[1] |
STEVENSON F J. Humus chemistry:genesis, composition, reactions[M]. 2nd Edition. New York:Wiley, 1994:17.
|
[2] |
LOVLEY D R, COATES J D, BLUNT-HARRIS E L, et al. Humic substances as electron acceptors for microbial respiration[J]. Nature, 1996, 382(6590):445-448.
|
[3] |
PIEPENBROCK A, SCHRÖDER C, KAPPLER A. Electron transfer from humic substances to biogenic and abiogenic Fe(Ⅲ) oxyhydroxide minerals[J]. Environmental Science & Technology, 2014, 48(3):1656-1664.
|
[4] |
MARTINEZ C M, ALVAREZ L H, CELIS L B, et al. Humus-reducing microorganisms and their valuable contribution in environmental processes[J]. Applied Microbiology & Biotechnology, 2013, 97(24):10293-10308.
|
[5] |
NEVIN K P, LOVLEY D R. Potential for nonenzymatic reduction of Fe(Ⅲ) via electron shuttling in subsurface sediments[J]. Environmental Science & Technology, 2000, 34(12):2472-2478.
|
[6] |
JIANG J, KAPPLER A. Kinetics of microbial and chemical reduction of humic substances:implications for electron shuttling[J]. Environmental Science & Technology, 2008, 42(10):3563-3569.
|
[7] |
RODEN E, KAPPLER A, BAUER I, et al. Extracellular electron transfer through microbial reduction of solid-phase humic substances[J]. Nature Geoscience, 2010, 3(6):417-421.
|
[8] |
ZHANG C F, KATAYAMA A. Humin as an electron mediator for microbial reductive dehalogenation[J]. Environmental Science & Technology, 2012, 46(12):6575-6583.
|
[9] |
VAN DER ZEE F P, CERVANTES F J. Impact and application of electron shuttles on the redox(bio)transformation of contaminants:A review[J]. Biotechnology Advances, 2009, 27(3):256-277.
|
[10] |
KAPPLER A, STRAUB K L. Geomicrobiological cycling of iron[J]. Reviews in Mineralogy & Geochemistry, 2005, 59(1):85-108.
|
[11] |
WEBER K A, ACHENBACH L A, COATES J D. Microorganisms pumping iron:Anaerobic microbial iron oxidation and reduction[J]. Nature Reviews Microbiology, 2006, 4(10):752-764.
|
[12] |
REGUERA G, MCCARTHY K D, MEHTA T, et al. Extracellular electron transfer via microbial nanowires[J]. Nature, 2005, 435(7045):1098-1101.
|
[13] |
许杰龙,周顺桂,袁勇,等. 有"生命"的电线:浅析微生物纳米导线电子传递机制及其应用[J]. 化学进展,2012,24(9):1794-1800.
XU J L, ZHOU X G, YUAN Y, et al. Live wire:A review on electron transfer mechanism and applications of microbial nanowires[J]. Progress in Chemistry, 2012, 24(9):1794-1800(in Chinese).
|
[14] |
HARRIS H W, EL-NAGGAR M Y, BRETSCHGER O, et al. Electrokinesis is a microbial behavior that requires extracellular electron transport[J]. Proceedings of the National Academy of Sciences, 2010, 107(1):326-331.
|
[15] |
LOVLEY D R, WOODWARD J C, CHAPELLE F H. Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(Ⅲ) ligands[J]. Nature, 1994, 370(6485):128-131.
|
[16] |
ALVAREZ L H and CERVANTES F J.(Bio)nanotechnologies to enhance environmental quality and energy production[J]. Journal of Chemical Technology and Biotechnology, 2011, 86:1354-1363.
|
[17] |
KAPPLER A, BENZ M, SCHINK B, et al. Electron shuttling via humic acids in microbial iron(Ⅲ) reduction in a freshwater sediment[J]. FEMS Microbiology Ecology, 2004. 47(1):85-92.
|
[18] |
PERETYAZHKO T, SPOSITO G. Reducing capacity of terrestrial humic acids[J]. Geoderma, 2006, 137(1-2):140-146.
|
[19] |
VISSER S A. Oxidation-reduction potentials and capillary activities of humic acids[J]. Nature, 1964, 204(495):581.
|
[20] |
BENZ M, SCHINK B, BRUNE A. Humic acid reduction by Propionibacterium freudenreichii and other fermenting bacteria[J]. Applied and Environment Microbiology, 1998, 64(11):4507-4512.
|
[21] |
LOVLEY D R, FRAGA J L, BLUNT-HARRIS E L, et al. Humic substances as a mediator for microbially catalyzed metal reduction[J]. Acta Hydrochimica et Hydrobiologica, 1998, 26(3):152-157.
|
[22] |
LOVLEY D R, FRAGA J L, COATES J D, et al. Humics as an electron donor for anaerobic respiration[J]. Environmental Microbiology, 1999, 1(1):89-98.
|
[23] |
KAPPLER A, HADERLEIN S B. Natural organic matter as reductant for chlorinated aliphatic pollutants[J]. Environmental Science & Technology, 2003, 37(12):2714-2719.
|
[24] |
AESCHBACHER M, SANDER M, SCHWARZENBACH R P. Novel electrochemical approach to assess the redox properties of humic substances[J]. Environmental Science & Technology, 2010, 44(1):87-93.
|
[25] |
GESCHER J S, CORDOVA C D, SPORMANN A M. Dissimilatory iron reduction in Escherichia coli:identification of cymA of Shewanella oneidensis and napC of E-coli as ferric reductases[J]. Molecular Microbiology, 2008, 68(3):706-719.
|
[26] |
LIES D P, HERNANDEZ M E, KAPPLER A, et al. Shewanella oneidensis MR-1 uses overlapping pathways for iron reduction at a distance and by direct contact under conditions relevant for biofilms[J]. Applied and Environment Microbiology, 2005, 71(8):4414-4426.
|
[27] |
VOORDECKERS J W, KIM B C, IZALLALEN M, et al. Role of Geobacter sulfurreducens outer surface c-type cytochromes in reduction of soil humic acid and anthraquinone-2,6-disulfonate[J]. Applied and Environment Microbiology, 2010, 76(7):2371-2375.
|
[28] |
PIEPENBROCK A, KAPPLER A. Humic substance and extracellular electron transfer. In Microbial Metal Respiration:From geochemistry to potential applications[M]. Germany:Springer, 2012:107-128.
|
[29] |
KULIKOVA N A, PERMINOVA I V, BADUN G A, et al. Estimation of uptake of humic substances from different sources by E.coli cells under optimum and salt stress conditions estimated with a use of tritium-labeled humic materials[J]. Applied and Environment Microbiology, 2010, 76(18):6223-6230.
|
[30] |
SHYU J B H, LIES D P, NEWMAN D K. Protective role of tolC in efflux of the electron shuttle anthraquinone-2,6-disulfonate[J]. Journal of Bacteriology, 2002, 184(6):1806-1810.
|
[31] |
马晨,周顺桂,庄莉,等. 微生物胞外呼吸电子传递机制研究进展[J]. 生态学报,2011,31(7):2008-2018.
MA C, ZHOU S G, ZHUANG L, et al. Electron transfer mechanism of extracellular respiration:A review[J]. Acta Ecologica Sinica, 2011, 31(7):2008-2018(in Chinese).
|
[32] |
CLARKE T A, EDWARDS M J, GATES A J, et al. Structure of a bacterial cell surface decaheme electron conduit[J]. Proceedings of the National Academy of Sciences, 2011, 108(23):9384-9389.
|
[33] |
MACDONALD L H, MOON H S, JAFFÉ P R. The role of biomass, electron shuttles, and ferrous iron in the kinetics of Geobacter sulfurreducens-mediated ferrihydrite reduction[J]. Water Research, 2011, 45(3):1049-1062.
|
[34] |
RATASUK N, NANNY M A. Characterization and quantification of reversible redox sites in humic substances[J]. Environmental Science & Technology, 2007, 41(22):7844-7850.
|
[35] |
BAUER I, KAPPLER A. Rates and extent of reduction of Fe(Ⅲ) compounds and O2 by humic substances[J]. Environmental Science & Technology, 2009, 43(13):4902-4908.
|
[36] |
袁英,何小松,席北斗,等. 腐殖质氧化还原和电子转移特性研究进展[J]. 环境化学,2014,33(12):2048-2057.
YUAN Y, HE X S, XI B D, et al. Research progress on the redox and electron transfer capacity of humic substances[J]. Environmental Chemistry, 2014, 33(12):2048-2057(in Chinese).
|
[37] |
DUNNIVANT F M, SCHWARZENBACH R P, MACALADY D L. Reduction of substituted nitrobenzene in aqueous solutions containing natural organic matter[J]. Environmental Science & Technology, 1992, 26:2133-2141.
|
[38] |
TRATNYEK P G and MACALADY D L. Abiotic reduction of nitro aromatic pesticides in anaerobic laboratory systems[J]. Journal of Agricultural and Food Chemistry, 1989, 37:248-254.
|
[39] |
SCOTT D T, MCKNIGHT D M, BLUNT-HARRIS E L, et al. Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms[J]. Environmental Science & Technology, 1998, 32(19):2984-2989.
|
[40] |
NEWMAN D K, KOLTER R. A role for excreted quinones in extracellular electron transfer[J]. Nature, 2000, 405(6782):94-97.
|
[41] |
SPOSITO G. Electron shuttling by natural organic matter:twenty years after. In Aquatic Redox Chemistry[M]. New York:Oxford University Press, 2011, 1071:113-127.
|
[42] |
HERNÁNDEZ-MONTOYA V, ALVAREZ L H, MONTES-MORÁN M A, et al. Reduction of quinone and non-quinone redox functional groups in different humic acid samples by Geobacter sulfurreducens[J]. Geoderma, 2012, 183-184:25-31.
|
[43] |
FIMMEN R L, CORY R M, CHIN Y P, et al. Probing the oxidation-reduction properties of terrestrially and microbially derived dissolved organic matter[J]. Geochimica et Cosmochimica Acta, 2007, 71(12):3003-3015.
|
[44] |
SPOSITO G, STRUYK Z. Redox properties of standard humic acids[J]. Geoderma, 2001, 102(3-4):329-346.
|
[45] |
WOLF M, KAPPLER A, JIANG J, et al. Effects of humic substances and quinones at low concentrations on ferrihydrite reduction by Geobacter metallireducens[J]. Environmental Science & Technology, 2009, 43(15):5679-5685.
|
[46] |
姜杰,李黎,孙国新. 基于三维荧光光谱特征研究土壤腐殖质氧化还原特性[J]. 环境化学,2012,31(12):2002-2006.
JIANG J, LI L, SUN G X. Investigation of redox activities of soil humic acids using 3D excitation emission matrix fluorescence spectroscopy[J]. Environmental Chemistry, 2012, 31(12):2002-2006(in Chinese).
|
[47] |
OSTERBERG R, SHIRSHOVA L. Oscillating, nonequilibrium redox properties of humic acids[J]. Geochimica et Cosmochimica Acta, 1997, 61(21):4599-4604.
|
[48] |
STRAUB K L, BENZ M, SCHINK B. Iron metabolism in anoxic environments at near neutral pH[J]. FEMS Microbiology Ecology, 2001, 34(3):181-186.
|
[49] |
LIU C, ZACHARA J M, FOSTER N S, et al. Kinetics of reductive dissolution of hematite by bioreduced anthraquinone-2,6-disulfonate[J]. Environmental Science & Technology, 2007, 41(22):7730-7735.
|
[50] |
AESCHBACHER. Electrochemical redox characterization of humic substances[D]. Switzerland:ETH Zurich, 2011.
|
[51] |
GAMAGE R, MCQUILLAN A J, PEAKE B M. Ultraviolet-visible and electron paramagnetic resonance spectroelectrochemical studies of the reduction products of some anthraquinone sulphonates in aqueous solutions[J]. Journal of the Chemical Society, Faraday Transactions, 1991, 87(22):3653-3660.
|
[52] |
KLVPFEL L. Redox characteristics of quinones in natural organic matter(NOM)[D]. Switzerland:Term paper FS 2009, Institute of Biogeochemistry and Pollutant Dynamics ETH Zürich.
|
[53] |
GU B H, CHEN J. Enhanced microbial reduction of Cr(Ⅵ) and U(Ⅵ) by different natural organic matter fractions[J]. Geochimica et Cosmochimica Acta, 2003, 67(19):3575-3582.
|
[54] |
CERVANTES F J, GUTIÉRREZ C H, LÓPEZ K Y, et al. Contribution of quinone-reducing microorganisms on the anaerobic biodegradation of organic compounds under different redox conditions[J]. Biodegradation, 2008, 19(2):235-246.
|
[55] |
SHARPLESS C M, AESCHBACHER M, PAGE S E, et al. Photooxidation-induced changes in optical, electrochemical and photochemical properties of humic substances[J]. Environmental Science & Technology, 2014, 48(5):2688-2696.
|
[56] |
GRAY H B, WINKLER J R. Long-range electron transfer[J]. Proceedings of the National Academy of Sciences, USA, 2005, 102(10):3534-3539.
|
[57] |
CERVANTES F J, DE BOK F A M, TUAN D D, et al. Reduction of humic substances by halorespiring, sulphatereducing and methanogenic microorganisms[J]. Environmental Microbiology, 2002, 4(1):51-57.
|
[58] |
AMSTAETTER K, BORCH T, KAPPLER A. Influence of humic acid imposed changes of ferrihydrite aggregation on microbial Fe(Ⅲ) reduction[J]. Geochimica et Cosmochimica Acta, 2012, 85:326-341.
|
[59] |
PIEPENBROCK A, DIPPON U, PORSCH K, et al. Dependence of microbial magnetite formation on humic substance and ferrihydrite concentrations[J]. Geochimica et Cosmochimica Acta, 2011, 75(22):6844-6858.
|
[60] |
JIANG J, BAUER I, PAUL A, et al. Arsenic redox changes by microbially and chemically formed semiquinone radicals and hydroquinones in a humic substance model quinone[J]. Environmental Science & Technology, 2009, 43(10):3639-3645.
|
[61] |
AESCHBACHER M, VERGARY D, SCHWARZENBACH R P, et al. Electrochemical analysis of proton and electron transfer equilibria of the reducible moieties in humic acids[J]. Environmental Science & Technology, 2011, 45(19):8385-8394.
|
[62] |
LOVLEY D R, HOLMES D E, NEVIN K P. Dissimilatory Fe(Ⅲ) and Mn(Ⅳ) reduction. In Advances in Microbial Physiology[M]. New York:Academic Press, 2004, 49:219-286.
|
[63] |
LU N, ZHOU S G, NI J R. Mechanism of energy generation of microbial fuel cells[J]. Progress in Chemistry, 2008, 20(7-8):1233-1240.
|
[64] |
TURIEK C E, TISA L S, CACCAVO F. Melanin production and use as a soluble electron shuttle for Fe(Ⅲ) oxide reduction and as a terminal electron acceptor by Shewanella alga BrY[J]. Applied and Environment Microbiology, 2002, 68(5):2436-2444.
|
[65] |
HERNANDEZ M E, KAPPLER A, NEWMAN D K. Phenazines and other redox-active antibiotics promote microbial mineral reduction[J]. Applied and Environment Microbiology, 2004, 70(2):921-928.
|
[66] |
KEILUWEIT M, NICO P S, JOHNSON M G, et al. Dynamic molecular structure of plant biomass-derived black carbon(biochar)[J]. Environmental Science & Technology, 2010, 44(4):1247-1253.
|
[67] |
HEYMANN K, LEHMANN J, SOLOMON D, et al. C1s K-edge near edge X-ray absorption fine structure(NEXAFS) spectroscopy for characterizing functional group chemistry of black carbon[J]. Organic Geochemistry, 2011, 42(9):1055-1064.
|
[68] |
KLVPFEL L, KEILUWEIT M, KLEBER M, et al. Redox properties of plant biomass-derived black carbon(biochar)[J]. Environmental Science & Technology, 2014, 48(1):5601-5611.
|
[69] |
TONG H, HU M, LI F B, et al. Biochar enhances the microbial and chemical transformation of pentachlorophenol in paddy soil[J]. Soil Biology & Biochemistry, 2014, 70:142-150.
|
[70] |
XU W, PIGNATELLO J J, MITCH W A. Role of black carbon electrical conductivity in mediating hexahydro-1,3,5-trinitro-1,3,5-triazine(RDX) transformation on carbon surfaces by sulfides[J]. Environmental Science & Technology, 2013, 47(13):7129-7136.
|
[71] |
KAPPLER A, WUESTNER M L, RUECKER A, et al. Biochar as an electron shuttle between bacteria and Fe(Ⅲ) minerals[J]. Environmental Science & Technology Lett, 2014, 1(8):339-344.
|
[72] |
窦森. 土壤有机质[M]. 北京:科学出版社,2010. DOU S. Soil organic matter[M]. Beijing:Science Press, 2010(in Chinese).
|
[73] |
SCHMIDT M W I, TORN M S, ABIVEN S, et al. Persistence of soil organic matter as an ecosystem property[J]. Nature, 2011, 478(7367):49-56.
|
[74] |
KELLEHER B P, SIMPSON A J. Humic substances in soils:Are they really chemically distinct[J]. Environmental Science & Technology, 2006, 40(15):4605-4611.
|
[75] |
LEHMANN J, SOLOMON D, KINYANGI J, et al. Spatial complexity of soil organic matter forms at nanometer scales[J]. Nature Geoscience, 2008, 1(4):238-242.
|
[76] |
KLEBER M, JOHNSON M G. Advances in understanding the molecular structure of soil organic matter:implications for interactions in the environment. In Advances in Agronomy[M]. San Diego:Elsevier Academic Press Inc, 2010, 106:77-142.
|
[77] |
NIELSEN L P, RISGAARD-PETERSEN N, FOSSING H, et al. Electric currents couple spatially separated biogeochemical processes in marine sediment[J]. Nature, 2010, 463(7284):1071-1074.
|
[78] |
FULDA B, VOEGELIN A, MAURER F, et al. Copper redox transformation and complexation by reduced and reoxidized soil humic acid. 1. X-ray absorption spectroscopy study[J]. Environmental Science & Technology, 2013, 47(19):10903-10911.
|
[79] |
MAURER F, CHRISTL I, FULDA B, et al. Copper redox transformation and complexation by reduced and oxidized soil humic acid. 2. Potentiometric titrations and dialysis cell experiments[J]. Environmental Science & Technology, 2013, 47(19):10912-10921.
|
[80] |
RAKSHIT S, UCHIMIYA M, SPOSITO G. Iron(Ⅲ) bioreduction in soil in the presence of added humic substances[J]. Soil Science Society of America Journal, 2009, 73(1):65-71.
|
[81] |
TUO Y, LIU G, ZHOU J, et al. Microbial formation of palladium nanoparticles by Geobacter sulfurreducens for chromate reduction[J]. Bioresource Technology, 2013, 133:606-611.
|
[82] |
江韬,魏世强,李雪梅,等. 胡敏酸对汞还原能力的测定和表征[J]. 环境科学,2012,33(1):286-292.
JIANG T, WEI S Q, LI X M, et al. Determination and characterization on the capacity of humic acid for the reduction of divalent mercury[J]. Environmental Science, 2012, 33(1):286-292(in Chinese).
|
[83] |
徐丽娜,李忠佩,车玉萍. 淹水厌氧条件下腐殖酸对红壤中铁异化还原过程的影响[J]. 环境科学,2009,30(1):221-226.
XU L N, LI Z P, CHE Y P. Influences of humic acids on the dissimilatory iron reduction of red soil in anaerobic condition[J]. Environmental Science, 2009, 30(1):221-226(in Chinese).
|
[84] |
MAURER F, CHRISTL I, HOFFMANN M, et al. Reduction and reoxidation of humic acid:Influence on speciation of cadmium and sliver[J]. Environmental Science & Technology, 2012, 46(16):8808-8816.
|
[85] |
SKOGERBOE R K, WILSON S A. Reduction of ionic species by fulvic acid[J]. Analytical Chemistry, 1981, 53(2):228-232.
|
[86] |
WITTBRODT P R, PALMER C D. Reduction of Cr(Ⅵ) in the presence of excess soil fulvic acid[J]. Environmental Science & Technology, 1995, 29(1):255-263.
|
[87] |
WANG X, LIU G, ZHOU J, et al. Quinone-mediated reduction of selenite and tellurite by Escherichia coli[J]. Bioresource Technology, 2011, 102(3):3268-3271.
|
[88] |
BRADLEY P M, CHAPELLE F H, LOVLEY D R. Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene[J]. Applied and Environment Microbiology, 1998, 64(8):3102-3105.
|
[89] |
CERVANTES F J, DIJKSMA W, DUONG-DAC T, et al. Anaerobic mineralization of toluene by enriched sediments with quinones and humus as terminal electron acceptors[J]. Applied and Environment Microbiology, 2001, 67(10):4471-4478.
|
[90] |
CERVANTES F J, VAN DER ZEE F P, LETTINGA G, et al. Enhanced decolourisation of acid orange 7 in a continuous UASB reactor with quinones as redox mediators[J]. Water Science and Technology, 2001, 44(4):123-128.
|
[91] |
ZHANG T, BAIN T S, NEVIN K P, et al. Anaerobic benzene oxidation by Geobacter species[J]. Applied and Environment Microbiology, 2012, 78(23):8304-8310.
|
[92] |
MA C, WANG Y Q, ZHUANG L, et al. Anaerobic degradation of phenanthrene by a newly isolated humus-reducing bacterium, Pseudomonas aeruginosa strain PAH-1[J]. Journal of Soils and Sediments, 2011, 11(6):923-929.
|
[93] |
CERVANTES F J, VAN DER VELDE S, LETTINGA G, et al. Quinones as terminal electron acceptors for anaerobic microbial oxidation of phenolic compounds[J]. Biodegradation, 2000, 11(5):313-321.
|
[94] |
WEI N, FINNERAN K T. Microbial community analyses of three distinct, liquid cultures that degrade methyl tert-butyl ether using anaerobic metabolism[J]. Biodegradation, 2009, 20(5):695-707.
|
[95] |
CERVANTES F J, GONZÁLEZ-ESTRELLA J, MÁRQUEZ A, et al. Immobilized humic substances on an anion exchange resin and their role on the redox biotransformation of contaminants[J]. Bioresource Technology, 2011, 102(2):2097-2100.
|
[96] |
CERVANTES F J, VAN DER VELDE S, LETTINGA G, FIELD J A. Competition between methanogenesis and quinone respiration for ecologically important substrates in anaerobic consortia[J]. FEMS Microbiology Ecology, 2000, 34(2):161-171.
|
[97] |
ARANDA-TAMAURA C, ESTRADA-ALVARADOl M I, et al. Effects of different quinoid redox mediators on the removal of sulphide and nitrate via denitrification[J]. Chemosphere, 2007, 69(11):1722-1727.
|
[98] |
VAN DER ZEE F P, BOUWMAN R H M, STRIK D P B T B, et al. Application of redox mediators to accelerate the transformation of reactive azo dyes in anaerobic bioreactors[J]. Biotechnology and Bioengineering, 2001, 75(6):691-701.
|
[99] |
WATANABE K, MANEFIELD M, LEE M, et al. Electron shuttles in biotechnology[J]. Current Opinion in Biotechnology, 2009, 20(6):633-641.
|
[100] |
许志诚,洪义国,罗微,等. 厌氧条件下希瓦氏菌腐殖质还原对偶氮还原的影响[J]. 微生物学报,2006,46(4):591-597.
XU Z C, HONG Y G, LUO W, et al. The effects of the humic substances on azoreduction by Shewanella spp.[J]. Acta Microbiologica Sinica, 2006, 46(4):591-597(in Chinese).
|
[101] |
GUO J, ZHOU J, WANG D, et al. Biocatalyst effects of immobilized anthraquinone on the anaerobic reduction of azo dyes by the salt-tolerant bacteria[J]. Water Research, 2007. 41(2):426-432.
|
[102] |
CERVANTES F J, MANCILLA A R, RIOS-DEL TORO E E, et al. Anaerobic benzene oxidation by enriched inocula with humic acids as terminal electron acceptors[J]. Journal of Hazardous Materials, 2011, 195:201-207.
|
[103] |
YE X, ZHANG X, MORGENROTH E, et al. Exogenous anthrahydroquinone-2,6-disulfonate specifically increases xylose utilization during mixed sugar fermentation by Clostridium beijerinckii NCIMB 8052[J]. International Journal of Hydrogen Energy, 2013, 38(6):2719-2727.
|
[104] |
YE X, MORGENROTH E, ZHANG X, et al. Anthrahydroquinone-2,6-disulfonate(AH2QDS) increases hydrogen molar yield and xylose utilization in growing cultures of Clostridium beijerinckii[J]. Applied Microbiology & Biotechnology, 2011, 92(4):855-864.
|
[105] |
ZHANG X, YE X, GUO B, et al. Lignocellulosic hydrolysates and extracellular electron shuttles for H2 production using co-culture fermentation with Clostridium beijerinckii and Geobacter metallireducens[J]. Bioresource Technology 2013, 147:89-95.
|
[106] |
王慧勇,梁鹏,黄霞,等. 微生物燃料电池中产电微生物电子传递研究进展[J]. 环境保护科学,2009,35(1):17-20
,35. WANG H Y, LIANG P, HUANG X, et al. Research progress in microbial fuel cells for electrons transfer of electricigens[J]. Environmental Protection Science, 2009, 35(1):17-20, 35(in Chinese).
|
[107] |
RINGEISEN B R, HENDERSON E, WU P K, et al. High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10[J]. Environmental Science & Technology, 2006, 40(8):2629-2634.
|
[108] |
THYGESEN A, POULSEN F W, MIN B, et al. The effect of different substrates and humic acid on power generation in microbial fuel cell operation[J]. Bioresource Technology, 2009, 100(3):1186-1191.
|
[109] |
WANG Y, ZHOU D, WANG Y, et al. Humic acid and metal ions accelerating the dechlorination of 4-chlorobiphenyl by nanoscale zero-valent iron[J]. Environmental Science, 2011, 23(8):1286-1292.
|
[110] |
FORREZ I, CARBALLA M, FINK G, et al. Biogenic metals for the oxidative and reductive removal of pharmaceuticals, biocides and iodinated contrast media in a polishingmembrane bioreactor[J]. Water Research, 2011, 45(4):1763-1773.
|