[1] SELIN N E. Global biogeochemical cycling of mercury:A review[J]. Annual Review of Environment and Resources,2009,34(1):43-63.
[2] FENG X B, JIANG H M, QIU G L, et al. Geochemical processes of mercury in Wujiangdu and Dongfeng reservoirs, Guizhou, China[J]. Environmental Pollution,2009,157(11):2970-2984.
[3] BLUM J D, SHERMAN L S, JOHNSON M W. Mercury isotopes in earth and environmental sciences[J]. Annu Rev Earth Planet Sci,2014,42:249-269.
[4] FOUCHER D, HINTELMANN H. High-precision measurement of mercury isotope ratios in sediments using cold-vapor generation multi-collector inductively coupled plasma mass spectrometry[J]. Analytical and Bioanalytical Chemistry,2006,384(7-8):1470-1478.
[5] LAURETTA D S, KLAUE B, BLUM J D, et al. Mercury abundances and isotopic compositions in the Murchison (CM) and Allende (CV) carbonaceous chondrites[J]. Geochimica et Cosmochimica Acta,2001,65(16):2807-2818.
[6] BERGQUIST B A, BLUM J D. Mass-dependent and-independent fractionation of Hg isotopes by photoreduction in aquatic systems[J]. Science,2007,318(5849):417-420.
[7] DAS R, SALTERS V J, ODOM A L. A case for in vivo mass-independent fractionation of mercury isotopes in fish[J]. Geochemistry, Geophysics, Geosystems,2009,10(11):337-343.
[8] PERROT V, EPOV V N, PASTUKHOV M V, et al. Tracing sources and bioaccumulation of mercury in fish of Lake Baikal-Angara River using Hg isotopic composition[J]. Environmental Science & Technology,2010,44(21):8030-8037.
[9] SENN D B, CHESNEY E J, BLUM J D, et al. Stable isotope (N, C, Hg) study of methylmercury sources and trophic transfer in the northern gulf of Mexico[J]. Environmental Science & Technology,2010,44(5):1630-1637.
[10] JACKSON T A, WHITTLE D M, EVANS M S, et al. Evidence for mass-independent and mass-dependent fractionation of the stable isotopes of mercury by natural processes in aquatic ecosystems[J]. Applied Geochemistry,2008,23(3):547-571.
[11] BLUM J D, POPP B N, DRAZEN J C, et al. Methylmercury production below the mixed layer in the North Pacific Ocean[J]. Nature Geoscience,2013,6(10):879-884.
[12] BESSINGER B A. Use of stable isotopes to identify sources of mercury in sediments:A review and uncertainty analysis[J]. Environmental Forensics,2014,15(3):265-280.
[13] YIN R S, FENG X B, CHEN B W,et al. Identifying the sources and processes of mercury in subtropical estuarine and ocean sediments using hg isotopic composition[J]. Environmental Science & Technology,2015,49(3):1347-1355.
[14] 李中锋. 治理黄河的关键工程——小浪底水利枢纽[J]. 工程研究:跨学科视野中的工程,2009,1(3):265-274. LI Z F. A crucial project for harnessing the Yellow River:Xiaolangdi multi-purpose dam project[J]. Journal of Engineering Studies,2009,1(3):265-274(in Chinese).
[15] YIN R S, FENG X B, FOUCHER D,et al. High precision determination of mercury isotope ratios using online mercury vapor generation system coupled with multicollector inductively coupled plasma-mass spectrometer[J]. Chinese Journal of Analytical Chemistry,2010,38(7):929-934.
[16] BALOGH S J, TSUI M T K, BLUM J D, et al. Tracking the fate of mercury in the fish and bottom sediments of Minamata bay, Japan, Using Stable Mercury Isotopes[J]. Environmental Science & Technology,2015,49(9):5399-5406.
[17] SHERMAN L S, BLUM J D. Mercury stable isotopes in sediments and largemouth bass from Florida lakes, USA[J]. Science of the Total Environment,2013,448:163-175.
[18] DONOVAN P M, BLUM J D, DEMERS J D, et al. Identification of multiple mercury sources to stream sediments near Oak Ridge, TN, USA[J]. Environmental Science & Technology,2014,48(7):3666-3674.
[19] 索乾善, 毛宇翔, 张飞鹏, 等小浪底水库鱼体汞的污染现状[J]. 环境化学, 2013,32(11):2030-2036. SUO Q S, MAO Y X, ZHANG F P, et al.Mercury contente in the tissue of fish species in Xiaolangdi reservoir[J]. Environmental Chemistry,2013,32(11):2030-2306(in Chinese).
[20] 程柳, 毛宇翔, 麻冰涓, 等. 小浪底水库沉积物中重金属污染及生态风险评价[J]. 环境化学,2014,33(8):1412-1413. CHENG L, MAO Y X, MA B J, et al. Assesment of heavy metal pollution and ecological risk in the sediments of Xiaolangdi reservoir[J]. Environmental Chemistry,2014,33(8):1412-1413(in Chinese).
[21] LAFFONT L, SNOKE J E, MAURICE L, et al. Anomalous mercury isotopic compositions of fish and human hair in the Bolivian Amazon[J]. Environmental Science & Technology,2009,43(23):8985-8990.
[22] PERROT V, PASTUKHOV M V, EPOV V N,et al. Higher mass-independent isotope fractionation of methylmercury in the pelagic food web of Lake Baikal (Russia)[J]. Environmental Science & Technology,2012,46(11):5902-5911.
[23] GANTNER N, HINTELMANN H, ZHENG W, et al. Variations in stable isotope fractionation of Hg in food webs of Arctic lakes[J]. Environmental Science & Technology,2009,43(24):9148-9154.
[24] KWON S Y, BLUM J D, CARVAN M J, et al. Absence of fractionation of mercury isotopes during trophic transfer of methylmercury to freshwater fish in captivity[J]. Environmental Science & Technology,2012,46(14):7527-7534.
[25] KWON S Y, BLUM J D, CHIRBY M A, et al. Application of mercury isotopes for tracing trophic transfer and internal distribution of mercury in marine fish feeding experiments[J]. Environmental Toxicology and Chemistry,2013,32(10):2322-2330.
[26] POINT D, SONKE J E, DAY R D, et al. Methylmercury photodegradation influenced by sea-ice cover in Arctic marine ecosystems[J]. Nature Geoscience, 2011,4(3):188-194.
[27] KRITEE K, BLUM J D, JOHNSON M W, et al. Mercury stable isotope fractionation during reduction of Hg (Ⅱ) to Hg (0) by mercury resistant microorganisms[J]. Environmental Science & Technology,2007,41(6):1889-1895.
[28] KRITEE K, BARKAY T, BLUM J D. Mass dependent stable isotope fractionation of mercury during mer mediated microbial degradation of monomethylmercury[J]. Geochimica et Cosmochimica Acta,2009,73(5):1285-1296.
[29] WIEDERHOLD J G, CRAMER C J, DANIEL K, et al. Equilibrium mercury isotope fractionation between dissolved Hg (Ⅱ) species and thiol-bound Hg[J]. Environmental Science & Technology,2010,44(11):4191-4197.
[30] JISKRA M, WIEDERHOLD J G, BOURDON B, et al. Solution speciation controls mercury isotope fractionation of Hg (Ⅱ) sorption to goethite[J]. Environmental Science & Technology,2012,46(12):6654-6662.
[31] ESTRADE N, CARIGNAN J, SONKE J E, et al. Mercury isotope fractionation during liquid-vapor evaporation experiments[J]. Geochimica et Cosmochimica Acta,2009,73(10):2693-2711.
[32] GHOSH S, SCHAUBLEA, COULOUME G L, et al. Estimation of nuclear volume dependent fractionation of mercury isotopes in equilibrium liquid-vapor evaporation experiments[J]. Chemical Geology,2013,336:5-12.
[33] COOKE C A, HOLGER H, AGUE J J, et al. Use and legacy of mercury in the Andes[J]. Environmental Science & Technology,2013,47(9):4181-4188.
[34] FENG X B, FOUCHER D, HINTELMANN H, et al. Tracing mercury contamination sources in sediments using mercury isotope compositions[J]. Environmental Science & Technology,2010,44(9):3363-3368.
[35] SMITH C N, KESLER S E, BLUM J D, et al. Isotope geochemistry of mercury in source rocks, mineral deposits and spring deposits of the California Coast Ranges, USA[J]. Earth and Planetary Science Letters,2008,269(3):399-407.
[36] STETSON S J, GRAY J E, WANTY R B, et al. Isotopic variability of mercury in ore, mine-waste calcine, and leachates of mine-waste calcine from areas mined for mercury[J]. Environmental Science & Technology,2009,43(19):7331-7336.
[37] YIN R S, FENG X B, WANG J, et al. Mercury isotope variations between bioavailable mercury fractions and total mercury in mercury contaminated soil in Wanshan Mercury Mine, SW China[J]. Chemical Geology,2013,336:80-86.
[38] GIDEON B, AMRIKA D, JOHNSON T M, et al. Environmental impacts of the tennessee valley authority kingston coal ash spill. 1. Source apportionment using mercury stable isotopes[J]. Environmental Science & Technology,2012,47(4):2092-2099.
[39] MIL-HOMENS M, BLUM J D, CANARIO J, et al. Tracing anthropogenic Hg and Pb input using stable Hg and Pb isotope ratios in sediments of the central Portuguese Margin[J]. Chemical Geology,2013,336(1):62-71.