式中: a 为最大吸附量,常数, mg·g⁻¹; b 为与吸附有关的常数, L·mg⁻¹; q_e 为平衡吸附量, mg·g⁻¹; C_e 为 平衡质量浓度, mg·L⁻¹。

$$\ln q_{\rm e} = \ln K + \frac{\log C_{\rm e}}{n} \tag{4}$$

式中: *K*为 Freundlich 吸附常数, mg·g⁻¹; n 为吸附常数; q_e 为平衡吸附量, mg·g⁻¹。

1.9 吸附动力学

取 3 个 250 mL 锥形瓶,分别加入初始质量浓度 20 mg·L⁻¹ 的 Pb²⁺、Cd²⁺、Ni²⁺溶液 100 mL,分别向 3 个锥形瓶中加入 0.7、0.5、0.9 g 的 RCA-NC 并混合均匀。调整溶液 pH, Pb²⁺、Cd²⁺溶液 pH 调整为 6.5, Ni²⁺溶液 pH 调整为 4.5。在 25 ℃ 下水浴恒温振荡,摇床振速为 180 r·min⁻¹。分别在 10、20、30、40、 50、60、70、80、90 min 时提取样品上清液,测定重金属离子浓度并计算 RCA-NC 对 Pb²⁺、Cd²⁺、Ni²⁺的 吸附量。分别用准一级 (式 (5)) 和准二级动力学模型 (式 (6)) 对上述吸附结果进行线性拟合。

$$\ln(q_e - q_t) = \ln q_e - k_1 t \tag{5}$$

$$\frac{t}{q_{\rm t}} = \frac{1}{k_2 q_{\rm e}^2} + \frac{t}{q_{\rm e}} \tag{6}$$

式中: q_e 为平衡吸附量, mg·g⁻¹; q_t 为在 t 时刻达到的吸附量, mg·g⁻¹; $k_1 \ k_2$ 为准一级、准二级动力学模型的速率常数, min⁻¹; t 为吸附时间, min。

2 结果与讨论

2.1 改性纳米纤维素表征

图 1 为 NFC 和 RCA-NC 的 SEM 图片。与 NFC 相比(图 1(a)), RCA-NC 纤维分布更密集, 束状更

图 1 NFC 和 RCA-NC 的 SEM 图 Fig. 1 SEN images of NFC and RCA-NC

规则,网络结构聚集更紧凑(图1(c)),分析认为 是引入的羧酸基团聚集造成,初步认为改性成功且 发生在 NFC 表面。由图1(b)和1(d)可见,改性 后的纤维素直径变小,由600~800 nm降至70~ 100 nm,整体结构更小但本身形貌无明显改变, 仍为丝状结构,说明改性并未改变NFC的形状, 同时结构变小说明比表面积变大,可暴露出更多的 吸附位点。

为进一步验证改性成功,利用 XRD 对其改性 前后的晶面进行分析。由图 2 可知,NFC 衍射峰 在 2 θ =16.30。、22.580 处分别对应纤维素 I 型 (110)、(200)晶面。与 NFC 相比,RCA-NC 的衍射峰在 2 θ =16.40 维处为纤维素 I 型(110) 晶面,而 2 θ =20.43 维出现纤维素 II 型(200)晶 面典型特征峰,说明改性后部分晶体结构发生变 化。根据布拉格方程($n\lambda$ =2dsin θ),分析认为, 改性引入的官能团使 NFC 的晶面间距 d 变大^[9]。 RCA-NC 的衍射峰在 2 θ =20 峰左右处出现宽峰, 根据谢乐公式 (D= $K\lambda/\beta$ cos θ),改性过程中丙烯酸 腐蚀 NFC 晶体边缘,晶体尺寸变小,但晶体内部 主要结构仍然保留,导致衍射峰变宽^[10]。同时 RCA-NC 的衍射峰峰值高于 NFC,说明改性后的 材料结晶度有所增加^[11]。

NFC 和 RCA-NC 红外光谱(FTIR)如图 3 所示。NFC 谱图中在 3 344 cm⁻¹ 和 908 cm⁻¹ 处 有 2 个特征峰,此为—OH 在其表面的弯曲振动 峰; 2 901 cm⁻¹ 处的特征峰对应其表面的 C—H 键; 1 000~1 250 cm⁻¹ 处的峰与酚、醇、羧基、醚 和酯中的 C—O 键有关。RCA-NC 在 1 313 cm⁻¹ 和 1 370 cm⁻¹ 处出现了羧酸基团上的 C=O 键伸 缩振动峰,说明羧酸基团的成功引入。RCA-NC 的伸缩振动峰与改性前 NFC 的光谱相似,说 明 RCA-NC 仍具有 NFC 的结构。

2.2 单一重金属离子去除

设计 3 因素 3 水平正交实验确定 Pb²⁺、Cd²⁺、Ni²⁺吸附过程最佳条件。表 1~3 为正交实验条件及 结果。根据极差 *R* 分析结果,Pb²⁺、Cd²⁺、Ni²⁺吸 附影响因素显著性分别为:初始 pH>吸附剂投加 量>吸附时间;吸附时间>初始 pH>吸附剂投加 量;初始 pH>吸附时间>吸附剂投加量。当 pH 较 低时,溶液中 H⁺与 RCA-NC 表面官能团络合能力 增强,与重金属离子发生竞争吸附;当 pH 较高 时,重金属离子会形成阴离子络合物与带负电的 RCA-NC 产生静电斥力^[12-13],而 Cd²⁺由于扩散机 制,早期能够快速吸附在 RCA-NC 上,一段时间 后与 RCA-NC 表面官能团络合,因此,吸附时间

图 2 NFC 和 RCA-NC 的 XRD 谱图

Fig. 2 XRD patterns of NFC and RCA-NC

4 000 3 500 3 000 2 500 2 000 1 500 1 000 500 波数/cm⁻¹

图 3 NFC 和 RCA-NC 的 FTIR 谱图

Fig. 3 FTIR spectra of NFC and RCA-NC

表1 Pb²⁺正交实验条件及结果

Table 1 Orthogonal test conditions and results for Pb^{2+} adsorption

序号	初始pH (A)	吸附时间/min (B)	吸附剂投加量/g (C)	Pb ²⁺ 去除率
1	1(5.5)	1(45)	1(0.5)	81.0%
2	1(5.5)	2(60)	2(0.7)	86.0%
3	1(5.5)	3(75)	3(0.9)	86.3%
4	2(6.5)	1(45)	2(0.7)	85.3%
5	2(6.5)	2(60)	3(0.9)	92.6%
6	2(6.5)	3(75)	1(0.5)	83.0%
7	3(7.5)	1(45)	3(0.9)	77.0%
8	3(7.5)	2(60)	1(0.5)	76.6%
9	3(7.5)	3(75)	2(0.7)	87.0%
k_1	0.844	0.811	0.802	—
k_2	0.870	0.851	0.861	—
k_3	0.802	0.854	0.853	—
R	0.068	0.043	0.059	_
主次顺序		A ₂	C ₂ B ₃	

表 2 Cd²⁺正交实验条件及结果

 Table 2 Orthogonal test conditions and results for Cd²⁺

 adsorption

表3 Ni²⁺正交实验条件及结果

Table 3 Orthogonal test conditions and results for Ni²⁺ adsorption

序号	初始pH	吸附时间/min	吸附剂投加量/g	Cd ²⁺	序号	初始pH	吸附时间/min	吸附剂投加量/g	Ni ²⁺ 土吟來
	(A)	(B)	(C)			(A)	(B)	(C)	云际伞
1	1(5.5)	1(45)	1(0.5)	67.0%	1	1(4.5)	1(45)	1(0.5)	86.8%
2	1(5.5)	2(60)	2(0.7)	75.5%	2	1(4.5)	2(60)	2(0.7)	90.5%
3	1(5.5)	3(75)	3(0.9)	82.5%	3	1(4.5)	3(75)	3(0.9)	90.9%
4	2(6.5)	1(45)	2(0.7)	72.0%	4	2(5.5)	1(45)	2(0.7)	85.0%
5	2(6.5)	2(60)	3(0.9)	89.8%	5	2(5.5)	2(60)	3(0.9)	86.8%
6	2(6.5)	3(75)	1(0.5)	90.4%	6	2(5.5)	3(75)	1(0.5)	85.2%
7	3(7.5)	1(45)	3(0.9)	65.0%	7	3(6.5)	1(45)	3(0.9)	82.0%
8	3(7.5)	2(60)	1(0.5)	81.0%	8	3(6.5)	2(60)	1(0.5)	82.0%
9	3(7.5)	3(75)	2(0.7)	82.0%	9	3(6.5)	3(75)	2(0.7)	84.3%
k_1	0.750	0.680	0.795	_	k_1	0.894	0.846	0.847	
k_2	0.841	0.821	0.765	_	k_2	0.857	0.864	0.866	_
<i>k</i> ₃	0.760	0.850	0.791	_	k_3	0.828	0.868	0.866	_
R	0.091	0.170	0.030	_	R	0.066	0.022	0.019	
主次顺序		B ₃	A ₂ C ₁		主次顺序		A ₁	B ₃ C ₃	

对吸附效果的影响更显著^[14]。在正交实验最优条件下再次进行平行实验,结果表明,Pb²⁺、Cd²⁺、Ni²⁺的去除 率最高分别可达 93.88%、90.41%、91.28%。

2.3 竞争吸附研究

1) 共存离子对单一 Pb²⁺、Cd²⁺、Ni²⁺吸附效果的影响。在上述正交实验中获得的最佳吸附条件下,分别 以 20 mg·L⁻¹ 的阳离子混合液 (Ca²⁺+Mg²⁺混合溶液、Na⁺+K⁺混合溶液以及 Ca²⁺+Mg²⁺+Na⁺+K⁺ 混合溶液) 和 阴离子溶液 (Cl⁻、CO₃²⁻) 为背景溶液,考察其他离子对单一 Pb²⁺、Cd²⁺、Ni²⁺吸附效果的影响。结果如 图 4(a) 和 4(b) 所示,当其他离子存在时,Pb²⁺、Cd²⁺、Ni²⁺去除率均有所下降,且在含有 CO₃²⁻的溶液中下 降程度最大,分别下降至 71.70%、53.25%、47.67%。分析认为,实验中添加离子 (Ca²⁺、K⁺、Cl⁻、 CO₃²⁻等) 与 Pb²⁺、Cd²⁺、Ni²⁺存在不同程度的吸附位点竞争,导致有效吸附位点减少,Pb²⁺、Cd²⁺、Ni²⁺去除

图 4 共存阴阳离子对 Pb²⁺、Cd²⁺、Ni²⁺吸附影响

Fig. 4 Effects of co-existing anions and cations on the adsorption of Pb²⁺, Cd²⁺ and Ni²⁺

率降低^[15]。同时,添加离子的水化半径、结构、电 荷性质也会影响 Pb²⁺、Cd²⁺、Ni²⁺的吸附^[16],这也 解 释 了 为 何 在 Ca²⁺、Mg²⁺共存 环 境 下 Pb²⁺、 Cd²⁺、Ni²⁺去除率 (83.56%、73.67%、64.26%)低 于 Na⁺、K⁺共存环境 (90.88%、79.80%、69.90%)。

2) 有机物对单一 Pb²⁺、Cd²⁺、Ni²⁺吸附效果影 响。水体中存在的有机物质具有丰富的官能团,可 以与重金属离子和吸附剂相互作用,通过向含有单 独金属离子的溶液中加入不同浓度的蔗糖,考察有 机物对 RCA-NC 吸附 Pb²⁺、Cd²⁺、Ni²⁺的影响, 结果如图 5 所示。可见, Pb²⁺的去除率基本不受蔗 糖溶液的影响。当蔗糖溶液质量浓度为 500 mg·L⁻¹ 时,Cd²⁺、Ni²⁺的去除率均有小幅下降,Cd²⁺的去 除率低于 Ni²⁺。当蔗糖溶液质量浓度到达 1 000 mg·L⁻¹时,Ni²⁺的去除率大幅下降至 60.78%,低 于 Cd²⁺的去除率 (70.53%), Pb²⁺的去除率无明显 变化。分析原因可能为, 蔗糖分子中含大量羟基, 这些羟基会与 RCA-NC 表面上的羧基形成氢键, 造成 RCA-NC 的有效吸附位点减少, 蔗糖分子与 Pb²⁺、Cd²⁺、Ni²⁺发生吸附位点竞争。Cd²⁺、Ni²⁺吸 附竞争能力弱于羟基,去除率大幅下降;而 Pb²⁺在 RCA-NC 上的吸附竞争能力较强,不受羟 基的干扰,因此,Pb²⁺去除率无明显变化。

3) Pb²⁺、Cd²⁺、Ni²⁺混合体系的吸附效果。实际重金属废水中往往不仅只含有一种重金属离子,这些重金属离子在吸附过程中可能会相互促进或抑制。在 pH 为 6.5,吸附时间为 75 min 的条件下,考察 20 mg·L⁻¹ 的 Pb²⁺、Cd²⁺、Ni²⁺混合溶液在 RCA-NC 中的去除效果。结果如图 6 所示。可见,在最佳吸附条件下,与单一体系相比,三元体系中 Pb²⁺、Ni²⁺去除率下降至 70% 左右,而 Cd²⁺

图 5 共存有机物对 Pb²⁺、Cd²⁺、Ni²⁺吸附影响

Fig. 5 Effects of co-existing organic compounds on the adsorption of Pb²⁺, Cd²⁺ and Ni²⁺

Fig. 6 Comparison of adsorption effect of heavy metal ions in mixed system

已降至 10% 左右。随吸附剂的投加量的增加, Pb²⁺、Cd²⁺、Ni²⁺去除率也逐渐升高。当吸附剂投加量达到 0.8 g 时, Pb²⁺的去除率率先到达峰值,继续提高吸附剂投加量, Pb²⁺的去除率无明显变化, 而 Cd²⁺、Pb²⁺的 去除率仍不断增加。分析认为, 开始时吸附剂投加量较小,有效吸附位点较少, Pb²⁺的竞争吸附能力强, 更 容易占据吸附位点,继续增加吸附剂投加量,溶液中 Pb²⁺含量减少,同时有效吸附位点增多,吸附竞争能力 较弱的 Cd²⁺、Pb²⁺去除率有所升高。

2.4 吸附等温线

图 7 为 Pb²⁺、Cd²⁺、Ni²⁺吸附等温线拟合结果,表4 为相关参数。结果表明,Langmuir 等温线相关性更好,其相关系数 (*R*₂) 均优于 Freundlich 等温拟合的 *R*₂,说明 Langmuir 模型更符合 Pb²⁺、Cd²⁺、Ni²⁺在 RCA-NC 上的吸附特性。因此,推断 Pb²⁺、Cd²⁺、Ni²⁺在 RCA-NC 上为单分子层吸附。由表4 可见,Pb²⁺、Cd²⁺、Ni²⁺的 1/n 值(0.657、0.598、0.602) <1,表明在 RCA-NC 上吸附容易发生且为化学吸附。利用 Langmuir 方程得到 Pb²⁺、Cd²⁺、Ni²⁺最大吸附量分别为 7.51、7.23、7.43 mg·g⁻¹。李洁等^[17]利用铁尾矿资源 制备磁性纳米纤维素,发现其对 Pb²⁺的最大吸附容量为 56.776 mg·g⁻¹,去除率可达 98.29%; 王海洋等^[18]利 用马尾松树皮制作纳米木质纤维素气凝胶,发现其对 Pb²⁺、Ni²⁺的最大吸附容量分别为 186.7 mg·g⁻¹和 123.4 mg·g⁻¹。上述结果表明,不同的 RCA-NC 对重金属离子均有较好的吸附效果。

图 7 RCA-NC 对 Pb²⁺、Cd²⁺、Ni²⁺Langmuir 及 Freundlich 等温吸附曲线 Fig. 7 Langmuir and Freundlich adsorption isotherms of Pb²⁺, Cd²⁺ and Ni²⁺ on RCA-NC

2.5 吸附动力学

图 8 为 RCA-NC 对 Pb²⁺、Cd²⁺、Ni²⁺吸附动 力学模拟曲线,结果表明准二级动力学模型相关性 良好。表 5 为动力学模型拟合参数。由表 5 可 知,准二级动力学模型相关系数 R₂ 对 Pb²⁺、 Cd²⁺、Ni²⁺的处理优于准一级动力学模型,表明化 学吸附为主要机理。RCA-NC表面呈负电性, FTIR 和 XRD 图谱显示其表面含有羧酸基团,因 此,Pb²⁺、Cd²⁺、Ni²⁺在 RCA-NC 上的吸附机理主

表 4 Langmuir 和 Freundlich 等温吸附模拟参数

 Table 4 Simulation parameters of Langmuir and Freundlich isothermal adsorption

重金属离子	Langr	muir等温吸	Freundlich等温吸附			
	$a/(\mathrm{mg}\cdot\mathrm{g}^{-1})$	$b/(L \cdot mg^{-1})$	R^2	$K/(L \cdot g^{-1})$	1/n	R^2
Pb^{2+}	7.51	1.037	0.995	15.363	0.657	0.740
Cd^{2^+}	7.23	1.045	0.998	14.870	0.598	0.780
Ni ²⁺	7.43	1.118	0.991	15.011	0.602	0.750

要包括 Pb²⁺、Cd²⁺、Ni²⁺与 RCA-NC 表面官能团络合,从而固定在 RCA-NC 表面;与带负电的 RCA-NC 产 生静电吸附; RCA-NC 羧基等官能团提供 H⁺与 Pb²⁺、Cd²⁺、Ni²⁺进行离子交换等^[19-20]。

2.6 改性纳米纤维素对 Pb²⁺、Cd²⁺、Ni²⁺的吸附特性

2.3 多元体系的实验中, Pb²⁺、Cd²⁺、Ni²⁺的竞争吸附能力均表现为 Pb²⁺>Cd²⁺>Ni²⁺, 王棋^[21]等利用玉米 秸秆生物炭(BC)和牛粪生物炭(DMBC)为吸附剂,结果表明吸附竞争能力 Pb²⁺>Cu²⁺>Cu²⁺>Ni²⁺。张晓

图 8 RCA-NC 对 Pb²⁺、Cd²⁺、Ni²⁺吸附动力学模拟曲线

Fig. 8 Adsorption kinetics of Pb²⁺, Cd²⁺ and Ni²⁺ on RCA-NC

表 5 准一级动力学方程和准二级动力学方程拟合参数

 Table 5 Fitting parameters of quasi-first-order and quasi-second-order dynamic equations

吸附顺序为 Pb2+>Cu2+>Cd2+/Zn2+。说明对于不同 的吸附材料,Pb²⁺、Cd²⁺、Ni²⁺均存在竞争吸附且 对 Pb²⁺的吸附能力最强。分析认为重金属离子竞 争吸附能力与其自身性质有关。实验使用的三种重 金属离子基本物化参数见表 6^[23]。首先, 水合离子 半径越小,在竞争吸附中更易占据 RCA-NC 的吸 附位点[24],且重金属离子价态相同时,其水合离子 半径与离子半径呈负相关[25];其次,水解常数负对 数 pK_u越大的重金属离子,竞争吸附能力越弱; 最后,重金属离子的电负性越大,吸附能力越强。 此外,金属越活泼,形成的络合物越不稳定,而金 属活泼性 Pb²⁺<Cd²⁺<Ni²⁺,因此,Pb²⁺的竞争吸附 能力最强, Cd²⁺、Ni²⁺较弱。按照上述理论, Ni²⁺的水解常数负对数小于 Cd²⁺且电负性大于 Cd^{2+} , 然而 Ni²⁺的实际吸附效果却低于 Cd²⁺, 推 测原因可能是因为与重金属离子的相对原子质量有

等[22] 研究发现天然沸石作为吸附剂在竞争体系下

准一级动力学 准二级动力学 重金属离子 $q_{\rm e}/({\rm mg} \cdot {\rm g}^{-1}) K/{\rm min}^{-1}$ $q_{\rm e}/({\rm mg} \cdot {\rm g}^{-1})$ K/min⁻¹ R^2 R^2 Pb^{2+} 4.580 -0.012 0.95 0.990 7 4 8 6 0.006 Cd^{2+} 4.110 -0.010.91 7.191 0.001 0.991 Ni²⁺ 4.240 -0.098 0.92 7.205 0.001 0.995

表6 Pb²⁺、Cd²⁺、Ni²⁺的基本物化参数

Table 6 The physical and chemical parameters of Pb^{2+} , Cd^{2+} and Ni^{2+}

重金属离子	相对原子 质量/Da	水解常数 负对数pK _H	电负性	离子半径/pm
Pb^{2+}	207.20	7.71	2.33	119
Ni ²⁺	58.69	9.90	1.80	69
Cd^{2+}	112.40	10.10	1.69	95

 Cd^{2+} 和 Ni²⁺的摩尔浓度为 0.18 mol·L⁻¹ 和 0.34 mol·L⁻¹,相比之下,Ni²⁺浓度较高,因此去除率低于 Cd²⁺。另 外实验的 pH 条件略高于 Ni²⁺的最佳吸附 pH 也会造成去除率的降低。

3 结论

1) SEM、XRD 和 FTIR 分析表明 RCA-NC 表观纤维分布更密集,但内部主要结晶结构未发生改变。 在最佳吸附条件下 Pb²⁺、Cd²⁺、Ni²⁺去除率分别为 93.88%、90.41%、91.28%。

2)与单一体系相比,在多离子共存或含有有机物的溶液中 Pb²⁺、Cd²⁺、Ni²⁺去除率均有所下降,Pb²⁺去除率在 71.7%~93.88%。

3) Pb²⁺、Cd²⁺、Ni²⁺在多离子共存或有机物溶液中,竞争吸附规律均符合 Pb²⁺> Cd²⁺> Ni²⁺。

4)吸附等温方程表明,Pb²⁺、Cd²⁺、Ni²⁺在 RCA-NC 中的吸附过程符合 Langmuir 吸附等温模型,以单 层吸附为主;吸附动力学符合准二级动力学模型,主要为化学吸附。吸附机理主要包括静电吸附、表面官能 团络合及离子交换等。

参考文献

[1] 覃发梅,邱学青,孙川,等.纳米纤维素去除水体系重金属离子的研究进展[J].化工进展,2019,38(7):3390-3401.

[2] 覃红茹. 工业废水中重金属离子的处理技术研究[J]. 广东化工, 2023, 50(15): 134-136.

134	环	境	I.	程	学	报		第19卷

[3] 李若男, 张国凤, 陈舜胜. 纤维素纳米纤维基吸附剂的制备及水中重金属的去除[J]. 化工环保, 2022, 42(2): 195-202.

- [5] 王涵宇, 吴朝军, 陈业红. 功能化纳米纤维素基重金属吸附剂的研究进展[J]. 中国造纸, 2023, 42(1): 99-110.
- [6] ZHANG X F, ZHAO J Q, CHENG L, et. al. Acrylic acid grafted and acrylic acid/sodium humate grafted bamboo cellulose nanofibers for Cu²⁺ adsorption[J]. RSC Advances, 2014, 4(98): 55195-55201.
- [7] MAATAR W, BOUFI S. Poly(methacylic acid-co-maleic acid) grafted nanofibrillated cellulose as a reusable novel heavy metal ions adsorbent[J]. Carbohydrate Polymers, 2015, 126: 199-207.
- [8] 仇付国, 王肖倩, 童诗雨, 等. 给水厂污泥对重金属竞争吸附探究[J]. 工业水处理, 2022, 42(9): 72-78.
- [9] 寇永康,党小庆,曹利,等.氧化镁掺杂改性活性炭的制备及其对彩板印刷 VOCs 废气的吸附性能及机理[J].环境工程学报, 2024, 18(6): 1559-1569.
- [10] 何春彦, 莫伟, 黄钰华, 等. 剥离型膨润土对水中共存 Pb²⁺、Zn²⁺、Cd²⁺的吸附研究[J]. 非金属矿, 2022, 45(6): 80-85.
- [11] 胡阳, 陈冰遥, 卢麒麟, 等. 均相条件下纳米纤维素晶体接枝丙烯酸[J]. 高分子材料科学与工程, 2014, 30(10): 19-22.
- [12] 李仕友, 乔记帅, 杨宇彪, 等. 木质素表面功能化 MXene 纳米片的制备及其对 U(VI) 的吸附性能[J]. 复合材料学报, 2024, 41(10): 5361-5374.
- [13] 马林峰, 欧爱彤, 李志远, 等. Na_(2)S 改性生物炭高效吸附重金属离子: 制备及吸附机理研究[J]. 化工学报, 2024, 75(7): 2594-2603.
- [14] 蒙婉瑶. 负载金属有机骨架的纤维素基气凝胶的制备及其性能研究[D]. 北京: 北京林业大学, 2022.
- [15] SINGH S, KAPOOR D, KHASNABIS S, et. al. Mechanism and kinetics of adsorption and removal of heavy metals from wastewater using nanomaterials[J]. Environmental Chemistry Letters, 2021, 19(3): 2351-2381.
- [16] 冯江涛, 王桢钰, 闫炫冶, 等. 吸附去除水体重金属离子的影响因素研究进展[J]. 西安交通大学学报, 2022, 56(2): 1-16.
- [17] 李洁,任会学,姜生云,等.利用铁尾矿资源制备磁性纳米纤维素材料对 Pb(II)的吸附去除[J].净水技术,2023,42(6):120-131.
- [18] 王海洋,马千里.马尾松树皮纳米木质纤维素气凝胶吸附剂对 Cr³⁺、Cu²⁺、Ni²⁺的吸附性能及机理[J]. 林业科学, 2021, 57(7): 166-174.
- [19] ZHAN C B, SHARMA P R, HE H R, et. al. Rice husk based nanocellulose scaffolds for highly efficient removal of heavy metal ions from contaminated water[J]. Environmental Science-Water Research & Technology, 2020, 6(11): 3080-3090.
- [20] QIAO A H, CUI M, HUANG R L, et. al. Advances in nanocellulose-based materials as adsorbents of heavy metals and dyes[J]. Carbohydrate Polymers, 2021, 272(2): 118471.
- [21] 王棋, 王斌伟, 谈广才, 等. 生物炭对 Cu(II)、Pb(II)、Ni(II)和 Cd(II)的单一及竞争吸附研究[J]. 北京大学学报 (自然科学版), 2017, 53(6): 1122-1132.
- [22] 张晓, 陈刚, 陈晨, 等. 天然沸石去除多种重金属的特性研究[J]. 有色金属 (冶炼部分), 2020(8): 84-91.
- [23] 官伟. 磁改性生物炭对水中重金属 Ni(II)与 Cr(VI)的单一及竞争吸附性能研究[D]. 南昌: 华东交通大学, 2023.
- [24] 单书月,罗中秋,周新涛,等.研究开发钢渣构筑Fe-CSH 吸附溶液中Pb(II)、Cu(II)、Zn(II)性能及机理[J].化工进展,2024,43(10):5867-5880.
- [25] 解瑶. 氧化石墨烯和重金属在多孔介质中的运移[D]. 杨凌: 西北农林科技大学, 2022.
- [26] 吴文娟, 李建宏, 刘畅, 等. 微囊藻水华的资源化利用: 吸附重金属离子 Cu²⁺、Cd²⁺和 Ni²⁺的实验研究[J]. 湖泊科学, 2014, 26(3): 417-422.

(责任编辑:曲娜)

Competitive adsorption of Pb²⁺, Cd²⁺and Ni²⁺on modified nano-cellulose

HAN Xiao, TANG Jing*, ZHANG Chi, SU Yang

School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, 110168, China *Corresponding author, E-mail: fairy ben@163.com

Abstract To investigate the adsorption effect of Pb²⁺, Cd²⁺, or Ni²⁺ alone in aqueous solutions as well as their competitive adsorption by acrylic acid modified rice nano-cellulose (RCA-NC), the nanofiber-cellulose (NFC) was prepared from rice straw, then the graft modification with acrylic acid was implemented for the RCA-NC preparation. The microstructure of RCA-NC was characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The results showed that the carboxyl group introduction to RCA-NC led to denser apparent-distribution of fiber, more regular bundle structure and not complete alteration in the crystal structure of NFC. The adsorption tests of Pb²⁺, Cd²⁺, or Ni²⁺ alone demonstrated that their removal rates at an initial concentration of 20 mg·L⁻¹ by RCA-NC were 93.88%, 90.41%, and 91.28%, respectively. In the mixed system containing cations (Ca²⁺, Mg²⁺, Na⁺, K⁺), anions (Cl⁻, CO₃²⁻), organic matter, and the three heavy metal ions, the competitive adsorption ability followed the order of Pb²⁺ > Cd²⁺ > Ni²⁺, and Pb²⁺ removal rate ranged from 71.7% to 93.88%. The adsorption of Pb²⁺, Cd²⁺, and Ni²⁺ onto RCA-NC conformed to the Langmuir isothermal adsorption and quasi-second-order kinetics. The predominant adsorption mechanisms were identified as ion exchange, surface functional group complexation and electrostatic adsorption.

Keywords RCA-NC; competitive adsorption; heavy metal ions

^[4] HOKKANEN S, REPO E, SILLANPää M. Removal of heavy metals from aqueous solutions by succinic anhydride modified mercerized nanocellulose[J]. Chemical Engineering Journal, 2013, 223: 40-47.