

Environmental Engineering

第 15卷 第 12期 2021年 12月 Vol. 15, No.12 Dec. 2021

(www) http://www.cjee.ac.cn

E-mail: cjee@rcees.ac.cn

🐨 (010) 62941074

· 文章栏目: 固体废物处理与资源化

DOI 10.12030/j.cjee.202109113 中图分类号 TU992 文献标识码 /

叶人恺, 经雪, 耿子韬, 等. 复合铁添加物对混合有机固废厌氧产氢的影响[J]. 环境工程学报, 2021, 15(12): 4001-4008. YE Renkai, JING Xue, GENG Zitao, et al. Effects of iron filings additives on anaerobic hydrogen production from mixed organic solid wastes[J]. Chinese Journal of Environmental Engineering, 2021, 15(12): 4001-4008.

复合铁添加物对混合有机固废厌氧产氢的影响

叶人恺,经雪,耿子韬,程洁红∞,汤皓婷

江苏理工学院化学与环境工程学院,常州 213001

第一作者:叶人恺 (1996—),男,硕士研究生。研究方向:资源综合利用。E-mail: YRK229436865@163.com ⊠通信作者:程洁红 (1969—),女,博士,教授。研究方向:固体废弃物资源化利用。E-mail: cjh@jsut.edu.cn

摘 要将城镇污水处理厂的城市污泥与餐厨垃圾混合后,经厌氧消化处理后可产生能源气体氢气,从而达到 资源化利用的目的。废铁屑是机械加工厂的固体废弃物,将其处理后可得到一种新型复合铁材料(FE/FEO)。将 城市污泥和餐厨垃圾预处理后按体积比1:1比例混合,分别等分放人2个反应器中,一个投加FE/FEO粉末作为 为FE/FEO组,另一个不加FE/FEO作为对照组,考察了FE/FEO对上述混合有机固废厌氧产氢的影响。结果表 明,在厌氧反应的24h内,FE/FEO组的最大氢气体积分数为61.4%,比不加FE/FEO的对照组增加了15%; FE/FEO组的累积产氢率和最大产氢率分别为49.0和22.7 L·kg⁻¹(以1kg挥发性有机固体所能产生的氢气体积 计),比对照组分别增加了56%和59%。FE/FEO组的亚铁离子质量浓度在第24h达到最大,即109.8 mg·L⁻¹。 FE/FEO组产生的挥发性有机酸为2675 mg·L⁻¹,比对照组提高了15%。FE/FEO粉末中不仅含有零价铁、氧化亚 铁,还有针孔状α-FeOOH,其结构松散、比表面积大,可对厌氧发酵系统中的微生物菌群起到支撑骨架作用。 本研究结果可为提高有机固废厌氧发酵产氢效率提供参考。

关键词 废铁屑;厌氧发酵;产氢;城市污泥;餐厨垃圾

有机固体废弃物经厌氧发酵处理后可产生生物质能源,是未来固废处理处置技术碳减排的主要发展方向之一。餐厨垃圾和城市污泥都属于有机固体废物。截至2018年,我国餐厨垃圾的年产量超过了1.0×10⁸ t^[1],餐厨垃圾中富含淀粉、脂类、蛋白质及纤维素等有机物,对其进行生物转化后再利用已成为其主要处理方式。城市污泥是城镇污水处理厂的副产物,随着污水处理率的提高,城市污泥产生量亦随之逐年递增^[2]。因此,被逐渐淘汰的填埋处理方式和综合成本较高的焚烧处理处置方式,已不能满足对城市污泥处理处置的节能减排要求^[3]。在碳中和背景下,将这些有机固废进行厌氧发酵以获取生物质能源,符合节能降耗及资源回收的目标^[4]。

氢气是清洁能源,可利用范围很广。氢气产于厌氧发酵的初级阶段,但通常产氢效率不高。 为提高产氢率,相对早期的研究集中在污泥不同方式的预处理方面^[5-7]。目前,已有采用添加铁刨 花促进厌氧发酵产氢的报道^[8]。近年来,有关铁系物对厌氧发酵产甲烷影响的研究越来越得到关 注,相关报道分别集中在零价铁或三价、二价铁方面,这主要是铁元素在系统中的多重作用导致^[9-16]。 截至目前,这些研究已取得较理想的效果^[8,17-18]。因为甲烷是从厌氧发酵第二阶段的产氢产乙酸转

收稿日期: 2021-09-18; 录用日期: 2021-11-30

基金项目: 江苏省高等学校自然科学研究重大项目(15KJA610,001); 江苏省研究生实践创新项目(SJCX20_034)

化而来,因此,提高第二阶段的产氢产酸量,才能有助于提高甲烷产量。然而,上述研究仅针对 厌氧产沼气方面,而对产氢的效果和机理研究较少^[18-19]。此外,目前还尚无多价态铁复合材料对厌 氧发酵产氢的研究报道。

为提高有机固废发酵产氢效率,基于前期研究基础^[20-22],本实验利用机械加工厂的废弃铁刨 花制备了一种新型复合铁材料 (FE/FEO),探讨 FE/FEO 材料对城市污泥与餐厨垃圾混合固废的厌氧 发酵产氢作用;并考察其厌氧发酵的产氢效果,分析厌氧发酵过程中各种指标的变化,并对制备 的 FE/FEO 材料的形貌、成分进行了测试,最终对其厌氧发酵的作用进行了阐述。本研究拟为提高 厌氧发酵产氢方面提供新技术和数据积累。

1 材料与方法

1.1 实验材料

1)供试混合有机固体废物。本实验所用有机固废是餐厨垃圾和城市污泥的混合物。餐厨垃圾 来自于某学校食堂,主要成分为蔬菜和米饭,

粉碎后备用。城市污泥取自常州市某城镇污水处理厂,去除其中的大颗粒物和毛发后,调其 含固率至3.12%,然后进行碱解预处理30min^[23]。 最后,将上述预处理好的餐厨垃圾和城市污泥 按照体积比1:1^[22]比例混合均匀后备用。上述 各物料的理化指标见表1。 表 1 混合有机固废及其物料的理化指标 Table 1 Physical and chemical indexes of each material

供试材料	рН	含固率/%	$VS/(g \cdot L^{-1})$	$TS/(g \cdot L^{-1})$
餐厨垃圾	6.03	22.97	219.10	228.00
城市污泥	11.45	3.05	23.91	32.75
混合有机固废	9.06	4.34	31.57	39.36

2) FE/FEO 的制备。从机械加工厂取废铁刨花,经清洁、氧化、烘干、破碎等步骤,制成 0.10~ 0.50 cm 的多孔状颗粒物 FE/FEO,再于100 ℃烘箱烘干,反复若干次,直至成型,备用。

1.2 实验方法

将混合好的有机固废放入有效体积为750 mL的玻璃反应器中,投加20g·L⁻¹FE/FEO 后,混合 均匀,置于恒温水浴锅中进行高温厌氧消化(55 ℃)以启动实验。经过若干批次,直至产气稳定 后,取1/3体积的混合物作为接种物,采用上述物料,进入正式实验,厌氧发酵产氢24h。每4h 取气样和发酵液进行测试。同时,与对照组进行比较。因FE/FEO 材料可以多次使用,故过量投 加,反应后可回收使用。实验搭建的厌氧消化反应装置如图1所示。

1.3 分析测试指标与方法

复合铁材料 FE/FEO 中除零价铁外的其他成分,分别用傅里叶变换红外光谱仪 (IR200 型) 和同步热分析仪 (STA25000 型) 对其官能团进行定性分析和热重测试。

分析项目包括:产气量和气体成分;厌氧系统中混合底物的 pH;发酵液的挥发性脂肪酸 VFA 质量浓度、溶解性化学需氧量 SCOD 质量浓度和亚铁离子质量浓度。以上指标每4h测定 1次。发酵液取自厌氧反应器中的混合物,在6000 r·min⁻¹转速条件下离心5 min 后,取上清液经 45 μm 孔径的滤纸过滤后得到。厌氧反应结束后,取发酵底物进行微生物菌群形貌测试。

厌氧产气的各成分采用岛津 GC-2014 型气相色谱仪进行测定,色谱柱 (1 m×6 mm, 5A 分子 筛)进样口温度 100 ℃,热导检测器温度 100 ℃,载气采用氩气,柱温 50 ℃,恒温分析 10 min。 pH采用 pHS-3C 型精密酸度计测定。VFA 测定方法按照文献 [24]。SCOD 质量浓度用连华水质快速 测定仪 (5B-6C 型)测定。亚铁离子用邻菲罗啉分光光度法测定。微生物菌群形貌用扫描电镜 (S-3400N 型)观察。

2 结果与讨论

2.1 FE/FEO 成分分析

1) 红外光谱 (IR) 分析。图 2显示了 FE/FEO 材料除零价铁外其他成分的红外光谱图。由图 可知,在3450 cm⁻¹出现了-OH的伸缩振动吸 收峰,在1640和1390 cm⁻¹处分别出现了 H-O-H的变形振动吸收峰。这2处峰表明 FE/FEO中含有结合水^[25]。红外光谱图出现在 638和795 cm⁻¹的峰是α-FeOOH的特征吸收 峰。这与徐轶群等^[26]的研究结果一致。铁-氧 键的特征吸收峰处于471 cm⁻¹,是 Fe₂O₃特征吸 收峰^[24]。由红外分析结果可知,FE/FEO中含 有α-FeOOH、Fe₂O₃和结合水。

2) 热重 (TG) 分析。通过对 FE/FEO 材料除零价铁外其他成分进行红外分析,发现其主要是由 α-FeOOH 和 Fe₂O₃ 组成。由于 Fe₂O₃ 具有稳定的化学性质,而在 200~400 ℃ 的条件下,带有羟基的 FeOOH 会发生化学反应式 (1) 的反应,导致羟基断裂^[27]。

$$2\text{FeOOH} \rightarrow \text{Fe}_2\text{O}_3 + \text{H}_2\text{O} \tag{1}$$

图 3 是 FE/FEO 材料除零价铁外其他成分的 TG 图。由图 3 可看出,曲线上有 2 段明显的重量 损失。在 80~200 ℃,FE/FEO 样品的出现重量损失,此时,样品中的结合水随着温度的升高而脱 去,样品质量损失了 4.9%。在 200~400 ℃,α-FeOOH 因温度升高会发生式 (1) 的反应,导致羟基断 裂脱去,从而导致样品质量再次损失,此时,¹⁰⁰

袋脱去,从间寻到样品质重再次损失,此日 样品质量损失了6.5%。

进行热重分析实验的样品总质量为 8.80 mg, 样品中的结合水脱去后质量损失了 4.90%,可推 算出结合水为 0.43 mg。而根据 FeOOH 的化学 反应式 (1),此时损失的水分为 0.57 mg。根据 质量守恒定律,可计算出,α-FeOOH 为 5.63 mg, 占 63.97%。FE/FEO 中的 Fe₂O₃ 为 2.74 mg,占 31.13%。

铁是铁氧还原蛋白的重要组成成分,产氢 的主要途径是丙酮酸脱羧产氢和辅酶 I 的氧化

与还原产氢^[27],故产氢需要氢化酶中的电子载体铁氧还蛋白 (ferredoxin) 的参与,可见铁对产氢过程的作用不可忽视。有研究表明,氢化酶的活性随着铁离子的损耗而降低^[28]。

上述实验结果表明,投加了含零价铁、羟基铁和氧化铁组成的 FE/FEO 材料,能够提高混合菌 群的产氢能力。与投加单一的 Fe²⁺或 Fe²⁺或零价铁的研究结果相比,FE/FEO 材料能同时提供生物 产氢过程所需的多价态铁,这些对发酵菌群产氢会起到促进作用。

3)FE/FEO 电镜观察。如图 4 所示, FE/FEO材料呈现松散、蓬松的结构,由大量针状物错落堆 积构成,导致各类大小不一的疏松小孔。从红外光谱和热重分析结果可知,FE/FEO 中不仅有零价 铁和氧化铁,还有 63.9% 的 α-FeOOH。铁羟基氧化物微观即为褐色针状物,具有较大的比表面

积,接近纳米级的零价铁 ZVI 的比表面积,一般生锈的单质铁中均存在。这是因铁表面在空 气中被氧化腐蚀导致。这种疏松结构导致比表 面积增加,提高了其吸附能力。而且,这种松 散结构容易使铁表面形成大量微电池,引发腐 蚀反应,并会向系统中缓慢释放氢气。同时, 铁的外源电子在氢酶的中介作用下,将更多的 质子转化为氢,从而推动整个还原平衡向产氢 的方向发展^[8],有利于氢气增产。

2.2 厌氧发酵产氢效果

1) 总产气量。实验中考察了 FE/FEO 组厌 氧发酵 24 h 的产气量,并与对照组进行了比 较,其结果见图 5。从图 5 可看出,两组均在 厌氧反应的第 12~16 h 出现产气高峰。FE/FEO 组最大值是在第 12 h,而对照组是在第 16 h。此 时,FE/FEO 组的产气量为 1 280 mL,比对照 组的产气量提高了 22%。这表明,加入 FE/FEO 后有助于产气量的提高。在发酵前期,由于系 统内的微生物在调整适应新环境,导致产气较 少。在产气高峰后,VFA 的产生速率远大于微 生物对 VFA 的消耗速率,从而导致系统中出 现酸累积现象^[29](从第 2.3 节中可看出),抑制微 生物的生长,从而产气量下降。 53400 16.0kV/s5.00k SE

Fig. 5 Changes of gas production of the two groups with digestion time

2) 产氢量。由图 6 可知,两组氢气体积分数均呈现先逐渐增加后下降趋势。第 20 h时,两组 的氢气体积分数均达到最大,此时,FE/FEO组的氢气体积分数为 61.42%,较对照组提高了 14.85%。从累积氢气产量看,FE/FEO组为1 548 mL,比对照组提高了 56.32%。由图 7 可知,两组 均在第 16 h产氢率达到峰值,FE/FEO组的产氢率为 22.67 L·kg⁻¹(以 1 kg挥发性有机固体 VS 计), 比对照组增加了 59.87%。相比在常温 (pH=6.5)条件下对污泥进行厌氧发酵的产氢率 6.88 mL·g^{-1[30]}, 本实验结果高出了 230%。因此,在 55 ℃高温厌氧发酵条件下,FE/FEO 材料在提高厌氧产氢和产 气方面起到明显的促进作用。 第12期

2.3 产氢过程中各影响因素的变化

1) 挥发性有机酸 (VFA) 和 pH。由图 8 可 看出,两组反应器的 VFA 质量浓度随着消化 时间逐渐增加。在第 24 h,FE/FEO 组的挥发性 有机酸为 2 675 mg·L⁻¹,比对照组提高了 16%, 这表明复合铁材料 FE/FEO 能适当提高发酵液 中的 VFA 产量。CAO 等^[31]发现,在添加零价 铁的餐厨垃圾厌氧发酵系统中,第10 天,VFAs 的最大质量浓度增加到 8 245 mg·L⁻¹,比对照 组有了显著提高。这是因为,铁是微生物所需 的微量元素,可增强微生物代谢能力、提高有 机物的降解率,从而也提高了有机酸产量^[32]。 此外,零价铁也能通过电化学腐蚀产氢^[8],因 此,复合 FE/FEO 通过增强厌氧细菌的活性来 提高底物的基因代谢效率,从而提高厌氧细菌 的产氢性能^[8]。

由图8还可看出,随着厌氧消化时间的延 长,两组反应器的 pH 呈逐渐下降趋势。至第 24 h, FE/FEO 组和对照组 pH 分别降低到了 4.4 和 4.3。这主要是由于系统中挥发性有机酸 的产酸速率快而导致的积累,从而使得 pH 下 降。与对照组相比, FE/FEO组的 pH 相对较 高。这是因为,外加铁元素会在酸性条件下与 水发生反应,同时会发生副反应,产生羟基离 子,从而提高溶液的总碱度[33]。有研究者[8]发 现,厌氧系统中维持 pH 呈适当酸性状态有利 于厌氧产氢。一般乙酸和丁酸的产生与产氢有 关,保持有利的产乙酸和产丁酸的环境条件, 可促进厌氧发酵产氢。由以上结果可知, FE/FEO的添加能促进厌氧产酸,并导致 pH不 同程度的下降。与空白相比, FE/FEO 组的氢 气产量有所增加。

2) 亚铁离子质量浓度。由图 9 可知,在反应的前 8 h,两组反应器的发酵液中亚铁离子 无明显变化;从第 10 h 开始,发酵液中亚铁离 子明显增加。相比对照组,FE/FEO 组明显提 高了发酵液中亚铁离子质量浓度,反应结束 时,亚铁离子质量浓度为 109.75 mg·L⁻¹,是对 照组的 1.82 倍。这表明,加入的 FE/FEO 粉末

Fig. 6 Changes of hydrogen volume fraction and cumulative hydrogen production of the two groups with digestion time

g. 8 Changes of VFA and pH with digestion tir in the two groups

能在厌氧体系中发生相关反应,从而提高厌氧体系中亚铁离子质量浓度,对厌氧发酵产生作用。 有研究表明,投加Fe和Fe²⁺后,都能不同程度提高产氢量和最大比产氢速率^[34],但过多投加Fe²⁺(质 量浓度高于 200 mg·L⁻¹时),则产氢量随投加 Fe²⁺质量浓度的增加而有减小趋势。这表明, 投加 Fe²⁺虽然容易直接被利用,但投加量不宜 过多。在本实验中,FE/FEO为铁的复合材 料,呈现松散多孔状,不同于直接投加 Fe²⁺, FE/FEO 中有效铁元素成分可在厌氧反应过程 中逐渐释放。而且,反应结束后可回收利用。 本实验结果表明,20 g·L⁻¹的投加量未对系统 产生不利影响。

3) 厌氧系统内微生物菌群形貌。从图 10 中 可看出,FE/FEO组(图 10(b)和图 10(C))的微 生物比对照组(图 10(a))丰富,显示大量不同菌 种的细菌存在于污泥中。图中呈现了球菌、杆

Fig. 9 Variation of ferrous ion concentration with anaerobic time

菌、弧状菌和丝状菌等;3张图中均观察到杆菌,大小约为1~5μm。这些细菌都有较完整的形态 结构,表面较光滑,菌群数量丰富,菌种之间空隙很小,互相结合紧密。除了微生物外,在图10(c)中, 还可观察到 FE/FEO 组中具有其它物质,如胞外多聚物 (EPS)、有机物和无机盐等。在对照组中,大 块颗粒物相对较多,且比较紧实,而 FE/FEO 组不仅体现丝状菌群,还展现了较多絮状松散结构物 质;铁羟基氧化物 α-FeOOH 其多孔性会导致污泥絮体的松散,其与细菌互相交联、包裹,能够提 供骨架支撑作用^[35],从而可促进微生物与环境中营养物质的良好接触,对其生长代谢起促进作用。

图 10 扫描电镜下的菌群形貌

```
Fig. 10 Colony morphology of two groups under electron microscope
```

3 结论

1)FE/FEO组的产气峰值、氢气体积分数和产氢率均高于对照组。这表明 FE/FEO 材料在提高 厌氧产氢率和产气量方面能起到明显的促进作用。

2) 在厌氧发酵产氢阶段,FE/FEO 组的挥发性有机酸质量浓度和亚铁离子质量浓度均比对照组 有所增加。这表明FE/FEO 能适当提高发酵液有机酸产量并维持系统的总碱度。

3) FE/FEO 主要由 α-FeOOH(63.9%) 和 Fe₂O₃(31.2%) 组成,呈现松散、蓬松结构,具有较大的比 表面积和吸附能力,其多孔性会导致污泥絮体变得松散,为微生物提供良好的骨架支撑作用,并 促进其生长代谢。

参考文献

- WANG Y, ZANG B, LI G, et al. Evaluation the anaerobic hydrolysis acidification stage of kitchen waste by pH regulation[J]. Waste Management, 2016, 53(7): 62-67.
- [2] LI J, LI C, ZHAO L, et al. The application status, development and future trend of nano-iron materials in anaerobic digestion system[J]. Chemosphere, 2021, 269: 129389-129403.
- [3] GIROTTO F, ALIBARDI L, COSSU R. Food waste generation and industrial uses: A review[J]. Waste Management, 2015, 45: 32-41.
- [4] 戴晓虎, 张辰, 章林伟, 等. 碳中和背景下污泥处理处置与资源化发展 方向思考[J]. 给水排水, 2021, 57(3): 1-5.
- [5] ANBAZHAGAN S, CHELLIAH A, GALAVILA R T, et al. Enhancing hydrogen production through anaerobic co-digestion of fruit waste with biosolids[J]. Journal of Environmental Science and Health, Part A, 2019, 54(6): 553-559.
- [6] 傅木星, 张砺彦, 苏泱洲, 等. 不同预处理方法对剩余污泥厌氧发酵产 氢的影响[J]. 安全与环境学报, 2015, 15(1): 273-276.
- [7] 潘维,莫创荣,李小明,等.外加淀粉酶预处理污泥厌氧发酵产氢研究[J].环境科学学报,2011,31(4):785-790.
- [8] ZHU H, SETO P, PARKER W J. Enhanced dark fermentative hydrogen production under the effect of zero-valent iron shavings[J]. International Journal of Hydrogen Energy, 2014, 39(33): 19331-19336.
- [9] HWANG Y, SIVAGURUNATHAN P, LEE M, et al. Enhanced hydrogen fermentation by zero valent iron addition[J]. International Journal of Hydrogen Energy, 2019, 44(6): 3387-3394.
- [10] HONETSCHLAGEROVA L, LUCIANO V, MARTINEC M, et al. Interactions of nanoscale zero valent iron and iron reducing bacteria in remediation of trichloroethene[J]. International Biodeterioration & Biodegradation, 2018, 127: 241-246.
- [11] FENG Y, ZHANG Y, QUAN X, et al. Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron[J]. Water Research, 2014, 52: 242-250.
- [12] BAEK G, KIM J, CHO K, et al. The biostimulation of anaerobic digestion with (semi)conductive ferric oxides: Their potential for enhanced biomethanation[J]. Applied Microbiology and Biotechnology, 2015, 99(23): 10355-10366.
- [13] YU B, ZHANG D, SHAN A, et al. Methane-rich biogas production from waste-activated sludge with the addition of ferric chloride under a thermophilic anaerobic digestion system[J]. RSC Advances, 2015, 5(48): 38538-38546.
- [14] BAEK G, KIM J, LEE C. Influence of ferric oxyhydroxide addition on biomethanation of waste activated sludge in a continuous reactor[J]. Bioresource Technology, 2014, 166: 596-601.
- [15] ZHAO Z, ZHANG Y, WOODARD T L, et al. Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials[J]. Bioresource Technology, 2015, 191:

140-145.

- [16] ZHU L, GAO K, JIN J, et al. Analysis of ZVI corrosion products and their functions in the combined ZVI and anaerobic sludge system[J]. Environmental Science and Pollution Research International, 2014, 21(22): 12747-12756.
- [17] ZHOU J, YOU X, NIU B, et al. Enhancement of methanogenic activity in anaerobic digestion of high solids sludge by nano zero-valent iron[J]. Science of the Total Environment, 2020, 703: 135532-135542.
- [18] FAISAL S, SALAMA E, MALIK K, et al. Anaerobic digestion of cabbage and cauliflower biowaste: Impact of iron oxide nanoparticles (IONPs) on biomethane and microbial communities alteration[J]. Bioresource Technology Reports, 2020, 12: 100567-100595.
- [19] ENGLIMAN N S, ABDUL P M, WU S, et al. Influence of iron (II) oxide nanoparticle on biohydrogen production in thermophilic mixed fermentation[J]. International Journal of Hydrogen Energy, 2017, 42(45): 27482-27493.
- [20] 朱铖, 程洁红. 铁刨花投量对餐厨垃圾和污泥协同厌氧消化的影响[J]. 中国给水排水, 2018, 34(23): 8-13.
- [21] CHENG J H, ZHU C, ZHU J, et al. Effects of waste rusted iron shavings on enhancing anaerobic digestion of food wastes and municipal sludge[J]. Journal of Cleaner Production, 2020, 242: 118195-118205.
- [22] 经雪, 程洁红, 孔峰, 等. 外加铁对城市污泥厌氧消化产甲烷的作用[J]. 环境工程, 2021, 39(2): 125-130.
- [23] 付志敏,陶兰兰,徐静,等.中温碱解预处理促进剩余污泥厌氧产甲烷的研究[J].环境工程,2016,34(1):91-95.
- [24] 王华, 卢培利, 艾海男, 等. 挥发性脂肪酸的滴定测量方法进展[J]. 环境科学与技术, 2008, 31(2): 47-50.
- [25] 白沙沙, 王欢, 陈玉静, 等. 消除溶剂水吸收峰干扰的红外光谱测量新 方法[J]. 光谱学与光谱分析, 2015, 35(4): 894-898.
- [26] 徐铁群,杨明,何成达,等.铁的氢氧化合物稳定相α,β-FeOOH的表征 及光谱分析[J].光谱学与光谱分析, 2013, 33(12): 3330-3333.
- [27] 任南琪,王宝贞,李建政.有机废水发酵法生物制氢技术中试研究[M].哈尔滨:黑龙江科学技术出版社,2006.
- [28] JUNELLES A, JANATI-IDRISSI R, PETITDEMANGE H, et al. Iron effect on acetone-butanol fermentation[J]. Current Microbiology, 1988, 17(5): 299-303.
- [29] REN N Q, CHUA H, CHAN S Y, et al. Assessing optimal fermentation type for bio-hydrogen production in continuous-flow acidogenic reactors[J]. Bioresource Technology, 2007, 98(9): 1774-1780.
- [30] 代东梁,韩相奎,李广,等. 污泥厌氧发酵产氢产酸的影响因素分析[J]. 中国给水排水, 2014, 30(15): 11-13.
- [31] CAO J, ZHANG Q, WU S, et al. Enhancing the anaerobic bioconversion of complex organics in food wastes for volatile fatty acids production by zero-valent iron and persulfate stimulation[J]. Science of the Total Environment, 2019, 669: 540-546.

- [32] HU Y, HAO X, ZHAO D, et al. Enhancing the CH₄ yield of anaerobic digestion via endogenous CO₂ fixation by exogenous H₂[J]. Chemosphere, 2015, 140: 34-39.
- [33] YUHOON H, PERIYASAMY S, MO-KWON L, et al. Enhanced hydrogen fermentation by zero valent iron addition[J]. International Journal of Hydrogen Energy, 2018, 44(6): 3387-3394.
- [34] 丁杰, 任南琪, 刘敏, 等. Fe和Fe²⁺对混合细菌产氢发酵的影响[J]. 环境

科学, 2004, 25(4): 48-53.

[35] DEEPAK K P, GAJENDRA K P, PARIDA K M, et al. Facile fabrication of Gd(OH)₃ nanorod/RGO composite: Synthesis, characterisation and photocatalytic reduction of Cr(VJ)[J], Chemical Engineering Journal, 2014, 255: 77-78.

(责任编辑:金曙光)

Effects of iron filings additives on anaerobic hydrogen production from mixed organic solid wastes

YE Renkai, JING Xue, GENG Zitao, CHENG Jiehong*, TANG Haoting

School of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China *Corresponding author, E-mail: cjh@jsut.edu.cn

Mixed wastes of municipal sludge from urban wastewater treatment plant (WWTPs) and kitchen Abstract waste from catering industry could be utilized to produce biomass energy gas hydrogen by anaerobic digestion process. Iron scraps, solid waste from mechanical processing plants, was treated to iron-containing FE/FEO powder in this paper. After pretreatment, mixing municipal sludge mixed with the same amount of kitchen waste (by the ratio of 1:1), and then equally divided into two reactors. FE/FEO material was added to one of the anaerobic reactors as FE/FEO group while the other one without FE/FEO as the control group. The effect of FE/FEO on the rate of yield hydrogen by anaerobic fermentation process for the mixed organic solid waste was investigated. The results showed that the maximum hydrogen volume fraction of FE/FEO group was 61.4%, which was 15% higher than that of the control group, while cumulative hydrogen yield and the maximum yield of daily hydrogen of FE/FEO group were 49. 0 and 22.7 L·kg⁻¹ (based on the volume of hydrogen produced by 1 kg volatile organic solid) within 24 hours, respectively, which were 56% and 59% higher that of the control group, respectively. The content of Fe²⁺ in the FE/FEO group reached a maximum value of 109.8 mg $\cdot L^{-1}$ at the 24th hour; while the content of volatile organic acid by 2 675 mg L^{-1} was 15% higher than that of the control group during 24 h. It is found that FE/FEO powder not only contains elemental Fe and ferrous oxide, but also pinhole α -FeOOH, which increases the specific surface area and plays an important role as the loose structure frame of the microbes in the anaerobic system. Therefore, the addition of FE/FEO plays a promoting role in hydrogen production by anaerobic fermentation process. The study can provide a reference for improving the hydrogen production by anaerobic fermentation process for organic solid wastes.

Keywords iron scraps; anaerobic digestion; production of hydrogen; municipal sludge; food waste