[1] CALACE N, NARDI E, PETRONIO B, et al. Adsorption of phenols by papermill sludges[J]. Environmental Pollution, 2002, 118(3):315-319.
[2] MICHAŁOWICZ J, DUDA W. Phenols-sources and toxicity[J]. Polish Journal of Environmental Studies, 2007, 16(3):347-362.
[3] 张建英, 丁腾达, 梁璐怡, 等. 水体生态系统对不同浓度水平苯酚污染的急性毒性响应[J]. 环境化学, 2012, 31(5):714-719. ZHANG J Y, DING T D, LIANG L Y, et al. Response of aquatic ecosystem to phenol pollution at different concentration levels[J]. Environmental Chemistry, 2012, 31(5):714-719(in Chinese)
[4] BOTAS J A, MELERO J A, MARTÍNEZ F, et al. Assessment of Fe2O3/SiO2 catalysts for the continuous treatment of phenol aqueous solutions in a fixed bed reactor[J]. Catalysis Today, 2010, 149(3-4):334-340.
[5] GONDAL M, SAYEED M, ALARFAJ A. Activity comparison of Fe2O3, NiO, WO3, TiO2 semiconductor catalysts in phenol degradation by laser enhanced photo-catalytic process[J]. Chemical physics letters, 2007, 445(4-6):325-330.
[6] GUO L, CHEN F, FAN X, et al. S-doped α-Fe2O3 as a highly active heterogeneous Fenton-like catalyst towards the degradation of acid orange 7 and phenol[J]. Applied Catalysis B:Environmental, 2010, 96(1-2):162-168.
[7] KAVITHA V, PALANIVELU K. The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol[J]. Chemosphere, 2004, 55(9):1235-1243.
[8] NEYENS E, BAEYENS J. A review of classic Fenton's peroxidation as an advanced oxidation technique[J]. Journal of Hazardous materials, 2003, 98(1-3):33-50.
[9] 张德莉, 黄应平, 罗光富, 等. Fenton及Photo-Fenton反应研究进展[J]. 环境化学, 2006, 25(2):121-127. ZHANG D L, HUANG Y P, LUO F G, et al. Research progress of Fenton and Photo-Fenton reaction[J]. Environmental Chemistry, 2006, 25(2):121-127(in Chinese).
[10] DELLINGER B, LOMNICKI S, KHACHATRYAN L, et al. Formation and stabilization of persistent free radicals[J]. Proceedings of the Combustion Institute, 2007, 31(1):521-528.
[11] LOMNICKI S, TRUONG H, VEJERANO E, et al. Copper oxide-based model of persistent free radical formation on combustion-derived particulate matter[J]. Environmental Science & Technology, 2008, 42(13):4982-4988.
[12] VEJERANO E, LOMNICKI S, DELLINGER B. Formation and stabilization of combustion-generated environmentally persistent free radicals on an Fe(Ⅲ)2O3/silica surface[J]. Environmental Science & Technology, 2010, 45(2):589-594.
[13] LI H, PAN B, LIAO S, et al. Formation of environmentally persistent free radicals as the mechanism for reduced catechol degradation on hematite-silica surface under UV irradiation[J]. Environmental Pollution, 2014, 188:153-158.
[14] BATTISHA I, AFIFY H, HAMADA I. Structural and magnetic susceptibility studies of SiO2:Fe2O3 nano-composites prepared by sol-gel technique[J]. Journal of magnetism and magnetic materials, 2005, 292:440-446.
[15] LI J J, MU Z, XU X Y, et al. A new and generic preparation method of mesoporous clay composites containing dispersed metal oxide nanoparticles[J]. Microporous and Mesoporous Materials, 2008, 114(1):214-221.
[16] Hu C,Tang H X,Wang Y Z. Destruction of phenol aqueous solution by photocatalysis or direct photolysis[J]. Chemosphere, 2000, 41(8):1205-1209.
[17] 李强, 霍丽华, 高山, 等. 准立方体α-Fe2O3 纳米薄膜的紫外和红外光谱研究[J]. 光散射学报, 2004, 15(4):297-299. LI Q, HUO L H, GAO S, et al. Study on UV and IR spectra of pseudocubic shaped α-Fe2O3 nano-films[J]. Environmental Chemistry, 2004, 15(4):297-299(in Chinese).
[18] NOVOTNY E H, MARTIN-NETO L. Effects of humidity and metal ions on the free radicals analysis of peat humus[J]. Geoderma, 2002, 106(3-4):305-317.
[19] JEZIERSKI A, CZECHOWSKI F, JERZYKIEWICZ M, et al. EPR investigations of structure of humic acids from compost, soil, peat and soft brown coal upon oxidation and metal uptake[J]. Applied Magnetic Resonance, 2000, 18(1):127-136.
[20] TRUONG H, LOMNICKI S, DELLINGER B. Potential for misidentification of environmentally persistent free radicals as molecular pollutants in particulate matter[J]. Environmental science & technology, 2010, 44(6):1933-1939.