[1] WILKINS D M, MANOLOPOULOS D E, DANG L X. Nuclear quantum effects in water exchange around lithium and fluoride ions[J]. The Journal of Chemical Physics, 2015, 142(6):064509(1-11).
[2] HAGVALL K, PERSSON P, KARLSSON T. Spectroscopic characterization of the coordination chemistry and hydrolysis of gallium(Ⅲ) in the presence of aquatic organic matter[J]. Geochimica et Cosmochimica Acta, 2014, 146:76-89.
[3] VAN ELDIK R. Fascinating inorganic/bioinorganic reaction mechanisms[J]. Coordination Chemistry Reviews, 2007, 251(13-14):1649-1662.
[4] CASEY W H, RUSTAD J R. Reaction dynamics,molecular clusters,and aqueous geochemistry[J]. Annual Review of Earth and Planetary Sciences, 2007, 35:21-46.
[5] HUGI-CLEARY D, HELM L, MERBACH A E. Variable-temperature and variable-pressure 17O-NMR study of water exchange of hexaaquaaluminium(Ⅲ)[J]. Helvetica Chimica Acta, 1985, 68(3):545-554.
[6] FIAT D, CONNICK R E. Oxygen-17 magnetic resonance studies of ion solvation. The hydration of aluminum(Ⅲ) and gallium(Ⅲ) ions[J]. Journal of the American Chemical Society, 1968, 90(3):608-615.
[7] QIAN Z S, FENG H, YANG W J,et al. Supermolecule density functional calculations on the water exchange of aquated Al(Ⅲ) species in aqueous solution[J]. Chemical Communications, 2008, 33:3930-3932.
[8] HOFER T S, RANDOLF B R, RODE B M,et al. The influence of quantum forces on molecular dynamics simulation results for hydrated aluminium(Ⅲ)[J]. Chemical Physics Letters, 2006, 422(4-6):492-495.
[9] MARTÍNEZ J M, PAPPALARDO R R, MARCOS E S. First-principles ion-water interaction potentials for highly charged monatomic cations. Computer simulations of Al3+,Mg2+,and Be2+ in water[J]. Journal of the American Chemical Society, 1999, 121(13):3175-3184.
[10] BERET E C, GALBIS E, PAPPALARDO R R,et al. Opposite effects of successive hydration shells on the aqua ion structure of metal cations[J]. Molecular Simulation, 2009, 35(12-13):1007-1014.
[11] BYLASKA E J, VALIEV M, RUSTAD J R,et al. Structure and dynamics of the hydration shells of the Al3+ ion[J]. The Journal of Chemical Physics, 2007, 126(10):2033-2034.
[12] BOCK C W, MARKHAM G D, KATZ A K,et al. The arrangement of first-and second-shell water molecules in trivalent aluminum complexes:Results from density functional theory and structural crystallography[J]. Inorganic Chemistry, 2003, 42(5):1538-1548.
[13] SHI W J, JIN X Y, DONG S N,et al. Theoretical investigation of the thermodynamic structures and kinetic water-exchange reactions of aqueous Al(Ⅲ)-salicylate complexes[J]. Geochimica et Cosmochimica Acta, 2013, 121:41-53.
[14] JIN X Y, YAN Y, SHI W J,et al. Density functional theory studies on the structures and water-exchange reactions of aqueous Al(Ⅲ)-oxalate complexes[J]. Environmental Science and Technology, 2011, 45(23):10082-10090.
[15] EVANS R J, RUSTAD J R, CASEY W H. Calculating geochemical reaction pathways-exploration of the inner-sphere water exchange mechanism in Al(H2O)3+6(aq)+nH2O with ab initio calculations and molecular dynamics[J]. The Journal of Physical Chemistry A, 2008, 112(17):4125-4140.
[16] HANAUER H, PUCHTA R, CLARK T,et al. Searching for stable、five-coordinate aquated Al(Ⅲ) species. Water exchange mechanism and effect of pH[J]. Inorganic Chemistry, 2007, 46(4):1112-1122.
[17] BLEUZEN A, FOGLIA F, FURET E, et al. Second coordination shell water exchange rate and mechanism:Experiments and modeling on hexaaquachromium(Ⅲ)[J]. Journal of the American Chemical Society, 1996, 118(50):12777-12787.
[18] YANG T X, TSUSHIMA S, SUZUKI A. Quantum mechanical and molecular dynamical simulations on Thorium(Ⅳ) hydrates in aqueous solution[J]. The Journal of Physical Chemistry A, 2001, 105(45):10439-10445.
[19] YANG T X, BURSTEN B E. Speciation of the curium(Ⅲ) ion in aqueous solution:A combined study by quantum chemistry and molecular dynamics simulation[J]. Inorganic Chemistry, 2006,45(14):5291-5301.