

环境工程学报
Chinese Journal of
Environmental Engineering

第 16卷 第 9期 2022年 9月

Vol. 16, No.9 Sep. 2022

http://www.cjee.ac.cn

E-mail: cjee@rcees.ac.cn

me (010) 62941074

文章栏目:固体废物处理与资源化

DOI 10.12030/j.cjee.202203105 中图分类号 TQ172.1 文献标识码 A

宋晓玲, 刘龙敏, 杨忠, 等. 氯元素对全废渣水泥性能的影响[J]. 环境工程学报, 2022, 16(9): 2971-2981. [SONG Xiaoling, LIU Longmin, YANG Zhong, et al. Influence of chlorine on property of cement produced solely from industrial slag and material flow analysis[J]. Chinese Journal of Environmental Engineering, 2022, 16(9): 2971-2981.]

氯元素对全废渣水泥性能的影响

宋晓玲¹, 刘龙敏², 杨忠¹, 黄东¹, 胡敬平^{2,3,∞}, 汤建建², 梁智霖², 李星吾², 侯慧杰², 梁莎², 罗光前³, 杨家宽^{2,3}

1. 新疆天业(集团)有限公司,石河子 832000; 2. 华中科技大学环境科学与工程学院,武汉 430074; 3. 华中科 技大学煤燃烧国家重点实验室,武汉 430074

摘 要 针对以煤化工电石渣为主要原料的全废渣水泥生料中氯质量分数较高的问题,通过开展掺氯质量分数为0.1%~0.5%的 CaO-SiO₂-Al₂O₃-Fe₂O₃-MgO-Cl体系热力学相图计算和水泥烧制实验,结合 XRD 表征、水泥强度测定和物质流分析等方法,探索了生料中质量分数高的氯元素对熟料物相和水泥性能的影响规律。结果表明,氯元素可促进 f-CaO 结合 C₂S 生成 C₃S,并使得熟料中 C₂S、C₃A 和 C₄AF 质量分数降低。氯质量分数由 0.1% 上升至 0.5%时,C₃S 质量分数增加了 16.58%,其中包含着少量 Alinite 相,C₂S 质量分数在氯质量分数为 0.4%时达最低值 19.36%。当氯质量分数超过 0.4%后,其促进 C₂S 向 C₃S 转化作用变弱,而 Alinite 相增长速率变大,在氯质量分数较高的体系中 CaO、SiO₂ 和 Al₂O₃ 倾向于与 MgO 和含氯物质结合生成 Alinite 相和 Ca₁₂Al₁₄O₃₂Cl₂相。氯元素对熟料物相的影响规律映射到水泥强度上表现为,氯质量分数由 0.1% 上升至 0.5%时,水泥 3 d强度增长了约 30%,但 28 d强度上升空间不大。本研究结果可为附有旁路除氯系统的高氯水泥生产工艺生料氯质量分数的控制提供参考。

关键词 工业固废;水泥性能;氯元素;水泥强度;热力学模拟;物质流分析

近些年,随着我国工业固废产生量的逐渐上升,工业固废减量化、无害化和资源化问题受到 越来越多的关注^[1-2]。其中,水泥窑协同处置工业固废和危废的方式和比例逐年上升,利用工业固 废与传统硅酸盐水泥原料化学成分相近的特点替代天然矿物生产水泥,有助于解决大宗工业固废 的消纳与资源化的问题^[3]。例如,新疆天业水泥厂以煤化工电石渣作为钙质原料,粉煤灰和炉渣作 为硅质原料,煤矸石作为铝制原料,硫酸渣、铜渣和铁质尾矿作为铁质原料,柠檬酸渣作为水泥 缓凝原料,粉煤灰、煤矸石等作为拌合材原料,制备出符合国家标准的硅酸盐水泥^[3-4]。在水泥生 产的过程中,煤化工电石渣的氯元素质量分数较高^[5],远高于传统硅酸盐水泥原料,不仅影响水泥 熟料的性能^[6],还会对水泥窑况产生着一定影响^[7-8]。

有不少学者对氯元素在水泥窑中的行为规律进行了研究。崔育东等^[9] 开展了外掺 CaCl₂ 的水泥 烧制实验,结果表明,生料中适量的氯离子可在水泥烧成反应中充当矿化剂的作用,生成低熔点 含氯矿物相 (C₁₁A₇·CaCl₂)。施慧生等^[10] 认为,在含有 CaCl₂ 的 CaO-SiO₂-Al₂O₃-Fe₂O₃-MgO 体系中, 还可能发生 CaO+SiO₂+CaCl₂+C₁₂A₇+MgO→Alinite 的反应,生成化学组成为 Ca₁₀Mg_{1-x/2}V_{x/2}[(SiO₄)_{3+x} (AlO₄)_{1-x}]O₂Cl(V:晶格空位, 0.35<x<0.45) 的 Alinite 相。WANG^[11]等的研究发现,随着生料中氯质

收稿日期: 2022-03-30; 录用日期: 2022-08-16

基金项目:国家重点研发计划重点专项资助项目(2018YFC1900105);湖北省自然科学基金重点类项目(2020CFA042)

第一作者: 宋晓玲 (1970—), 女, 博士, xjty39@163.com; ⊠通信作者: 胡敬平 (1980—), 男, 博士, 教授, hujp@hust.edu.cn

量分数的上升,水泥窑中生成的低熔点含氯组分会随烟气循环富集,致使分解炉和回转窑窑尾处 形成结皮堵塞。ZHU等^[12]从整体工艺层面分析传统水泥生产过程中氯元素的流动途径和质量分 配,对水泥品质的保证和窑设备的维护具有一定指导作用。就天然原料制备硅酸盐水泥工艺而 言,已知氯质量分数低于0.03%时对熟料的形成有积极影响,但对氯质量分数为0.04%或更高的高 氯原料的研究意义不大^[13]。KWON等^[14]在研究以污泥为水泥原料时指出,即使生料中的氯化物质 量分数最高为0.04%,但窑炉中的氯化物质量分数仍可达1.5%,继而开展了掺氯量为0~2%的生料 掺杂 NH₄Cl 水泥烧制实验,并得出熟料的主要矿物相C₃S、C₂S、C₃A和C₄AF的质量分数变化规 律,但仅从实验角度给出这一结论,并未继续监测水泥强度性能变化。

目前,有关水泥中氯元素行为规律的研究主要集中在低氯质量分数生料的传统硅酸盐水泥工 艺上,且涉及到水泥强度性能方面的实验研究较少。为了探究电石渣中高质量分数的氯元素对熟 料物相组成和水泥性能的影响规律,本研究以某水泥厂全废渣生料为原料,借助热力学计算方法 模拟不同掺氯量 CaO-Al₂O₃-SiO₂-Fe₂O₃-MgO-Cl体系的高温煅烧反应相图^[15],揭示不同氯质量分数下 该体系高温煅烧过程中的物相转化,并结合不同掺氯质量分数水泥烧制实验,综合分析氯元素对 矿物相组成变化规律和由此引起的水泥物理性能变化,最后对完整工艺中氯元素的物质流进行计 算分析。本研究结果可为全废渣水泥生产生料中氯质量分数的控制提供参考。

1 材料与方法

1.1 实验试剂及设备

实验试剂。氯元素标准溶液,硝酸(HNO₃,65%~68%),氟化钙(CaF₂),氯化钙(CaCl₂),三乙 醇胺(C₆H₁₅NO₃),二水硫酸钙(CaSO₄·2H₂O)等,均为分析纯;纯水为实验室自制。

实验设备。实验电炉 (HTF-1600型,武汉亚华);离子色谱仪 (DX-120型,美国 DIONEX); XRD 衍射仪 (XRD-7000型,日本 Shimadzu);行星式球磨机 (QM-3SP4型,南京南大);水泥砼恒温 恒湿标准养护箱 (HBY-40B型,上海康路);微机伺服水泥抗折抗压试验机 (DYE-300B型,无锡 新建)。

1.2 实验原料

原料取自新疆天业水泥厂(以下简称 T 水泥厂)其中1条规模为4000 t·d⁻¹的水泥熟料生产线。 其生产工艺流程如图1所示,采用电石渣、钢渣、粉煤灰和硅粉等10余种固废为生产水泥的原料,在经过原料预处理和生料配伍计算后,按照硅酸盐水泥正常生产流程生产符合国家标准要求

Fig. 1 Cement production flow chart of T cement factory

的水泥产品。本研究所取原料为T水泥厂生料均化库中的生料。其中,生料的烧失量为13.99%; 各组分的质量分数比例为,54.90%CaO、18.60%SiO₂、4.45%Al₂O₃、3.33%Fe₂O₃、2.56%MgO、 0.10%Cl⁻。熟料三率值,即石灰饱和系数(Lime Saturation Factor,LSF或KH)、硅率(Silica Modulus, SM)和铝率(Alumina Modulus, IM),分别为KH=0.84、SM=2.53、IM=1.31。

1.3 实验设计

鉴于生料中氯元素基本上以 Cl⁻形式存 在,参考相关文献^[16-18], 拟用 CaCl₂ 作为掺氯 剂,利用 T 水泥厂生料均化库生料,开展氯 (Cl⁻) 质量分数为 0.1%~0.5% 的生料煅烧实验制 备熟料和水泥,并以熟料矿物相组分的质量分 数和水泥 3 和 28 d 强度性能作为分析指标。外 掺 CaCl₂ 水泥烧制实验设计如表 1 所示, S-1~ S-5 组生料的化学组分除了氯质量分数外,其 余 (氧化物组分和三率值) 视为不变。

表 1 外掺 CaCl₂ 水泥烧制实验设计表 Table 1 Design of experimental table for calcination of CaCl₃

	containing cement					
	实验 编号	: 氯(CГ) 氯(CГ) - 掺量/% 质量分数/%		CaCl ₂ 掺量/g	生料 原料/g	总生 料/g
	S-1	0	0.1	0	1 350.00	1 350.00
	S-2	0.1	0.2	2.11	1 347.89	1 350.00
	S-3	0.2	0.3	4.22	1 345.78	1 350.00
	S-4	0.3	0.4	6.33	1 343.67	1 350.00
	S-5	0.4	0.5	8.44	1 341.56	1 350.00
ľ						

1.4 实验方法

1) 生料制备。根据实验设计,精准称量好

不同掺氯质量分数的 CaCl₂ 粉末和生料,放置在橡胶球磨罐中,用球磨机混合均匀后过 190 目筛至 筛余率为 12%~14%。准确称取筛下生料粉末 450.00 g,加入 50 mL 纯水,用电液式压力试验机压制 成 Φ50 mm×20 mm 的生料饼,放置在 105 ℃ 的烘箱内 12 h 至恒重。

2) 熟料烧制。烘干的生料饼盛放在石墨坩埚中,移至高温电炉中进行煅烧。高温电炉的升温 程序设置依次为: 0~300 ℃,升温速率 6 ℃·min⁻¹,升温时间 50 min; 300~900 ℃,升温速率 10 ℃·min⁻¹,升温时间 60 min; 900 ℃,保温 50 min; 900~1 450 ℃,升温速率 10 ℃·min⁻¹,升温时 间 110 min; 1 450 ℃,保温时间 90 min。将烧制好的熟料块从炉中取出急冷至室温,准确称量熟料 块质量并记录。

3) 水泥制备。依照 GB 175-2007《通用硅酸盐水泥》标准^[19],在熟料块粉磨过程中加入质量分数为 0.3% 的三乙醇胺试剂,粉磨后过 80 目筛至筛余率 20% 以下,制得熟料粉末,取 5.00 g 粉末留样 (XRD 表征备用)。按照 m(剩余熟料):m(CaSO₄·2H₂O)=95:5 的比例掺入 CaSO₄·2H₂O 粉末,放置在橡胶球磨罐中,用球磨机混合均匀后过 190 目筛至筛余率 20% 以下制得水泥。

4) 净浆实验。取适量质量的水泥粉末,按照 0.30 的水灰质量比加入对应质量的纯水,放在水 泥净浆搅拌机上低速搅拌 30 s,高速搅拌 90 s。搅拌均匀的水泥浆体放入 20 mm×20 mm×20 mm 的 水泥模具内(每个配方 6 个平行样),并放置在振动台上震动(120±5) s,用水平刮尺将模具表面的多 余浆体刮掉,保持试块与模具表面的高度齐平,置于标准养护箱内养护 24 h 后脱模,制得抗压强 度测定用的水泥净浆试块。脱模后的试件在养护箱中继续养护至指定龄期,等待 3 和 28 d 强度测 定^[20]。同上述实验步骤,将搅拌均匀的净浆水泥浆体也另外放入 20 mm×40 mm×80 mm 的水泥模具 内(每个配方 3 个平行样)制备抗折强度测定用的水泥净浆试块,后续养护步骤同上。

1.5 分析方法

1) 熟料 XRD 表征。采用 XRD 衍射仪定性分析水泥熟料矿物相组成;按照 m(熟料):m(CaF₂)= 9:1 的比例掺入 CaF₂ 粉末作为内标物质,利用 Rietveld 全谱拟合分析法对熟料各矿物相的质量分数 进行半定量分析^[21]。XRD 仪器采用 CuKα 靶,步长 2*θ*=0.02(°)·step⁻¹,扫描速度 10 (°)·min⁻¹(定量分析 时采用 4 (°)·min⁻¹,电压 30 kV,电流 40 mA,石墨单色器。

2) 热力学相图模拟。采用 FactSage 软件的 Equilib 模块模拟生料在 800~1 500 ℃ 高温煅烧的物

相转化过程^[21]。输入T水泥厂生料均化库中的生料化学组分(质量分数),并将氯的质量分数设置在 0.1%~0.5% 的梯度内,继而模拟不同氯质量分数下,CaO-Al₂O₃-SiO₂-Fe₂O₃-MgO-Cl体系的高温反应相变化历程。

2 结果与讨论

2.1 热力学模拟分析

1) 全废渣生料反应相图模拟。利用 FactSage 热力学软件,按照表 1 中第一行的生料各氧化物的质量分数比 54.90%CaO:18.60%SiO₂:4.45%Al₂O₃:3.33%Fe₂O₃:2.56%MgO:0.10%Cl模拟计算 800~1 500 ℃ 温度区间内体系中各氧化物的反应历程,并绘制反应相图如图 2 所示。由图 2 可知,体系中的 β -C₂S 在 800 ℃ 前就已大量存在,伴随着铁相固溶体 C₂AF、钙镁铝盐中间矿物相 Ca₃MgSi₂O₈ 和 Ca₃MgAl₄O₁₀ 的生成。850 ℃ 后 C₂S 由 β 型向 α 型转化,这与 C₂S 在高温下的主要存在类型为 α 型的规律^[22] 是一致的。900~940 ℃,中间矿物 Ca₃MgSi₂O₈ 分解,进一步消耗体系中的 CaO 生成 α -C₂S,使得 C₂S 质量分数骤增,并在 900 ℃ 时达到最大值 63%;同时,C₂AF 质量分数也有缓慢上升。940~1 300 ℃,Ca₃MgAl₄O₁₀ 中间相全部分解,各矿物相相互转化,质量分数基本保持稳定,铁相固溶体中 C₂AF 质量分数不断下降,C₃AF 组分占得优势^[23]; 1 200 ℃ 后,体系中开始生成液相,为 α -C₂S 与 CaO 结合生成 C₃S 创造有利环境。1 300 ℃ 时,C₂S 大量转化为 C₃S, CaO 的质量分数骤减为

0。据此推测,熟料烧成实际温度对应热力学 反应相图的1300℃。1300~1340℃,热力学 模拟的反应体系中除 C₃S 以外的矿物如 C₃AF, 倾向于分解成 CaO、Al₂O₃、Fe₂O₃并熔融成液 相,体系中的液相量持续上升,并进一步与 C₂S 结合生成 C₃S。1340℃后,C₃S 的生成量 已达到稳定并呈轻微下降趋势。此时,C₂S 倾 向于熔融生成液相,直至1400℃后体系中的 C₂S 由 β型开始向γ型转化。热力学模拟相图 图 2 反映出,体系中的 C₃S 在1300℃瞬时生 成,f-CaO 也在1300℃时瞬间全部消耗。由此 推断,热力学计算得到的 CaO-SiO₂-Al₂O₃-Fe₂O₃-MgO-Cl 体系熟料烧成温度为1300℃。

图 2 FactSage 软件模拟 CaO-SiO₂-Al₂O₃-Fe₂O₃-MgO-Cl 体系反应相图

2)不同氯质量分数体系热力学相图模拟。进一步从热力学计算角度探索氯 (Cl)质量分数在 0.1%~0.5% 的范围内, CaO-SiO₂-Al₂O₃-Fe₂O₃-MgO-Cl体系高温煅烧反应过程中的液相及各矿物相质 量分数的生成变化规律,并与不含氯体系进行对比,着重关注 1 300 ℃ 时各物相及液相的质量分数 变化趋势。绘制不同氯质量分数下 C₃S、C₂S、C₃AF、CaO、液相的质量分数随温度变化图,如图 3 所示。由图 3(a)可发现,随着氯质量分数的上升,1 300 ℃ 时体系中的 C₃S 质量分数逐渐增加,氯 质量分数从 0.1% 上升至 0.5% 时,C₃S 的质量分数由 48% 增加至 49.5%。对照图 3(b) 和图 3(d) 可 知,1 300 ℃ 时随着氯质量分数的上升,体系中的 C₂S 质量分数呈现出不断下降的趋势,当氯质量 分数由 0.1% 上升至 0.5% 时,C₃S 的质量分数从 27.5% 增加至 25.5%;同时,体系中 CaO 的消耗量 也随着氯质量分数上升不断增大。C₃S、C₂S和 CaO 的质量分数变化趋势与 C₃S 的生成规律是一致 的,即氯元素可以促进 C₂S 结合 CaO 生成 C₃S 的反应速率,并增加 C₃S 生成量^[17]。熟料中的铁相固 溶体组成形式包括 C₂AF~C₆AF^[23],C₃AF 是其中的 1 种。由图 3(c)可知,氯质量分数由 0.1% 上升至 0.5% 时,体系中 C₃AF 是其中的 1 种。由图 3(c)可知,氯质量分数由 0.1% 上升至

图 3 不同掺氯质量分数下熟料矿物相及液相质量分数变化图

Fig. 3 Variation of mineral phase and liquid phase content of clinker with different mass fractions of chlorine

见,氯元素的升高对于 C₃AF 的生成起到了抑制作用。结合图 3(e) 可发现,液相量在 1 300 ℃ 时随 着氯质量分数的上升逐渐增加,但不含氯体系中液相量为 0。因此,氯元素的存在促进了液相量的 生成^[6]。液相的形成主要依靠 Al₂O₃、Fe₂O₃等氧化物组分^[22]。可见,在热力学模拟的 1 300 ℃ 时氯 质量分数较高的体系中,Al₂O₃、Fe₂O₃等氧化物组分倾向于熔融成液相,因此 C₃AF 的生成量逐渐 降低。

结合热力学模拟 CaO-SiO₂-Al₂O₃-Fe₂O₃-MgO-Cl 体系反应相图可知,熟料烧成温度为1300 ℃。 不同氯质量分数体系反应相图中各物相和液相量在1300 ℃处的生成转化规律表明,氯元素可以促 进 C₂S 消耗 CaO 生成 C₃S,并促进液相量的生成。随着氯质量分数由 0.1% 上升至 0.5% 时,1300 ℃ 时体系中的 C₃S 质量分数从 48% 上升至 49.5%; C₂S 质量分数由 27.5% 下降至 25.5%,C₃AF 的质量 分数从 18% 下降至 13%。在不考虑动力学反应速率和时间限制的条件下,热力学相图模拟结果很 好地反映了 0.1%~0.5% 氯质量分数生料体系高温煅烧反应过程中,主要矿物相 C₃S、C₂S、C₃AF 及 CaO 和液相质量分数的变化趋势,这对水泥生产尤其是高氯质量分数的水泥生产工艺具有一定的 理论指导价值。然而,热力学软件模拟有其局限性。一是未能考虑动力学方面的影响。这是因 为,在实际生产中不可能达到理想的传质条件和无限的反应时间,如各物相的生成均在某温度处 瞬时完成。二是 FactSage 软件数据库不含 C₃A 组分,无法准确反映 C₃A 的质量分数生成规律。因 此,相图模拟的不同氯质量分数体系中各物相的质量分数变化规律,还有待开展不同的掺氯生料 水泥烧制实验来进一步验证。

2.2 熟料 XRD 分析

对熟料进行 XRD 表征分析,结果如图 4 所示。全废渣水泥熟料中除了常见的 C₃S、C₂S、C₂AF、C₃A 矿物相之外,还发现了 Alinite 相和 Ca₁₂Al₁₄O₃₂Cl₂相 2 个新相^[10]。采用 Rietveld 全谱拟合分析法并借助 MDI Jade 6.0 软件对内掺 CaF₂ 熟料 XRD 图谱中各物相的质量分数进行精修^[24]。精修过程中发现,由于 Alinite 相是通式为 Ca₁₀Mg_{1-x2}V_{x2}[(SiO₄)_{3+x}(AlO₄)_{1-x}]O₂Cl(V: 晶格空位, 0.35<x<0.45)^[25-27]

的一类混合物, 难以得到其准确分子式并进行 精修, 但由于其结构与 C_3S 类似且质量分数较 少, 将 Alinite 相质量分数纳入到 C_3S 相中计 算。主要对 C_3S 、 C_2S 、 C_3A 、 C_2AF 、 $Ca_{12}Al_{14}O_{32}Cl_2$ 相、f-CaO和无定型相 (Amorphous)的质量分数 进行半定量分析,结果如表 2 所示。主要矿物 相组分 C_3S 、 C_2S 、 C_3A 、 C_2AF 和 $Ca_{12}Al_{14}O_{32}Cl_2$ 的质量分数变化如图 5(a) 和图 5(b) 所示。由表 2 中的精修参数可知, S-1~S-5 组内掺 CaF₂ 熟料 XRD 图谱的精修结果均满足 E < R < 2E。这表 明, 精修结果在置信区间内。熟料中存在一部

图 4 S-1~S-5 组熟料 XRD 图

表 2	S-1~S-5组内掺CaF, 熟料物相组分精修质量分数表	
-----	------------------------------	--

Table 2 Phase content of S-1~S-5 clinker after Rietveld refinement with addition of CaF2 within group

纪旦	矿物相组分质量分数/%					精修参数			
5冊 5	C ₃ S	C ₂ S	C ₃ A	C ₂ AF	Ca ₁₂ Al ₁₄ O ₃₂ Cl ₂	f-CaO	Amorphous	R/%	E/%
S-1	48.44	34.67	4.94	5.28	2.44	4.22	0.00	2.18	1.62
S-2	55.74	26.38	5.52	5.74	1.77	3.86	1.00	2.43	1.69
S-3	59.49	22.51	4.39	4.18	2.36	2.79	4.29	2.31	1.68
S-4	63.70	19.36	3.08	2.87	5.74	1.84	3.40	2.12	1.70
S-5	65.02	20.89	2.45	2.13	4.37	1.20	3.94	2.34	1.68

分无定型态物质。这可能是因为,冷却过程中液相来不及结晶形成玻璃体相,其中含有少量氧化物如 Fe₂O₃、MgO 等^[22]。由氯质量分数为 0.1% 时 Ca₁₂Al₁₄O₃₂Cl₂ 的质量分数为 2.44% 计算得到氯的质量分数为 0.12%,此结果超过了生料中氯的质量分数。这说明,精修结果存在着一定的误差。但在相同的工艺条件和精修参数背景下,仍可借助 XRD 精修结果对熟料中主要矿物相质量分数的变化趋势进行半定量分析。

表2反映出,熟料的主要矿物相为C₃S和C₃S。随着氯质量分数的上升,熟料中f-CaO的质量 分数逐渐减少。这表明,氯元素增强了熟料的易烧性。由图 5(a)可观察到,氯质量分数由 0.1% 上 升至 0.5% 时, C₃S 质量分数由 48.44% 增加至 65.02%, 其中包含着少量 Alinite 相; C₂S 质量分数则 由 34.67% 下降至 19.36%, 且在氯质量分数为 0.4% 时达到最低值, 当氯质量分数上升至 0.5% 后, C₃S的质量分数有所增加。熟料中C₃S、C₅S和 f-CaO质量分数的变化趋势表明,氯元素促进了体系 中的 C₂S 相向 C₃S 相的转化,但在氯质量分数超过 0.4% 后,促进作用减弱。图 5(b) 表明,熟料中 的 C₃A 和 C₂AF 组分受氯质量分数影响较大,当生料掺氯量上升至 0.2% 后, C₃A 和 C₂AF 质量分数 均呈下降趋势。其中,氯质量分数从0.2%上升至0.5%的过程中,C₃A和C₂AF的质量分数分别由 5.52% 下降至 2.45% 和 5.74% 下降至 2.13%;同时,体系中的 Ca12Al14O32Cl2 相作为产生 C3A 的中间 相,其质量分数不断上升,直至超过C₃A和C₂AF组分。从AI元素的质量守恒角度来说,部分 AI 元素还可能参与了 Alinite 相的形成。这表明,在氯质量分数较高的高温煅烧反应过程中,较多 的 Al₂O₃ 倾向于与 CaO、SiO₅、MgO 和含氯组分等结合生成 Ca₁₂Al₁₄O₃₂Cl₂相和 Alinite 相。由图 5 可 以发现,氯质量分数由 0.4% 上升至 0.5% 时,体系中的 C2S 质量分数由 19.36% 上升至 20.89%;同 时, Ca1,Al14O3,Cl,的质量分数由 5.74% 下降至 4.37%, 而 C3S 质量分数仍增长了 1.32%。结合 Ca、 Al、Si和Cl元素的质量守恒和Alinite相的化学组成可知,氯质量分数为0.5%时C₃S质量分数的微 弱增长可能主要来源于 Alinite 相。此时,氯元素促进 C₂S 向 C₃S 转化的作用较弱;相对地,体系 中 Alinite 相的生成速率变大。

不同掺氯量熟料的各矿物相质量分数变化趋势表明,氯元素可增加高温体系中 CaO 的消耗量,促进 C₂S 向 C₃S 的转化,并显著增加 C₃S 的生成量。同时,在氯质量分数较高的高温反应体系中,CaO、SiO₂和 Al₂O₃倾向于与 MgO 和含氯物质等结合生成 Alinite 相和 Ca₁₂Al₁₄O₃₂Cl₂相;相应地,熟料中的 C₂S、C₃A 和 C₂AF 相质量分数随着氯质量分数的上升均呈现明显下降趋势,这与上文热力学模拟不同氯质量分数体系 C₃S、C₂S 和 C₃AF 的质量分数变化规律是符合的。值得注意的是,当生料中的氯质量分数超过 0.4% 后,体系中的 C₂S 组分质量分数有所增加。可推测,此时氯元素促进 C₂S 相向 C₃S 相转化的作用变弱,而 Alinite 相的增长速率变大。

2.3 水泥强度性能测定

水泥 3 和 28 d 抗折、抗压强度数值如图 6 所示,结合上文熟料矿物相 XRD 精修半定量分析结 果表 2 可知,影响水泥早期强度的 C₃S 相在熟料中占比较大,可达 50%~65%,其中包含的少量 Alinite 相也对 3 d 强度的增长有利,且随着氯质量分数的上升,C₃S 质量分数占比逐步上升,因此

Fig. 6 Strength performance of S-1~S-5 group cement

水泥 3 d 强度增长速率较快。使用 SPSS 软件进行相关性分析可知,氯离子质量分数与 28 d 抗折强 度皮尔逊相关系数为 0.972,表现为强正相关;氯离子质量分数与 28 天抗压强度皮尔逊相关系数为 -0.666,表现为负相关。其中,氯质量分数为 0.3% 时,28 d 抗压强度达 96.6 MPa,相比氯质量分 数为 0.1% 时的 28 d 抗压强度 103.8 MPa 降低了 7%。实际上,水泥 28 d 强度受到多种矿物的综合影 响,但主要是 C₃S 和 C₂S 质量分数的影响。熟料 XRD 矿物相质量分数精修结果表 2 表明,当生料 掺氯质量分数上升时,熟料中 C₃S 相质量分数不断上升的同时,C₂S 和 C₄AF 质量分数却呈现下降 趋势,C₃S 和 C₂S 质量分数随掺氯量的变化趋势使得 2 者对水泥 28 d 强度的增长产生拮抗作用。因 此,28 d 抗压强度的增长空间不如 3 d 抗压强度,且总体呈现轻微下降的趋势。

对于附有旁路除氯系统的高氯原料水泥生产工艺而言,熟料中含有部分 Alinite 组分可使水泥 具有易磨的特性,有利于水泥粉磨环节节省能耗^[28-29]。结合 S-1 组~S-5 组熟料 XRD 表征和水泥强 度性能测定结果,为了极大程度地促进熟料中 C₃S 相的生成,同时保证熟料中适宜的 C₂S 质量分数 和水泥优良的 3 d 和 28 d 性能,将生料氯元素质量分数控制在 0.4% 以下是较好的选择。

2.4 氯元素物质流分析

取流水线上某 24 h 工作周期内水泥烧制物 料投入量和输出量数据,并根据 GB/T 176-2017 《水泥化学分析方法》^[30]离子色谱法测定各样 品中的氯元素质量分数,结果如表 3 所示。

结合图 1 的 T 水泥厂全废渣水泥工艺流程 得知,整体工艺中的氯元素来源于电石渣、粉 煤灰等工业废渣原料,在生料均化环节其质量 分数得到均化。随着生料进料,熟料煅烧至 1 100 ℃时,氯元素与生料中其他碱性金属组 分如钠、钾形成低熔点的氯盐挥发到预热器、 分解炉和回转窑中。当窑中煅烧温度进一步上

表 3 某 24 h 工作周期内各物料氯元素质量分数及物料 喂入量和输出量数据

Table 3Chlorine content of each material as well as material
feeding and output data in 24 h

含氯物料	氯质量分数/%	物料消耗量/(t·d ⁻¹)
生料	0.112	7 094.000
燃煤	0.022	522.000
熟料	0.025	5 912.000
旁路除氯氯灰	21.900	11.280
窑灰	0.196	628.760
煤灰	0.084	88.840

升至1300℃后,体系中的氯组分已大部分挥发至烟气中,只有小部分掺杂在熟料矿物相中被带出。一部分烟气中的挥发性氯组分随烟气至窑头处被新进的生料裹挟,随后在回转窑中循环富集;另一部分随烟气被抽取至旁路除氯系统中,被迅速冷凝除尘作为捕集的氯灰进行离线处理。随着窑尾处的烟气回到预热器后经过降温与除尘器收集到的窑灰被回喂进生料系统中,部分窑尾处烟气在温度适宜区的预热器和分解炉处富集形成结皮堵塞。根据图1工艺流程和表3的数据对氯元素的物质流动进行质量平衡计算。氯元素有2个来源,通过计算得到,来自生料的氯为7.945t,来自燃料携带的氯为0.115t,总量为8.060t。氯元素有4个去向,其中,进入熟料中的氯的质量为1.478t,进入旁路除氯系统收尘灰中的氯为2.470t,去往窑灰中的氯为1.232t,进入煤灰中的氯为0.075t。根据质量守恒的原则进行计算得到随窑尾结皮、随烟气循环富集中的氯的质量为2.805t。因此,系统旁路除氯的效率为47%。

由氯元素的质量平衡分析计算和工艺流程图 1 绘制氯元素的物质流分析 Sankey 图,如图 7 所示。氯元素的总量达 8.060 t,其中随烟气循环富集的量为 2.805 t,占氯元素总量的 34.80%;熟料中氯元素的质量分数达 1.478 t,占氯元素总质量分数的 18.34%。可见,回转窑工艺下高氯全废渣生料在高温煅烧过程中氯元素的循环富集情况较为普遍,应特别注重水泥氯元素质量分数的指标。全废渣工艺的旁路除氯系统效率达 47.00%,而普通水泥窑的旁路除氯效率可达 70% 以上^[31],与普通硅酸盐水泥工艺相比,该除氯系统设备的效率仍有很大提升潜力。

图 7 氯元素物质流 Sankey 图 Fig. 7 Sankey diagram of chlorine material flow analysis

3 结论

 1) 掺氯质量分数为 0.1%~0.5% 的 CaO-SiO₂-Al₂O₃-Fe₂O₃-MgO-Cl 体系热力学相图计算和水泥烧制 实验均反映出,氯元素可促进 C₂S 结合 f-CaO 转化生成 C₃S,并使得熟料中 C₃S 质量分数上升, C₂S、C₄A 和 C₄AF 质量分数下降。

2) 在氯质量分数较高的高温反应体系中, CaO、SiO₂和 Al₂O₃ 倾向于与 MgO 和含氯物质结合 生成 Alinite 相和 Ca₁₂Al₁₄O₃₂Cl₂相。当氯质量分数超过 0.4% 后, 促进 C₂S 结合 CaO 转化生成 C₃S 的 作用变弱,此时 Alinite 相的增长速率变大。

3) 氯质量分数由 0.1% 上升至 0.5% 时,水泥 3 d 抗压强度从 51.2 MPa 上升至 66.6 Mpa,呈上升 趋势; C₃S 和 C₂S 质量分数随氯质量分数变化趋势表明 2 者对水泥 28 d 强度的增长产生了拮抗作 用,28 d 强度增长空间较小。

4) 在附有旁路除氯系统的高氯原料水泥生产实际中,建议生料中氯质量分数控制在 0.4% 以下,可极大程度地促进熟料中 C₃S 的生成,并保证适宜的 C₂S 质量分数和较为优良的 3 d 和 28 d 强度性能。

参考文献

- [1] PABLOS J M, SICHIERI E P, DE A Z, et al. Study for utilization of industrial solid waste, generated by the discharge of casting sand agglomeration with clay and of blast furnace slag, in concrete composition[J]. Key Engineering Materials, 2012, 517: 611-616.
- [2] 黄东升.城市一般工业固废现状及对策研究[J].资源节约与环保, 2018(9):44+49.
- [3] REN C Z, WANG W L, LI G L. Preparation of high-performance cementitious materials from industrial solid waste[J]. Construction and Building Materials, 2017, 152: 39-47.
- [4] 郭随华,翁端,陈益民.我国水泥工业"生态化"的研究现状和发展趋势[J]. 硅酸盐学报,2001(2): 172-177.
- [5] 吴莉娜, 吴融权. 我国氯碱行业节能减排技术分析[J]. 氯碱工业,
 2013, 49(5): 39-45.
- [6] 王昕, 刘晨, 颜碧兰, 等. 国内外水泥窑协同处置城市固体废弃物现状 与应用[J]. 硅酸盐通报, 2014, 33(8): 1989-1995.

- [7] SILVA R V, BRITO J D, LYNN C J, et al. Environmental impacts of the use of bottom ashes from municipal solid waste incineration: A review[J]. Resources Conservation and Recycling, 2019, 140: 23-35.
- [8] MURAT M, SORRENTINO F. Effect of large additions of Cd, Pb, Cr, Zn, to cement raw meal on the composition and the properties of the clinker and the cement[J]. Cement and Concrete Research, 1996, 26: 377-385.
- [9] 崔育东. 钾钠氯硫挥发特性及对熟料煅烧的影响[D]. 浙江: 浙江大学, 2011
- [10] 施惠生, 吴凯, 郭晓璐. 垃圾焚烧飞灰煅烧阿利尼特水泥熟料的形成 过程及其水化性能研究[J]. 水泥技术, 2010(6): 23-27.
- [11] WANG Y F, ZHU H M, JIANG X G, et al. Study on the evolution and transformation of Cl during Co-incineration of a mixture of rectification residue and raw meal of a cement kiln[J]. Waste Management, 2019, 84: 112-118.

- [12] ZHU H M, WANG Y F, JING N J, et al. Study on the evolution and transformation of chlorine during co-processing of hazardous waste incineration residue in a cement kiln[J]. Waste Management & Research, 2019, 37: 495-501.
- [13] CHOI J H, OH S C. Removal of chlorine from municipal solid waste fly ash by using acid and alkaline solution[J]. Journal of Korea Society of Waste Management, 2019, 36(5): 471-479.
- [14] KWON W T, KIM Y H, CHU Y S. Effect of P₂O₅ and chloride on clinkering reaction[J]. Advances in Technology of Materials Materials Processing Journal, 2005, 7(1): 63-66.
- [15] TAZUDDIN, AIYER H N, CHATTERJEE A. Phase equilibria studies of CaO-SiO₂-Al₂O₃-Fe₂O₃-MgO system using CALPHAD[J]. Calphadcomputer Coupling of Phase Diagrams and Thermochemistry, 2018, 60: 116-125.
- [16] KOLOVOS K, TSIVILIS S, KAKALI G. The effect of foreign ions on the reactivity of the CaO–SiO₂–Al₂O₃–Fe₂O₃ system: Part II: Cations[J]. Cement Concrete Research, 2002, 32(3): 463-469.
- [17] 陈明源,陈韬,邱树恒,等.用氯化钙作矿化剂制成的水泥的15年钢筋 锈蚀试验[J].水泥,2003(12): 7-9.
- [18] KIM T Y, KIM N I, CHU Y S. Burnability and mineral properties of clinker added chlorine[J]. Resources Recycling, 2020, 29(6): 48-56.
- [19] 中华人民共和国国家市场监督管理总局,中国国家标准化管理委员会.通用硅酸盐水泥标准:GB/T 21372-2008[S].北京:中国环境科学出版社,2008
- [20] 李贵强. 掺杂SrO和SrSO₄对高阿利特水泥合成和性能的影响[D]. 济 南: 济南大学, 2011
- [21] GHERIBIA E, ROBELIN C, DIGABEL S L, et al. Calculating all local minima on liquidus surfaces using the FactSage software and databases and the Mesh Adaptive Direct Search algorithm[J]. Journal of Chemical

(责任编辑:金曙光)

Thermodynamics, 2011, 43(9): 1323-1330.

- [22] 沈威. 水泥工艺学[J]. 武汉:武汉理工大学出版社, 1991: 5-32.
- [23] SONER İ. Utilization of fluidized bed combustion ashes as raw material in the production of a special cement[J]. Middle East Technical University, 2009: 32-44.
- [24] 常钧,崔凯.基于Rietveld方法的硫铝酸盐水泥熟料及其水化产物定 量相分析[J].建筑材料学报,2020,23(2):438-446.
- [25] ILYUKHIN V V, NEVSKY N N, BICKBAU M J, et al. Crystal structure of alinite[J]. Nature, 1977, 269(5627): 397-398.
- [26] LAMPE F V, HILMER W, JOST K H, et al. Synthesis, structure and thermal decomposition of alinite[J]. Cement Concrete Research, 1986, 16(4): 505-510.
- [27] NEUBAUER J, POLLMANN H. Alinite—Chemical composition, solid solution and hydration behaviour[J]. Cement Concrete Research, 1994, 24(8): 1413-1422.
- [28] BIKBAOU M Y. Crystal chemistry and properties of alinite and jasmundite[J]. 8th International Congress on the Chemistry of Cement, 1986, 2: 352-357.
- [29] KOSTOGLOUDIS G C, KALOGRIDIS D, FTIKOS C, et al. Comparative investigation of corrosion resistance of steel reinforcement in alinite and Portland cement mortars[J]. Cement Concrete Research, 1998, 28(7): 995-1010.
- [30] 中华人民共和国国家市场监督管理总局,中国国家标准化管理委员会.水泥化学分析方法: GB/T 176-2017[S].北京:中国环境科学出版社, 2017
- [31] WANG F, WANG H F, XU J, et al. Determination of fluorine and chlorine in coal by high temperature combustion hydrolyzing-ion chromatography[J]. Chemical Analysis and Meterage, 2016, 25: 27-30.

Influence of chlorine on property of cement produced solely from industrial slag and material flow analysis

SONG Xiaoling¹, LIU Longmin², YANG Zhong¹, HUANG Dong¹, HU Jingping^{2,3,*}, TANG Jianjian², LIANG Zhilin², LI Xingwu², HOU Huijie², LIANG Sha², LUO Guangqian³, YANG Jiakuan^{2,3}

1. Xinjiang Tianye (Group) Co., Ltd, Shihezi 832000, China; 2. College of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; 3. State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China

*Corresponding author, E-mail: hujp@hust.edu.cn

Abstract To solve the problem of high chlorine content in the raw meal of all-waste cement with carbide slag of the coal chemical industry as the primary raw material, the thermodynamic phase diagram calculations and cement calcination experiments of the CaO-SiO₂-Al₂O₃-Fe₂O₃-MgO-Cl system with 0.1%-0.5% chlorine content were carried out. Combined with XRD characterization, cement strength measurement and material flow analysis, the influence law and material flow of high-quality chlorine content in raw meal on clinker phase and cement performance were explored. The results showed that chlorine promoted f-CaO to combine with C2S to generate C₃S, and caused a decrease in the mass fractions of C₂S, C₃A and C₄AF in the clinker. When the chlorine content increased from 0.1% to 0.5%, the C₃S content increased by 16.58%, including a small amount of the Alinite phase, and the C₂S content reached the lowest value of 19.36% when the chlorine content was 0.4%. When the chlorine mass fraction is more than 0.4%, the promotion of C_2S to C_3S conversion becomes weaker, while the growth rate of the Alinite phase becomes higher. In the system with a higher chlorine mass fraction, CaO, SiO₂ and Al₂O₃ tend to combine with MgO and chlorine-containing substances to form the Alinite phase and Ca₁₂Al₁₄O₃₂Cl₂ phase. The influence of chlorine on the clinker phase was mapped to the strength of the cement as follows: when the chlorine content increased from 0.1% to 0.5%, the 3 d strength of the cement increased by approximately 30%, but the 28 d strength had little room to increase. The results of this study can provide a reference for the control of the raw material chlorine mass fraction in the production process of high chlorine cement with a bypass dechlorination system.

Keywords industrial solid waste; cement properties; chlorine; cement strength; thermodynamic simulation; mass flow analysis