

Environmental Engineering

第 14卷第 12期 2020年 12月 Vol. 14, No.12 Dec. 2020

(www.cjee.ac.cn

E-mail: cjee@rcees.ac.cn

(010) 62941074

副编纂 文章栏目:大气污染防治

DOI 10.12030/j.cjee.202002032 中图分类号 X505 文献标识码

柴小康, 黄国和, 解玉磊, 等. 某燃煤超低排放机组非常规污染物脱除[J]. 环境工程学报, 2020, 14(12): 3480-3494. CHAI Xiaokang, HUANG Guohe, XIE Yulei, et al. Unconventional pollutant removal from a coal-fired ultra-low emission unit[J]. Chinese Journal of Environmental Engineering, 2020, 14(12): 3480-3494.

某燃煤超低排放机组非常规污染物脱除

柴小康1,黄国和1,*,解玉磊2,李薇1

1. 华北电力大学环境科学与工程学院,北京 102206 2. 北京科技大学能源与环境工程学院,北京 100083

第一作者:柴小康(1975—),男,硕士,高级工程师。研究方向:能源环境等。E-mail: xiaokang.chai@chnenergy.com.cn *通信作者:黄国和(1961—),男,博士,教授。研究方向:能源环境规划、环境工程。E-mail: 270506486@qq.com

摘 要 燃煤电厂非常规污染物的排放尚未引起足够的重视。为全面表征燃煤电厂非常规污染物脱除性能,针 对某 1000 MW 燃煤超低排放机组,分别采用 FPM 和 CPM 一体化采样系统、安大略法 (OHM)、控制冷凝法、HJ 646-2013 规定的有机物测试方法,系统研究了 CPM、Hg、SO₃、PAHs 等非常规污染物的梯级脱除特性。结果表 明: 100%、75% 负荷时低-低温电除尘系统对 CPM 脱除率分别为 87.15%、92.20%,湿法脱硫分别为 49.65%、 45.55%,不同负荷下 FPM 分别为 3.6、4.4 mg·m⁻³,但 CPM 却分别达 14.2、15.3 mg·m⁻³,CPM 的浓度远超 FPM; 低-低温电除尘系统脱 Hg 效率为 64.81%,整个系统的脱 Hg 效率为 75.5%,Hg^p 全部被脱除,剩余的是难以脱除 的 Hg⁰、Hg²⁺,脱除率分别为为 63.01%、64.29%,Hg⁰ 排放浓度为 5.4 µg·m⁻³,Hg²⁺排放浓度为 0.5 µg·m⁻³;SCR 脱 硝催化剂将 SO₂氧化成 SO₃ 的转化率约为 0.7%,低-低温电除尘系统可脱除 88.7% 的 SO₃,湿法脱硫对 SO₃ 的脱 除率为 29.63%,最终 SO₃ 排放浓度为 1.9 mg·m⁻³;全系统对 16 种 PAHs 脱除率达 94.25%,其中,气相、固相脱 除率分别为 91.61%、99.27%,最终气相、固相 PAHs 排放浓度分别为 2.39 µg·m⁻³和 0.11 µg·m⁻³。现有超低排放设 备对非常规污染物均有不同程度的协同脱除效果,满负荷条件下该机组 CPM、Hg、SO₃、PAHs 排放浓度分别 为 14.2 mg·m⁻³、5.9 µg·m⁻³、1.9 mg·m⁻³、2.5 µg·m⁻³,Hg 的排放浓度满足火电厂大气污染物排放标准 (GB 13223-2011)中 30 µg·m⁻³ 的要求,CPM、SO₃、PAHs 尚无国家强制排放标准。本研究结果可为燃煤电厂后续非常规污 染物的控制提供参考。

关键词 非常规污染物; 燃煤电厂; 可凝结颗粒物; 汞; 三氧化硫; 多环芳烃; 脱除率

我国能源供应以煤炭为主^[1-2],且燃煤发电是煤炭消耗的较为清洁的利用方式,煤炭消耗中电煤比例达50%以上^[3-4]。随着排放限值的渐趋严格,燃煤电厂排放的颗粒物、SO₂、NO_x等常规污染物减排幅度显著,尤其是超低排放实施以来,常规污染物控制技术水平得到大幅提升,排放指标远优于发达国家^[5-8]。

值得注意的是,目前燃煤电厂对颗粒物的排放仅考核可过滤颗粒物 (filterable particulate matter, FPM),并未涉及可凝结颗粒物 (condensable particulate matter, CPM),而 CPM 的冷凝核一般都小于 1 μm,也属于 PM_{2.5}^[9],经烟囱排到大气环境后会迅速冷凝成固态或液态颗粒物,因此,根据美国 环保署 (EPA) 规定, CPM 和 FPM 均属于固定源排放的一次颗粒物。已有研究^[10-11]发现,燃煤电厂

收稿日期: 2020-02-07; 录用日期: 2020-05-06

基金项目: 国家自然科学基金青年基金资助项目(71603016, 51609003)

排放的 PM_{2.5} 中 CPM 占比达 50% 以上,且 PM_{2.5} 通常还会富集各种重金属、有机物等,对环境及人 类健康危害性极大^[12-13],因此,CPM 的排放也应引起足够的重视。

另外, 燃煤烟气排放的 Hg、SO₃、有机物等也尚未得到广泛关注。这些污染物虽然排放浓度 不高, 但相关研究表明: 燃煤电厂排放的 Hg浓度在几至十几 μg·m⁻³, 主要以难以脱除的元素汞 (Hg⁰) 为主^[14-17]; 燃煤电厂排放的 SO₃浓度在几至几十 mg·m⁻³, 配以低-低温电除尘器的超低排放机 组 SO₃ 排放浓度普遍较低^[18-22]; 燃煤电厂排放的有机物浓度多为 0~20 mg·m⁻³, 且有机物的种类与 其总浓度没有明显关系^[23-28]。因此,这些非常规污染物的排放及危害需要深入研究。

目前,针对燃煤电厂污染物减排的研究,多是针对常规污染物的超低排放,偶有涉及非常规 污染物的报道,也大多仅讨论了1~2种非常规污染物,系统性不强。本研究针对某典型的超低排 放机组,开展了不同工况条件下 CPM、Hg、SO₃、多环芳烃 (PAHs)等非常规污染物的现场实测, 对各类非常规污染物的梯级脱除特性开展了系统性研究,以期为后续燃煤电厂非常规污染物的排 放控制提供参考。

1 燃煤电厂超低排放机组概况

以某1000 MW 燃煤电厂超低排放机组为研究对象,使用锅炉为超临界参数变压运行螺旋管直流炉,采用一次中间再热、四角切圆燃烧方式,煤粉燃烧器为四角布置、切向燃烧、摆动式燃烧器。机组配套 SCR 脱硝装置、烟气冷却器、低-低温电除尘器、石灰石-石膏湿法脱硫装置。 SCR 脱硝布置了3 层催化剂,并预留第4 层催化剂位置;烟气冷却器采用 H 型金属翅片管式换热器,设计出口烟气温度为 (90±5) ℃;低-低温电除尘器为3 室 5 电场电除尘器,设计除尘效率为 99.94%;湿法脱硫为石灰石-石膏湿法脱硫,设计脱硫效率>97%,设计出口烟气温度 50 ℃。实验 期间机组负荷稳定 (变化范围±5%),分别在满负荷、75%负荷条件下开展测试实验。机组的设计煤 种、校核煤种和实验实烧煤种如表1 所示,且保证实验期间煤质来源稳定,以煤种收到基硫分、 灰分和挥发分为例,实验期间各成分波动分别在 12%、10%、7% 以内。分别测定不同工况条件下 各测点烟气中颗粒物 (FPM 和 CPM)、Hg、SO、和 PAHs 浓度,并分析其污染物脱除及排放特性。

煤种	工业分析				齿到其任合				
	收到基 收到基 水分/% 灰分/%		收到基	收到基	收到基	收到基	收到基 收到基		☆
			挥发分/%	碳/%	氢/%	氧/% 氮/%		全硫/%	
设计煤种	5.3	21.99	27.71	52.15	2.18	5.45	0.91	0.89	20 980
校核煤种	5.7	24.15	29.98	50.18	2.84	6.53	0.85	0.67	18 590
实验实烧煤种	5.5	22.09	28.97	51.72	2.51	5.81	0.89	0.71	19 240

表 1 煤种成分分析 Table 1 Analysis of coal composition

2 颗粒物的梯级脱除特性

2.1 颗粒物测试方法

燃煤电厂烟气治理技术路线及测点布置如图 1 所示。借鉴国内外先进的测试标准及方法^[29-36], 对烟气中 FPM 和 CPM 进行同步测量,颗粒物采样系统如图 2 所示。加热枪伸入烟道中以等速采集 烟气,采集的烟气首先进入 FPM 采集单元,通过 DGI 多级撞击器对不同粒径颗粒进行分级,并在 末级撞击器出口处布置滤膜(0.3 µm 颗粒捕集效率>99%),撞击器及滤膜分别用于收集>10 µm、 2.5~10 µm、1~2.5 µm 和≤1 µm 的 FPM,且撞击器外置电加热装置(约 120 ℃),防止 CPM 的干扰, FPM 采集单元的测试方法符合标准 ISO 23210: 2009 的相关规定;脱除 FPM 后的高温烟气进入后级

Fig. 1 Technical roadmap of flue gas treatment and measuring points disposition in coal-fired power plants

CPM 采集单元,分别通过冷凝管(内径 4 mm、总长约 200 mm)、第1缓冲瓶、第2缓冲瓶和过滤器,对 CPM 进行高效收集,冷却池的水温控制在 30 ℃以下,从而最大限度地提高 CPM 捕集效率。待采样结束后,立即用 N₂ 对系统进行吹脱,以去除溶解的 SO₂ 等污染物,CPM 采样单元的测试方法符合标准 EPA Method 202 的相关规定。FPM 质量直接通过对采集的颗粒物样品称质量获得;CPM 通过润洗液对冷凝管、缓冲瓶及相关连接件清洗获得,且为了研究 CPM 的组分,先采用去离子水获得无机组分,再采用丙酮溶液获得有机组分。整个系统为等速采样,结合采样体积,计算获得烟气中各类颗粒物的质量浓度。

2.2 颗粒物测试结果及分析

在测点③~测点⑥4个位置分别测定烟气中 FPM 和 CPM,并计算颗粒物的合计值。为提高数据的有效性,每个测点至少重复测定3次,计算平均值,并开展相应的空白实验,以判定测试数据是否失真。低-低温电除尘器为3室5电场电除尘器,因此,其进、出口烟道分别为3支分烟道,测点④、⑤位于分烟道上,通过加权平均的方式计算颗粒物的加权平均值,计算方法如式(1)

$$C_{\text{mRFbff}} = \frac{C_1 Q_1 + C_1 Q_2 + C_1 Q_3}{Q_1 + Q_2 + Q_3}$$

式中: $C_1 \sim C_3$ 分别为3支分烟道测得的颗粒物浓度, mg·m⁻³; $Q_1 \sim Q_3$ 分别为3支分烟道测得的烟气量, m³·h⁻¹。

测试并计算得到不同负荷条件下 FPM 和 CPM 质量浓度,结果如表 2 所示。FPM 按空气动力 学粒径不同分为 PM₁、PM_{2.5}、PM₁₀ 和总 FPM, CPM 分为有机组分和无机组分, FPM 和 CPM 合计 为总颗粒物。

				· · · P		(
测占	温度/℃	负荷/%	FPM质量浓度/(mg·m ⁻³)				СРМ	合计质量浓度/		
四点			PM_1	PM _{2.5}	PM ₁₀	FPM	有机组分	无机组分	СРМ	$(mg \cdot m^{-3})$
3	121	100	187.1	389.7	957	8 648	121.7	97.8	219.5	8 867.5
	122	75	112.5	309.1	1014	9 145	233.4	126.9	360.3	9 505.3
4	93	100	161.6	394.5	972	8 701	100.3	60.9	161.2	8 862.2
	90	75	103.8	324.6	1 051	9 163	212.5	97.7	310.2	9 473.2
5	92	100	5.3	9.1	10.1	11.2	19.8	8.4	28.2	39.4
	90	75	6.1	8.5	9.7	10.4	18.6	9.5	28.1	38.5
6	54	100	2.3	2.9	3.3	3.6	9.3	4.9	14.2	17.8
	52	75	2.9	3.4	4.1	4.4	10.2	5.1	15.3	19.7

表 2 不同负荷条件下颗粒物 (FPM 和 CPM) 测试结果 Table 2 Test results of particulate matter (FPM and CPM) at different loading conditions

计算不同负荷条件下各污染物脱除设备对 FPM、CPM 及总颗粒物的脱除率,结果分别如图 3~ 图 7 所示。从颗粒物的生成来看, FPM 的浓度明显高过 CPM 一个数量级,且负荷不同,其颗粒物 浓度也有差异,75% 负荷时 FPM 和 CPM 浓度均略高于 100% 负荷,考虑是因为低负荷时,燃料的 燃烧效率不及高负荷时高,因此,在相当原料消耗的前提下,FPM 和 CPM 中均含更多的未燃尽成 分,质量浓度略高。经过低-低温电除尘系统(烟气冷却器+电除尘器)后,烟气中 CPM 质量浓度明 显高于 FPM,这是因为系统对 2 类颗粒物的脱除率不同,100%、75% 负荷时低-低温电除尘系统对 FPM 脱除率分别为 99.87%、99.89%,对 CPM 脱除率明显低于 FPM,分别为 87.15%、92.20%,且负 荷降低,电除尘系统对 2 类颗粒物的脱除率均有明显提升。这是因为负荷降低,烟气流速下降,

图 3 满负荷时 FPM 脱除率

Fig. 3 Removal efficiency of FPM at full loading

(1)

Fig. 6 Removal efficiency of CPM at 75% loading

对应的电除尘器比集尘面积增加,变相提高了电除尘性能,这与文献报道的规律^[37]一致。烟气冷却器将烟气温度从121、122℃降至93、90℃,降温后,CPM的有机组分和无机组分均有不同程度的降低,FPM质量浓度增加。这是因为随着温度的降低,部分高露点的CPM会冷凝吸附到FPM上,从而增加了FPM浓度;FPM中PM₁浓度未增反减,可能是因为CPM冷凝吸附到FPM表面后,改变了颗粒物表面性质,促进了小粒径颗粒间、小颗粒与大颗粒间的团聚长大所致^[38-39]。湿法脱硫对2类颗粒物脱除率有限,100%、75%负荷时,湿法脱硫对FPM脱除率分别为67.85%、

57.69%,对 CPM 脱除率明显低于 FPM,分别 为 49.65%、45.55%,且负荷降低,湿法脱硫对 2 类颗粒物的脱除率均有明显降低。这是因为 湿法脱硫对颗粒物的捕集主要依靠石膏液滴的 惯性捕集及除雾器的惯性脱除^[40],负荷降低后 烟气流速降低,不利于湿法脱硫对 2 类颗粒物 的捕集。100%、75%负荷时,整个系统对 FPM 脱除率分别为 99.96%、99.95%,对 CPM 脱除 率分别为 93.53%、95.75%。经计算,100%、75% 负荷时低-低温电除尘系统对总颗粒物脱除率 分别为 99.56%、99.59%,湿法脱硫对总颗粒物

脱除率分别为 54.82%、48.83%,整个污染物控制系统对颗粒物的总脱除率均约为 99.80%。不同负 荷下 CPM 和 FPM 的浓度分布比例如图 8 所示。烟气中颗粒物初始以 FPM 为主,占比分别为 98%、96%。经过除尘后发生反转,以 CPM 为主,占比分别为 72%、73%,最终排放的颗粒物中, FPM 分别为 3.6、4.4 mg·m⁻³,均满足超低排放要求,但此时 CPM 却达 14.2、15.3 mg·m⁻³,总颗粒 物高达 17.8、19.7 mg·m⁻³, CPM 的浓度远超 FPM,因此,CPM 的排放也应引起足够的重视。

3 Hg的梯级脱除特性

3.1 Hg测试方法

燃煤烟气中的 Hg 有元素 Hg(Hg⁰)、二价 Hg(Hg²⁺) 和颗粒 Hg(Hg^P) 3 种赋存形态,借鉴国内外先 进的测试标准及方法^[1143],对烟气中 Hg 采样采用安大略法 (OHM) 进行测试,采样系统如图 9 所 示。采样石英玻璃管及过滤系统均配置电加热,温度控制在 120 ℃,防止水蒸气凝结造成烟气中 Hg 的沿壁损失。采样时对吸收瓶进行冷浴处理,保证烟气 Hg 的充分吸收。过滤系统用于采集飞 灰,并测定飞灰颗粒中的 Hg(Hg^P),测定仪器采用高频塞曼直接测汞仪 RA-915F。吸收瓶箱装有 8 个吸收瓶,其中,前 3 个氯化钾溶液吸收瓶用于吸收烟气中的 Hg²⁺;后面氧化氢/硝酸溶液和高 锰酸钾/硫酸溶液用于吸收烟气中的 Hg⁰。溶液中各个价态的 Hg 采用 RA-915W 冷原子吸收汞分析 仪进行测定。最末级吸收瓶装有硅胶,以对烟气进行干燥,避免对泵的不良影响。整个系统为等 速采样,结合采样体积,计算获得烟气中各价态 Hg 的质量浓度。为验证测试数据的准确性,根据 物料的质量守恒原则,对于整个电厂系统的 Hg 平衡进行核算^[44],即 Hg 的输入量与输出量应该是 相等的。Hg 的输入主要是煤,输出包括烟气、渣、电除尘器收集的飞灰、脱硫石膏、脱硫废水

Fig. 9 Test system of Hg in flue gas

等。液体样品中 Hg 含量采用 RA-915W 冷原子吸收汞分析仪进行测定,固体样品采用采用高频塞 曼直接测汞仪 RA-915F,并配以固体样品热解附件 PYRO915#493,能通过高温热解样品直接测量 样品中的汞浓度。

3.2 Hg测试结果及分析

在满负荷条件下,测得各测点不同价态 Hg 的浓度、测试结果如表 3 所示。经计算,各设备对不同价态 Hg 的脱除率如图 10 所示。SCR 脱硝、空预器、烟气冷却器、电除尘器、湿法脱硫对总 Hg 均有脱除效果,其脱除率分别为 0.85%、0.43%、4.29%、64.66%、28.05%,电除尘器的脱 Hg 效率最高,主要是因为有相当一部分 Hg 是以 Hg^e 形态存在,电除尘器在高效除尘的同时也脱除了几 乎 100% 的 Hg^e。经计算,低-低温电除尘系统(烟气冷却器+电除尘器)对总 Hg 的脱除率为 64.81%,整个烟气治理系统的脱 Hg 效率达 75.5%,Hg^e 全部被脱除,剩余的是难以脱除的 Hg⁰、Hg²⁺,脱除 率分别为 63.01%、64.29%,排放浓度分别为 5.4、0.5 µg·m⁻³。在各个价态的 Hg 中,Hg⁰是最难被脱除的。虽然 SCR 脱硝对总 Hg 脱除效果不明显,但可有效促进 Hg⁰向 Hg²⁺、Hg^e 的迁移转化。经计算,其 Hg⁰转化效率达 44.52%,跟以往的报道数据^[43-45]大致相当,主要与 SCR 催化剂的成分、烟 气中卤族元素含量等有关。烟气冷却器对 Hg⁰脱除率达 28.21%,明显高于空预器。可能是因为烟 气冷却器将烟气温度降至酸露点以下,此时气态的硫酸冷凝成硫酸雾,被飞灰吸附后,与飞灰中的碱性物质中和,避免了 SO₃与 Hg 争夺吸附点位^[46]。湿法脱硫对 Hg²⁺脱除率较高,达 82.76%。这

是因为 Hg²⁺易溶于水,但对 Hg⁰ 脱除能力有限,且浆液中的 Hg²⁺可能与SO₃²⁻、Fe²⁺、Mn²⁺等2价离子发生反应^[47],被还原为 Hg⁰,造成浓度不降反升。对于烟气中较难脱除的 Hg⁰、Hg²⁺,若需进一步减排,除了进一步强化现有超低排放设备的协同脱除能力,如 SCR 脱硝的 Hg⁰氧化性能等,还需配置额外的脱 Hg 系统,如活性炭或改性活性炭喷射脱 Hg 技术。

为了验证测试数据的准确性,根据物料的 质量守恒原则,对整个电厂系统的Hg平衡进 行了核算。根据该机组的实际日耗煤量及炉渣、

表 3	Hg测试结果
Table 3	Test results of Hg

			0	
测点	Hg ⁰ 浓度/ (µg·m ⁻³)	Hg ²⁺ 浓度/ (µg·m ⁻³)	Hg ^p 浓度/ (µg·m ⁻³)	总Hg浓度/ (µg·m ⁻³)
1	14.6	1.4	7.6	23.6
2	8.1	2.8	12.5	23.4
3	7.8	3.2	12.3	23.3
4	5.6	4.9	12.7	23.2
5	5.3	2.9	0	8.2
6	5.4	0.5	0	5.9

图 10 各设备对不同价态 Hg 的脱除率

Fig. 10 Removal efficiency of Hg with different valence states by each equipment

粉煤灰、石膏、废水产量及烟气量, 计算得到各输出单元的分布系数, 计算方法如式 (2) 所示。

$$\eta_i = \frac{F_{\text{out}}^i}{F_{\text{in}}} \times 100\% \tag{2}$$

式中: η_i 为各输出单元的分布系数; F_{out}^i 为某个输出单元的日输出量, $\mu g \cdot d^{-1}$; F_{in} 为整个系统的日输 入量, $\mu g \cdot d^{-1}$ 。

整个系统的平衡系数计算方法如式(3)所示

$$\eta = \frac{F_{\text{out}}}{F_{\text{in}}} \times 100\% \tag{3}$$

式中: η 为各输出单元的分布系数; F_{out} 为整个系统的日输出量,即 $\sum_{i=1}^{n} F_{out}^{i}$, $\mu g \cdot d^{-1}$ 。

计算结果如图 11 所示,总平衡系数达 99.7%,测试结果可信度较高。在各输出单元 中,最终通过烟气排入大气环境中的Hg占比 为23.8%,可见其仍有进一步脱Hg的潜力和必 要。固/液样品中粉煤灰、石膏中Hg分布系数 最高,分别为37.6%、35.3%。

4 SO₃的梯级脱除特性

4.1 SO₃测试方法

参照国标 GB/T 21508-2008 规定的控制冷凝法对烟气中 SO₃进行测定,采样系统如图 12 所示。采样管内壁为石英玻璃管,采样管全程

图 11 分布系数计算结果

伴热,加热温度控制在180 ℃,以防止 SO₃ 在壁面冷凝损失。过滤石英棉用于过滤 FPM,以防止 FPM 中硫酸根对最终 SO₃测定结果的影响。蛇形盘管布置在65 ℃ 的恒温水浴中,将 SO₃ 冷凝成硫 酸雾滴,并通过惯性捕集下来。采样结束后,用去离子水清洗蛇形盘管,硫酸根离子的测定采用 哈希 DR 6000 紫外-可见分光光度计。整个系统为等速采样,结合采样体积,计算获得烟气中 SO₃ 的质量浓度。

4.2 SO,测试结果及分析

在满负荷条件下各测点测得烟气中 SO₃的浓度,并计算各污染物脱除设备的 SO₃脱除率,结果如图 13 所示。燃煤烟气中 SO₃除了来自炉膛燃烧过程中煤的硫分氧化形成,另外还会在 SCR 脱硝过程中,催化剂将部分 SO₂氧化成了 SO₃,因此,实测得到 SCR 脱硝前后 SO₃浓度分别为 17.5、24.3 mg·m⁻³,增加了 6.8 mg·m⁻³。实验期间,SCR 脱硝前 SO₂浓度约 1 g·m⁻³,经计算,在 SCR 脱硝 过程中,催化剂将 SO₂氧化成 SO₃的转化率约为 0.7%。烟气冷却器将烟气温度从 121 ℃降至 93 ℃,降至酸露点以下,此时气态的硫酸冷凝成硫酸雾,并被飞灰吸附后与飞灰中的碱性物质中和,因此,烟气中 SO₃浓度大幅降低,烟气冷却器对 SO₃脱除率为 71.55%。与电除尘器配合使用,低-低温电除尘系统(烟气冷却器+电除尘器)可脱除 88.7% 的 SO₃,是各污染物脱除设备中脱除率最高的。湿法脱硫主要用于脱除 SO₂,此时 SO₃是以硫酸气溶胶颗粒的形式存在,粒径很小,脱硫浆液与硫酸气溶胶颗粒之间的传质作用主要依靠惯性碰撞、布朗扩散等作用实现,因此,湿法脱硫对 SO₃的脱除率并不高,仅为 29.63%。整个系统(含 SCR 脱硝)对 SO₃脱除率为 89.14%,最终 SO₃排放浓度为 1.9 mg·m⁻³。

Fig. 13 SO₃ test result

5 PAHs 的梯级脱除特性

5.1 PAHs 测试方法

PAHs 是一类具有 2 个及以上苯环的有机污染物,危害性大,且不宜分解。美国环保署 (EPA)规定优先控制 16 种 PAHs,分别有 1 个 2 环(萘)、5 个 3 环(苊、二氢苊、芴、菲、蒽)、4 个 4 环(荧蒽、芘、苯并(a) 蒽、屈)、4 个 5 环(苯并(b) 萤蔥、苯并(k) 萤蔥、苯并(a) 芘、二苯并 (a,h) 蔥) 和 2 个 6 环(茚并(1,2,3-cd) 芘、苯并(g,h,i) 花)PAHs。参照行标 HJ 646-2013 的相关规定, 对 16 种 PAHs 进行测定,采样系统如图 14 所示。滤筒保温箱内置玻纤滤筒,用于收集烟气中固相 PAHs,气相吸附柱内置 XAD-2 树脂,用于收集气相 PAHs。最终使用色谱质谱联用仪(GC-MS) 定 量分析 PAHs 浓度。分别在测点③、⑤、⑥开展测试,整个系统为等速采样,结合采样体积,计算

图 14 PAHs 采样系统

Fig. 14 Sampling system for PAHs

获得烟气中 PAHs 的质量浓度。

5.2 PAHs 测试结果及分析

在满负荷条件下,在测点③、⑤、⑥测得烟气中 PAHs 的浓度,结果如表4所示。烟气中气表4 PAHs 测试结果

Table 4	Test results	of PAHs

17 %h	2017	测点③PAHs浓度/(μg·m ⁻³)		$\mu g \cdot m^{-3}$)	测点⑤PAHs浓度/(µg·m ⁻³)			测点⑥PAHs浓度/(µg·m ⁻³)		
小奴	组刀	气相	固相	合计	气相	固相	合计	气相	固相	合计
2	萘	22.13	0.69	22.82	2.79	0.12	2.91	2.14	0.01	2.15
	苊	0.12	0.03	0.15	0.02	0.01	0.03	0.01	0	0.01
	二氢苊	0.13	0.08	0.21	0.01	0	0.01	0	0	0
2	芴	0.42	0.14	0.56	0.02	0.01	0.03	0.01	0	0.01
3	菲	1.29	1.15	2.44	0.06	0.02	0.08	0.03	0.01	0.04
	蒽	1.51	1.07	2.58	0.07	0.03	0.1	0.05	0.02	0.07
	合计	3.47	2.47	5.94	0.18	0.07	0.25	0.1	0.03	0.13
	荧蒽	0.29	0.61	0.9	0.04	0.02	0.06	0.01	0.01	0.02
	芘	0.27	0.45	0.72	0.03	0.03	0.06	0	0.01	0.01
4	飛数 組分 測点③PAHs液 2 茶 22.13 0.69 茂 0.12 0.03 二気花 0.13 0.08 3 二気花 0.13 0.08 3 万 0.42 0.14 3 丁 1.51 1.07 高市 3.47 2.47 支蔥 0.29 0.61 茂草 0.29 0.61 草 1.51 1.07 合计 3.47 2.47 支蔥 0.29 0.61 花 0.29 0.61 花 0.29 0.61 花 0.29 0.61 花 0.29 1.15 合计 1.29 2.96 苯并(a)蔥 0.44 2.42 本并(k)黃蔥 0.41 2.62 「本并(a)前 0.51 0.77 二米并(a,h)蔥 0.21 1.15 合计 1.57 7.00 合计 <td< td=""><td>0.75</td><td>1.19</td><td>0.07</td><td>0.02</td><td>0.09</td><td>0.02</td><td>0.01</td><td>0.03</td></td<>	0.75	1.19	0.07	0.02	0.09	0.02	0.01	0.03	
	屈	0.29	1.15	1.44	0.04	0.02	0.06	0.01	0.01	0.02
	合计	1.29	2.96	4.25	0.18	0.09	0.27	0.04)PAHs浓度/(μg·m ⁻³) 固相 合i 0.01 2.1 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0.01 0.0 0.02 0.0 0.03 0.1 0.01 0.0 0.01 0.0 0.01 0.0 0.01 0.0 0.02 0.0 0.01 0.0 0.02 0.0 0.01 0.0 0.02 0.0 0.03 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.08
	苯并(b)萤蒽	0.44	2.42	2.86	0.08	0.01	0.09	0.03	0	0.03
	苯并(k)萤蔥	0.41	2.62	3.03	0.07	0.03	0.1	0.05	0.02	0.07
5	苯并(a)芘	0.51	0.77	1.28	0.05	0.02	0.07	0.03	0.01	0.04
	二苯并(a,h)蒽	0.21	1.19	1.40	0	0	0	0	0	0
	合计	1.57	7.00	8.57	0.2	0.06	0.26	0.11	0.03	0.14
	茚并(1,2,3-cd)芘	0.02	0.78	0.80	0	0	0	0	0	0
6	苯并(g,h,i) 苝	0.01	1.12	1.13	0	0	0	0	0	0
	合计	0.03	1.9	1.93	0	0	0	0	0	0
	PAHs合计	28.49	15.02	43.51	3.35	0.3	3.69	2.39	0.11	2.50

相 PAHs 浓度明显高于固相,气相、固相 PAHs 浓度分别为 28.49、15.02 µg·m⁻³。值得注意的是, PAHs 沸点、熔点较高,在室温下通常以固相或液相存在,因此,表 2 中 CPM 的有机组分明显高 过无机组分。测点⑤、⑥测得烟气中气相 PAHs 的浓度也明显高于固相,这是因为低-低温电除尘 系统、湿法脱硫对 FPM 具有显著的脱除效果。最终 PAHs 排放为 2.5 µg·m⁻³,其中,2环、3环、 4环、5环、6环的浓度分别为 2.15、0.13、0.08、0.14、0 µg·m⁻³。

不同测点处 PAHs 组分有明显差异,各组分及其比例如图 15 所示。初始 PAHs 中以 2 环和 5 环为主,其中,气相以 2 环为主,固相以 5 环为主;经过低-低温电除尘系统后,气相中 2 环比例进一步提高,固相中 5 环比例减少,2、3、4 环比例增加,总的 PAHs 中 2 环比例增加;经过湿法脱硫后,主要以 2 环 PAHs 为主。低-低温电除尘系统对 PAHs 脱除率如图 16(a)所示,低-低温电除尘系统可脱除 91.52%的 PAHs,其中,气相脱除率明显低于固相,分别为 88.24%、98%;6环 PAHs 脱除率达 100%,2 环 PAHs 脱除率相对最低,为 87.25%。有研究^[48]表明,燃煤电厂电除尘器对 PAHs 脱除率在 90% 左右,与本研究结果相当。湿法脱硫对 PAHs 脱除率如图 16(b)所示,湿法脱硫可脱除 32.25%的 PAHs。气相脱除率明显低于固相,分别为 28.66%、63.33%;随着环数的增加,脱除率逐渐提高,2 环固相 PAHs 脱除率最高,达 91.57%。全系统对 PAHs 的脱除率如图 16(c)所示,PAHs 脱除率可达 94.25%,气相、固相脱除率分别为 91.61%、99.27%;随着环数的增加,脱除率逐渐提高,且固相的脱除率明显高于气相,2 环~6 环 PAHs 脱除率在 90.58%~100%,其中,固相在 98.55%~100%,气相在 90.33%~100%。

图 15 PAHs 组分及其占比 Fig. 15 PAHs components and their proportions

Fig. 16 Removal efficiency of PAHs

6 结论

1) 通过 FPM 和 CPM 一体化采样系统测定满负荷和 75% 负荷条件下颗粒物的梯级脱除特性, 发现 FPM 的生成量明显高过 CPM 一个数量级,但 CPM 的排放浓度却远超 FPM,因此,CPM 的排 放也应引起足够的重视。低负荷时存在燃烧不完全,FPM 和 CPM 质量浓度均略高些;负荷降低, 有利于提高电除尘性能,但不利于湿法脱硫对颗粒物的捕集。

2) 通过安大略法 (OHM) 测定满负荷条件下各个价态 Hg 的梯级脱除特性,发现在各个价态的 Hg 中,Hg⁰ 是最难被脱除的,Hg^p全部被脱除,Hg⁰、Hg²⁺排放浓度分别为 5.4、0.5 μg·m⁻³。

3) 通过控制冷凝法测定满负荷条件下 SO₃ 的梯级脱除特性,发现 SCR 脱硝对 SO₃ 脱除呈负贡献;低-低温电除尘系统可脱除 88.7%的 SO₃,是各污染物脱除设备中脱除率最高的;湿法脱硫对 SO₃的脱除率并不高,仅为 29.63%;整个系统(含 SCR 脱硝)对 SO₃脱除率为 89.14%。

4) 采用 HJ 646-2013 规定的测试方法在满负荷条件下对 16 种 PAHs 进行测定,发现烟气中气相、固相 PAHs 浓度分别为 28.49、15.02 μg·m⁻³,其中,气相以 2 环为主,固相以 5 环为主;全系统对 PAHs 脱除率达 94.25%,随着环数增加,脱除率逐渐提高,且固相的脱除率明显高于气相。

参考文献

- [1] 白建华, 辛颂旭, 刘俊, 等. 中国实现高比例可再生能源发展路径研究[J]. 中国电机工程学报, 2015, 35(14): 3699-3705.
- [2] 武传宝. 基于供需调整的区域能源系统优化管理研究[D]. 北京: 华北电力大学, 2017.
- [3] 靳舒葳. 混合单层/双层优化方法用于能源环境系统管理[D]. 北京: 华北电力大学, 2018.
- [4] 国家统计局. 中国统计年鉴: 2018[M]. 北京: 中国统计出版社, 2018.
- [5] 王树民,张翼,刘吉臻. 燃煤电厂细颗粒物控制技术集成应用及"近零排放"特性[J]. 环境科学研究, 2016, 29(9): 1256-1263.
- [6] 孙雪丽, 朱法华, 王圣, 等. 燃煤电厂颗粒物超低排放技术路线选择[J]. 环境工程技术学报, 2018, 8(2): 129-136.
- [7] YANG Z D, ZHENG C H, ZHANG X F, et al. Highly efficient removal of sulfuric acid aerosol by a combined wet electrostatic precipitator[J]. RSC Advances, 2018, 8(1): 59-66.
- [8] 阮仁晖, 谭厚章, 段钰锋, 等. 超低排放燃煤电厂颗粒物脱除特性[J]. 环境科学, 2019, 40(1): 126-134.
- [9] U S A EPA. U S EPA method 202-condensable particulate matter[EB/OL]. [2020-03-01]. https://www.epa.gov/emc/ method-202-condensable-particulate-matter.
- [10] YANG H H. Filterable and condensable fine particulate emissions from stationary sources[J]. Aerosol & Air Quality Research, 2014, 14(1): 59-66.
- [11] 裴冰. 燃煤电厂可凝结颗粒物的测试与排放[J]. 环境科学, 2015, 36(5): 1544-1549.
- [12] LARRY L. Char fragmentation and fly ash formation during pulverized-coal combustion[J]. Combustion & Flame, 1992, 90(2): 174-184.
- [13] 邓利群, 李红, 柴发合, 等. 北京东北部城区大气细粒子与相关气体污染特征研究[J]. 中国环境科学, 2011, 31(7): 1064-

1070.

- [14] WU Q R, WANG S X, LI G L, et al. Temporal trend and spatial distribution of speciated atmospheric mercury emissions in China during 1978-2014[J]. Environmental Science & Technology, 2016, 50(1): 13428-13435.
- [15] WANG S M, ZHANG Y S, GU Y Z, et al. Using modified fly ash for mercury emissions control for coal-fired power plant applications in China[J]. Fuel, 2016, 181(2): 1230-1237.
- [16] ZHANG Y S, SHANG P F, WANG J W, et al. Trace element (Hg, As, Cr, Cd, Pb) distribution and speciation in coal-fired power plants[J]. Fuel, 2017, 208(5): 647-654.
- [17] ZHANG Y, YANG J P, YU X H, et al. Migration and emission characteristics of Hg in coal-fired power plant of China with ultra-low emission air pollution control devices[J]. Fuel Processing Technology, 2017, 8(2): 378-382.
- [18] 李小龙, 李军状, 段玖祥, 等. 燃煤电厂烟气中SO3协同控制情况及排放现状研究[1]. 中国电力, 2019, 32(6): 1-8.
- [19] 杨用龙, 苏秋凤, 张杨, 等. 燃煤电站典型超低排放工艺的SO₃脱除性能及排放特性[J]. 中国电机工程学报, 2019, 39(10): 2962-2969.
- [20] 刘含笑, 陈招妹, 王少权, 等. 燃煤电厂SO, 排放特征及其脱除技术[J]. 环境工程学报, 2019, 13(5): 1128-1138.
- [21] 赵毅, 韩立鹏. 超低排放燃煤电站三氧化硫的迁移和排放特征[1]. 环境科学学报, 2019, 39(11): 3702-3708.
- [22] ZHENG C H, WANG Y F, LIU Y, et al. Formation, transformation, measurement, and control of SO₃ in coal-fired power plants[J]. Fuel, 2019, 33(9): 327-346.
- [23] FERNANDEZ M G, LOPEZ M P, MUNIATEGUI L S, et al. Distribution of volatile organic compounds during the combustion process in coal-fired power stations[J]. Atmospheric Environment, 2001, 35(33): 5823-5831.
- [24] WANG M, SHAO M, LU S, et al. Evidence of coal combustion contribution to ambient VOCs during winter in Beijing[J]. Chinese Chemical Letters, 2013, 24(9): 829-832.
- [25] PUDASAINEE D, KIM J, LEE S, et al. Hazardous air pollutants emission from coal and oil-fired power plants[J]. Asia-Pacific Journal of Chemical Engineering, 2010, 5(2): 299-303.
- [26] CHENG J, ZHANG Y, WANG T, et al. Emission of volatile organic compounds (VOCs) during coal combustion at different heating rates[J]. Fuel, 2018, 225: 554-562.
- [27] BARABAD M, JUNG W, VERSOZA M, et al. Emission characteristics of particulate matter, volatile organic compounds, and trace elements from the combustion of coals in mongolia[J]. International Journal of Environmental Research and Public Health, 2018, 15(8): 1706.
- [28] YAN Y, YANG C, PENG L, et al. Emission characteristics of volatile organic compounds from coal-, coal gangue-, and biomass-fired power plants in China[J]. Atmospheric Environment, 2016, 143: 261-269.
- [29] LI J W, QI Z F, LI M, et al. Physical and chemical characteristics of condensable particulate matter from an ultralow-emission

coal-fired power plant[J]. Energy & Fuels, 2017, 31(2): 1778-1785.

- [30] 隋子峰. 燃煤电厂亚微米颗粒物形成机理及释放规律研究[D]. 北京: 华北电力大学, 2018.
- [31] 李敬伟. 燃煤烟气中可凝结颗粒物及典型有机污染物的排放特性实验研究[D]. 杭州: 浙江大学, 2018
- [32] GOODARZI F. The rates of emissions of fine particles from some Canadian coal-fired power plants[J]. Fuel, 2006, 85(4): 425-433.
- [33] THELLEFSEN N M, LIVBJERG H, LANGE F C, et al. Formation and emission of fine particles from two coal-fired power plants[J]. Combustion Science & Technology, 2002, 174(2): 79-113.
- [34] 朱法华, 李军状, 马修元, 等. 清洁煤电烟气中非常规污染物的排放与控制[J]. 电力科技与环保, 2018, 34(1): 23-26.
- [35] 蒋靖坤,邓建国,李振,等. 固定污染源排气中PM2.5采样方法综述[J]. 环境科学, 2014, 35(5): 2018-2024.
- [36] 蒋靖坤, 邓建国, 王刚, 等. 固定污染源可凝结颗粒物测量方法[J]. 环境科学, 2019, 40(12): 5234-5239.
- [37] 张滨渭, 李树然. 电除尘器在超低排放下的系统运行优化[J]. 高电压技术, 2017, 43(2): 493-498.
- [38] 刘含笑, 郦建国, 姚宇平, 等. 电除尘器飞灰粒径表征及细颗粒降温团聚[J]. 化工进展, 2018, 37(6): 2413-2425.
- [39] 张宇博, 延禹, 胡芳芳, 等. 低低温系统中粉尘颗粒团聚特性研究[J]. 热力发电, 2019, 48(1): 36-42.
- [40] SRIVASTAVA R, MILLER C, ERICKSON C, et al. Emissions of sulfur trioxide from coal-fired power plants[J]. Journal of the Air & Waste Management Association, 2004, 54(6): 750-762.
- [41] LEE S H, RHIM Y J. Carbon-based novel sorbent for removing gas-phase mercury[J]. Fuel, 2006, 85(2): 219-226.
- [42] YAN R, LIANG D T, TSEN L, et al. Bench-scale experimental evaluation of carbon performance on mercury vapor adsorption[J]. Fuel, 2004, 83: 2401-2409.
- [43] 陈自祥, 王儒威, 孙若愚, 等. 淮南燃煤电厂汞分配、富集与释放通量[J]. 环境化学, 2018, 37(2): 193-199.
- [44] RICHARDSON C, MACHALEK T, MILLER S, et al. Effect of NO_x control processes on mercury speciation in utility flue gas[J]. Journal of the Air & Waste Management Association, 2002, 52(8): 941-947.
- [45] ZHHANG Y, LAUMB J, LIGGETT R, et al. Impacts of acid gases on mercury oxidation across SCR catalyst[J]. Fuel Processing Technology, 2007, 88(10): 929-934.
- [46] 赵毅, 韩立鹏. 超低排放燃煤电厂低低温电除尘器协同脱汞研究[J]. 动力工程学报, 2019, 39(4): 319-323.
- [47] 刘玉坤, 禚玉群, 陈昌和, 等. 燃煤电站脱硫系统的脱汞性能[J]. 中国电力, 2011, 44(12): 68-72.
- [48] ARDITSOGLOU A, PETALOTI C H, TERZI E, et al. Size distribution of trace elements and polycyclic aromatic hydrocarbons in fly ashes generated in Greek lignite-fired power plants[J]. Science of the Total Environment, 2004, 323(1): 153-167.
 (本文编辑:郑晓梅)

Unconventional pollutant removal from a coal-fired ultra-low emission unit

CHAI Xiaokang¹, HUANG Guohe^{1,*}, XIE Yulei², LI Wei¹

1. College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China

2. School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China *Corresponding author, E-mail: 270506486@qq.com

The emission of unconventional pollutants from coal-fired power plants has not received enough Abstract attention. In order to fully characterize the removal characteristics of unconventional pollutants from coal-fired power plants, the step removal characteristics of CPM, Hg, SO₃, PAHs and other abnormal pollutant from a 1 000 MW coal-fired ultra-low emission unit were systematically studied by using FPM and CPM integration sampling system, Ontario method (OHM), controlling condensate method, HJ 646-2013 unit test method. The results showed that at 100% and 75% loadings, the removal efficiencies of CPM were 87.15% and 92.20% by the low-low-temperature electric dust removal system, respectively, and wet desulfurization efficiencies were 49.65% and 45.55%, respectively. At different loadings, FPM emission concentrations were 3.6 and 4.4 mg \cdot m⁻³, respectively, but CPM emission concentrations were 14.2 and 15.3 mg m⁻³, the latter ones were much higher than the former ones. The Hg removal efficiency of low-low-temperature electric dust removal system was 64.81%, and the Hg removal efficiency of the whole system was 75.5%. Hg^p was totally removed, and the remaining ones were Hg⁰ and Hg²⁺ being hard to remove, their removal efficiencies were 63.01% and 64.29%, respectively. The emission concentrations of Hg⁰ and Hg²⁺ were 5.4 μ g·m⁻³ and 0.5 μ g·m⁻³, respectively. The conversion rate of SO₂ oxidized to SO₃ by SCR denitration catalyst was about 0.7%. The low-low-temperature electric dust removal system could remove 88.7% SO₃ in the gaseous state, the wet desulfurization could remove 29.63% SO₃, the final SO₃ emission concentration was 1.9 mg \cdot m⁻³. The removal efficiency of 16 kinds of PAHs from the whole system reached 94.25%, of which the removal efficiencies of gas and solid phase PAHs were 91.61% and 99.27%, respectively, their corresponding emission concentrations were 2.39 and 0.11 μ g·m⁻³, respectively. The existing ultra-low emission equipment had different levels of collaborative removal effect of unconventional pollutants, the emission concentrations of CPM, Hg, SO₃ and PAHs of the unit at full loading were 14.2 mg·m⁻³, 5.9 µg·m⁻³, 1.9 mg·m⁻³ and 2.5 µg·m⁻³, respectively. The Hg emission concentration meets the standard of 30 μ g·m⁻³ in Emission Standard for air pollutants from thermal power plants, and the national compulsory emission standard for the emission concentrations of CPM, Hg, SO₃ and PAH have not yet settled. This study can provide a reference for the control of unconventional pollutants in coal-fired power plants.

Keywords unconventional pollutants; coal-fired power plant; condensable particulate matter; Hg; SO₃; polycyclic aromatic hydrocarbon; removal efficiency