[1] |
Werner M L, Nico P S, Marcus M A, et al. Use of micro-XANES to speciate chromium in airborne fine particles in the Sacramento Valley[J]. Environmental Science & Technology, 2007, 41 (14): 4919-4924
|
[2] |
Jacques B, Herman P. Environmental analytical and physical chemistry series. Vol. 1, Chapter 4 [M]. Boca Raton, Florida, USA: The Chemical Rubber Company Press, 1992: 145-186
|
[3] |
Stern R M. Indicators of matrix dependent variation in effective dose for chromium and nickel aerosol exposures[J]. The Science of the Total Environment, 1988, 71: 301-307
|
[4] |
Kimbrough D E, Cohen Y, Winer A M, et al. A critical assessment of chromium in the environment[J]. Critical Reviews in Environmental Science and Technology, 1999, 29: 1-46
|
[5] |
Meng Q, Fan Z, Brian B, et al. Development and evaluation of a method for hexavalent chromium in ambient air using IC-ICP-MS[J]. Atmospheric Environment, 2011, 45:2021-2027
|
[6] |
Goldoni M, Caglieiri A, Poli D, et al. Determination of hexavalent chromium in exhaled breath condensate and environmental air among chrome plating workers[J]. Analytica Chimica Acta, 2006, 562: 229-235
|
[7] |
Caglieiri A, Goldoni M, Acampa O, et al. The effect of inhaled chromium on different exhaled breath condensate biomarkers among chrome-plating workers[J]. Environmental Health Perspectives, 2006, 114(4): 542-546
|
[8] |
Boiano J M, Wallace M E, Sieber, W K, et al. Comparison of three sampling and analytical methods for the determination of airborne hexavalent chromium[J]. Journal of Environmental Monitoring, 2000, 2 (4): 329-333
|
[9] |
Barnowski C, Jakubowski N, Stuewer D, et al. Speciation of chromium by direct coupling of ion exchange chromatography with inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 1997, 12 (10): 1155-1161
|
[10] |
Ashley K, Howe A M, Demange M, et al. Sampling and analysis considerations for the determination of hexavalent chromium in workplace air[J]. Journal of Environmental Monitoring, 2003, 5: 707-716
|
[11] |
Khakhathi L, Mandiwana, Nikolay P, et al. Electrothermal atomic absorption spectrometric determination of total and hexavalent chromium in atmospheric aerosols[J]. Journal of Hazardous Materials B, 2006, 136:379-382
|
[12] |
Kristof T, Geert S, Nico B, et al. Determination of hexavalent chromium in ambient air: A story of method induced Cr(Ⅲ) oxidation[J]. Atmospheric Environment, 2011, 45: 5332-5341
|
[13] |
谢永洪, 王华清, 姚欢, 等. 离子色谱-柱后衍生可见光检测环境空气中六价铬和废气中铬酸雾[J]. 中国环境监测, 2013, 29(6): 128-133
|
[14] |
赵起越, 赵靓, 徐子优, 等. 大气颗粒物中六价铬的采样分析[J]. 分析实验室, 2014, 33(4): 440-444
|
[15] |
刀谞, 张霖琳, 李丽和, 等. 离子色谱-柱后衍生-紫外可见检测法测定大气颗粒物(PM2.5、PM10)中的六价铬[J]. 环境化学, 2014, 33(7): 1194-1200
|
[16] |
An J L, Wang Y S, Li X, et al. Measurement on the atmospheric SO2, NOx, CO and O3 concentrations in Beijing[J]. Ecology and Environment, 2007, 16(6): 1585-1589
|
[17] |
狄一安, 杨勇杰, 马志强, 等. 北京市城区北部大气气态汞的特征分析[J]. 环境化学, 2012, 31(10): 1656-1657
|
[18] |
Pettine M, Capri S. Digestion treatments and risks of Cr(Ⅲ)-Cr(Ⅵ) interconversions during Cr(Ⅵ) determination in soils and sediments e-A review[J].Analytica Chimica Acta, 2005, 540: 231-238
|
[19] |
刘洁, 张小玲, 徐晓峰, 等. 北京地区SO2、NOx、O3和PM2.5变化特征的城郊对比分析[J]. 环境科学, 2008, 29(4): 1059-1065
|
[20] |
曾静, 廖晓兰, 任玉芬, 等. 奥运期间北京PM2.5、NOx、CO的动态特征及影响因素[J]. 生态学报, 2010, 30(22): 6227-6233
|
[21] |
Constantini Samara. Chemical mass balance source apportionment of TSP in a lignite-burning area of Western Macedonia, Greece[J]. Atmospheric Environment, 2005, 39: 6430-6443
|
[22] |
孔少飞, 白志鹏. 大气颗粒物来源解析中机动车尾气成分谱研究进展[J]. 环境科学与技术, 2013, 36(10): 26-33
|
[23] |
Yang Y, Wang Y, Huang W, et al. Size distributions and elemental compositions of particulate matter on clear, hazy and foggy days in Beijing, China[J]. Advances in Atmospheric Science, 2010, 27(3): 663-675
|
[24] |
狄一安, 杨勇杰, 周瑞, 等. 北京春季城区与远郊区不同大气粒径颗粒物中水溶性离子的分布特征[J]. 环境化学, 2013, 32(9): 1604-1610
|
[25] |
杨勇杰, 王跃思, 温天雪, 等. 北京市大气颗粒物中PM10和PM2.5质量浓度及其化学组分的特征分析[J]. 环境化学, 2008, 27(1): 117-118
|