[1] |
Chopra I, Roberts M. Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance[J]. Microbiology and Molecular Biology Reviews, 2001,65(2): 232-260
|
[2] |
Roberts M C. Tetracycline resistance determinants: Mechanisms of action, regulation of expression, genetic mobility, and distribution[J]. FEMS Microbiology Reviews, 1996,19(1): 1-24
|
[3] |
Sarmah A K, Meyer M T, Boxall A B A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment[J]. Chemosphere, 2006,65(5): 725-759
|
[4] |
Hosoi Y, Asai T, Koike R, et al. Use of veterinary antimicrobial agents from 2005 to 2010 in Japan[J]. International Journal of Antimicrobial Agents, 2013,41(5): 489-490
|
[5] |
陈育枝, 张元元, 袁希平, 等. 动物四环素类抗生素现状及前景[J]. 兽药与饲料添加剂, 2006,11(3): 16-17
|
[6] |
李兆君, 姚志鹏, 张杰, 等. 兽用抗生素在土壤环境中的行为及其生态毒理效应研究进展[J]. 生态毒理学报, 2008,3(1): 15-20
|
[7] |
Richardson B J, Lam P K S, Martin M M. Emerging chemicals of concern: Pharmaceuticals and personal care products (PPCPs) in Asia, with particular reference to Southern China[J]. Marine Pollution Bulletin, 2005,50(9): 913-920
|
[8] |
肖斌, 黄满红, 陈亮. 活性污泥SBR系统对四环素耐药菌和总四环素的去除特性[J]. 环境化学, 2012,31(12): 1974-1978
|
[9] |
Li D, Yang M, Hu J Y, et al. Determination and fate of oxytetracycline and related compounds in oxytetracycline production wastewater and the receiving river[J]. Environmental Toxicology and Chemistry, 2008,27(1): 80-86
|
[10] |
Hughes V M, Datta N. Conjugative plasmids in bacteria of the "pre-antibiotic" era[J]. Nature, 1983,302(5910): 725-726
|
[11] |
Knapp C W, Dolfing J, Ehlert P A I, et al. Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940[J]. Environmental Science & Technology, 2010,44(2): 580-587
|
[12] |
Harnisz M, Golas I, Pietru M. Tetracycline-resistant bacteria as indicators of antimicrobial resistance in protected waters-The example of the Drweca River Nature Reserve (Poland)[J]. Ecological Indicators, 2011,11(2): 663-668
|
[13] |
Schnabel E L, Jones A L. Distribution of tetracycline resistance genes and transposons among phylloplane bacteria in Michigan apple orchards[J]. Applied and Environmental Microbiology, 1999,65(11): 4898-4907
|
[14] |
Rodríguez C, Lang L, Wang A, et al. Lettuce for human consumption collected in Costa Rica contains complex communities of culturable oxytetracycline-and gentamicin-resistant bacteria[J]. Applied and Environmental Microbiology, 2006,72(9): 5870-5876
|
[15] |
Ling A L, Pace N R, Hernandez M T, et al. Tetracycline resistance and Class 1 integron genes associated with indoor and outdoor aerosols[J]. Environmental Science & Technology, 2013,47(9): 4046-4052
|
[16] |
刘苗苗, 张昱, 李栋, 等. 制药废水受纳河流中四环素抗药基因及微生物群落结构变化研究[J]. 环境科学学报, 2010,30(8): 1551-1557
|
[17] |
Rahman M H, Nonaka L, Tago R, et al. Occurrence of two genotypes of tetracycline (TC) resistance gene tet(M) in the TC-resistant bacteria in marine sediments of Japan[J]. Environmental Science & Technology, 2008,42(14): 5055-5061
|
[18] |
Nonaka L, Ikeno K, Suzuki S. Distribution of tetracycline resistance gene, tet(M), in Gram-positive and Gram-negative bacteria isolated from sediment and seawater at a coastal aquaculture site in Japan[J]. Microbes and Environments, 2007,22(4): 355-364
|
[19] |
Chee-Sanford J C, Aminov R I, Krapac I J, et al. Occurrence and diversity of tetracycline resistance genes in lagoons and groundwater underlying two swine production facilities[J]. Applied and Environmental Microbiology, 2001,67(4): 1494-1502
|
[20] |
Hoa N T, Chieu T T B, Nghia H D T, et al. The antimicrobial resistance patterns and associated determinants in Streptococcus suis isolated from humans in southern Vietnam, 1997-2008[J]. Bmc Infectious Diseases, 2011,11: 6
|
[21] |
Caryl J A, Cox G, Trimble S, et al. "tet(U)" is not a tetracycline resistance determinant[J]. Antimicrobial Agents and Chemotherapy, 2012,56(6): 3378-3379
|
[22] |
Roberts M C. Update on acquired tetracycline resistance genes[J]. Fems Microbiology Letters, 2005,245(2): 195-203
|
[23] |
Thaker M, Spanogiannopoulos P, Wright G D. The tetracycline resistome[J]. Cellular and Molecular Life Sciences, 2010,67(3): 419-431
|
[24] |
Chopra I. Glycylcyclines: Third-generation tetracycline antibiotics[J]. Current Opinion in Pharmacology, 2001,1(5): 464-469
|
[25] |
Ghosh S, LaPara T M. The effects of subtherapeutic antibiotic use in farm animals on the proliferation and persistence of antibiotic resistance among soil bacteria[J]. The ISME Journal, 2007,1(3): 191-203
|
[26] |
Zhang X X, Zhang T. Occurrence, abundance, and diversity of tetracycline resistance genes in 15 sewage treatment plants across China and other global locations[J]. Environmental Science & Technology, 2011,45(7): 2598-2604
|
[27] |
Leski T A, Bangura U, Jimmy D H, et al. Multidrug-resistant tet(X)-containing hospital isolates in Sierra Leone[J]. International Journal of Antimicrobial Agents, 2013,42(1): 83-86
|
[28] |
Bartha N A, Sóki J, Urbán E, et al. Investigation of the prevalence of tetQ, tetX and tetX1 genes in Bacteroides strains with elevated tigecycline minimum inhibitory concentrations[J]. International Journal of Antimicrobial Agents, 2011,38(6): 522-525
|
[29] |
Aminov R I. Evolution in action: Dissemination of tet(X) into pathogenic microbiota[J]. Frontiers in microbiology, 2013,4: 192
|
[30] |
Livermore D M. Tigecycline: What is it, and where should it be used?[J] Journal of Antimicrobial Chemotherapy, 2005,56(4): 611-614
|
[31] |
Bradford P A. Tigecycline: A first in class glycylcycline[J]. Clinical Microbiology Newsletter, 2004,26(21): 163-168
|
[32] |
Moore I F, Hughes D W, Wright G D. Tigecycline is modified by the flavin-dependent monooxygenase TetX[J]. Biochemistry, 2005,44(35): 11829-11835
|
[33] |
Guiney D G, Hasegawa P, Davis C E. Expression in Escherichia coli of cryptic tetracycline resistance genes from bacteroides R plasmids[J]. Plasmid, 1984,11(3): 248-252
|
[34] |
Tally F P, Snydman D R, Shimell M J, et al. Characterization of pBFTM10, a clindamycin-erythromycin resistance transfer factor from Bacteroides fragilis[J]. Journal of Bacteriology, 1982,151(2): 686-691
|
[35] |
Matthews B G, Guiney D G. Characterization and mapping of regions encoding clindamycin resistance, tetracycline resistance, and a replication function on the Bacteroides R plasmid pCP1[J]. Journal of Bacteriology, 1986,167(2): 517-521
|
[36] |
Welch R A, Macrina F L. Physical characterization of Bacteroides fragilis R plasmid pBF4[J]. Journal of Bacteriology, 1981,145(2): 867-872
|
[37] |
Shoemaker N B, Guthrie E P, Salyers A A, et al. Evidence that the clindamycin-erythromycin resistance gene of Bacteroides plasmid pBF4 is on a transposable element[J]. Journal of Bacteriology, 1985,162(2): 626-632
|
[38] |
Shoemaker N B, Getty C, Gardner J F, et al. Tn4351 transposes in Bacteroides spp. and mediates the integration of plasmid R751 into the Bacteroides chromosome[J]. Journal of Bacteriology, 1986,165(3): 929-936
|
[39] |
Robillard N J, Tally F P, Malamy M H. Tn4400, a compound transposon isolated from Bacteroides fragilis, functions in Escherichia coli[J]. Journal of Bacteriology, 1985,164(3): 1248-1255
|
[40] |
Smith C J, Gonda M A. Comparison of the transposon-like structures encoding clindamycin resistance in Bacteroides R-plasmids[J]. Plasmid, 1985,13(3): 182-192
|
[41] |
Guiney D G, Hasegawa P, Davis C E. Homology between clindamycin resistance plasmids in Bacteroides[J]. Plasmid, 1984,11(3): 268-271
|
[42] |
Speer B S, Salyers A A. Characterization of a novel tetracycline resistance that functions only in aerobically grown Escherichia coli[J]. Journal of Bacteriology, 1988,170(4): 1423-1429
|
[43] |
Park B H, Levy S B. The cryptic tetracycline resistance determinant on Tn4400 mediates tetracycline degradation as well as tetracycline efflux[J]. Antimicrobial Agents and Chemotherapy, 1988,32(12): 1797-1800
|
[44] |
Park B H, Hendricks M, Malamy M H, et al. Cryptic tetracycline resistance determinant (class F) from Bacteroides fragilis mediates resistance in Escherichia coli by actively reducing tetracycline accumulation[J]. Antimicrobial Agents and Chemotherapy, 1987,31(11): 1739-1743
|
[45] |
Speer B S, Salyers A A. Novel aerobic tetracycline resistance gene that chemically modifies tetracycline[J]. Journal of Bacteriology, 1989,171(1): 148-153
|
[46] |
Speer B S, Salyer A A. A tetracycline efflux gene on Bacteroides transposon Tn4400 does not contribute to tetracycline resistance[J]. Journal of Bacteriology, 1990,172(1): 292-298
|
[47] |
Speer B S, Bedzyk L, Salyers A A. Evidence that a novel tetracycline resistance gene found on two Bacteroides transposons encodes an NADP-requiring oxidoreductase[J]. Journal of Bacteriology, 1991,173(1): 176-183
|
[48] |
Yang W R, Moore I F, Koteva K P, et al. TetX is a flavin-dependent monooxygenase conferring resistance to tetracycline antibiotics[J]. Journal of Biological Chemistry, 2004,279(50): 52346-52352
|
[49] |
Kumarasamy K K, Toleman M A, Walsh T R, et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: A molecular, biological, and epidemiological study[J]. Lancet Infectious Diseases, 2010,10(9): 597-602
|
[50] |
Nagy E, Urbán E, Nord C E. Antimicrobial susceptibility of Bacteroides fragilis group isolates in Europe: 20 years of experience[J]. Clinical Microbiology and Infection, 2011,17(3): 371-379
|
[51] |
Hoffmann M, DeMaio W, Jordan R A, et al. Metabolism, excretion, and pharmacokinetics of C-14 tigecycline, a first-in-class glycylcycline antibiotic, after intravenous infusion to healthy male subjects[J]. Drug Metabolism and Disposition, 2007,35(9): 1543-1553
|
[52] |
Liu M M, Zhang Y, Yang M, et al. Abundance and distribution of tetracycline resistance genes and mobile elements in an oxytetracycline production wastewater treatment system[J]. Environmental Science & Technology, 2012,46(14): 7551-7557
|
[53] |
Zhang W, Huang M H, Qi F F, et al. Effect of trace tetracycline concentrations on the structure of a microbial community and the development of tetracycline resistance genes in sequencing batch reactors[J]. Bioresource Technology, 2013,150(11): 9-14
|
[54] |
Baker-Austin C, Wright M S, Stepanauskas R, et al. Co-Selection of antibiotic and metal resistance[J]. Trends in Microbiology, 2006,14(4): 176-182
|
[55] |
Ghosh S, Sadowsky M J, Roberts M C, et al. Sphingobacterium sp strain PM2-P1-29 harbours a functional tet(X) gene encoding for the degradation of tetracycline[J]. Journal of Applied Microbiology, 2009,106(4): 1336-1342
|
[56] |
Auerbach E A, Seyfried E E, McMahon K D. Tetracycline resistance genes in activated sludge wastewater treatment plants[J]. Water Research, 2007,41(5): 1143-1151
|
[57] |
McKinney C W, Pruden A. Ultraviolet disinfection of antibiotic resistant bacteria and their antibiotic resistance genes in water and wastewater[J]. Environmental Science & Technology, 2012,46(24): 13393-13400
|
[58] |
Diehl D L, LaPara T M. Effect of temperature on the fate of genes encoding tetracycline resistance and the integrase of class 1 integrons within anaerobic and aerobic digesters treating municipal wastewater solids[J]. Environmental Science & Technology, 2010,44(23): 9128-9133
|
[59] |
Burch T R, Sadowsky M J, Lapara T M. Aerobic digestion reduces the quantity of antibiotic resistance genes in residual municipal wastewater solids[J]. Frontiers in Microbiology, 2013,4:17
|
[60] |
Ma Y J, Wilson C A, Novak J T, et al. Effect of various sludge digestion conditions on sulfonamide, macrolide, and tetracycline resistance genes and class I integrons[J]. Environmental Science & Technology, 2011,45(18): 7855-7861
|
[61] |
Alekshun M N, Levy S B. Molecular mechanisms of antibacterial multidrug resistance[J]. Cell, 2007,128(6): 1037-1050
|
[62] |
Whittle G, Hund B D, Shoemaker N B, et al. Characterization of the 13-kilobase ermF region of the Bacteroides conjugative transposon CTnDOT[J]. Applied and Environmental Microbiology, 2001,67(8): 3488-3495
|
[63] |
LaPara T M, Burch T R, McNamara P J, et al. Tertiary-treated municipal wastewater is a significant point source of antibiotic resistance genes into Duluth-Superior Harbor[J]. Environmental Science & Technology, 2011,45(22): 9543-9549
|
[64] |
Szczepanowski R, Linke B, Krahn I, et al. Detection of 140 clinically relevant antibiotic-resistance genes in the plasmid metagenome of wastewater treatment plant bacteria showing reduced susceptibility to selected antibiotics[J]. Microbiology-Sgm, 2009,155(7): 2306-2319
|
[65] |
Zhang T, Zhang M, Zhang X X, et al. Tetracycline resistance genes and tetracycline resistant lactose-fermenting enterobacteriaceae in activated sludge of sewage treatment plants[J]. Environmental Science & Technology, 2009,43(10): 3455-3460
|
[66] |
Ghosh S, Ramsden S J, LaPara T M. The role of anaerobic digestion in controlling the release of tetracycline resistance genes and class 1 integrons from municipal wastewater treatment plants[J]. Applied Microbiology and Biotechnology, 2009,84(4): 791-796
|
[67] |
Barkovskii A L, Coleman C. Persistent and transient antibiotic resistance genes in swine feeding operations and their environmental fate as affected by farms' operational practices[R]. The Annual Meeting and International Symposium of Microbial Ecology Committee at the Ecological Society of China, 2009, Ningbo, China
|
[68] |
Zhang Y P, Snow D D, Parker D, et al. Intracellular and extracellular antimicrobial resistance genes in the sludge of livestock waste management structures[J]. Environmental Science & Technology, 2013,47(18): 10206-10213
|
[69] |
Wu N, Qiao M, Zhang B, et al. Abundance and diversity of tetracycline resistance genes in soils adjacent to representative swine feedlots in China[J]. Environmental Science & Technology, 2010,44(18): 6933-6939
|
[70] |
Storteboom H N, Kim S C, Doesken K C, et al. Response of antibiotics and resistance genes to high-intensity and low-intensity manure management[J]. Journal of Environmental Quality, 2007,36(6): 1695-1703
|
[71] |
Thames C H, Pruden A, James R E, et al. Excretion of antibiotic resistance genes by dairy calves fed milk replacers with varying doses of antibiotics[J]. Frontiers in microbiology, 2012,3: 139
|
[72] |
Zhu Y G, Johnson T A, Su J Q, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013,110(9): 3435-3440
|
[73] |
de Vries L E, Vallès Y, Agers Y, et al. The gut as reservoir of antibiotic resistance: microbial diversity of tetracycline resistance in mother and infant[J]. PLoS One, 2011,6(6): e21644
|
[74] |
Barkovskii A L. Antibiotic resistance genes and environmental factors impacting their temporal and spatial distribution in oyster beds. The International Symposium on Environmental Simulation and Pollution Control, 2009, Beijing, China
|
[75] |
Diaz-Torres M L, McNab R, Spratt D A, et al. Novel tetracycline resistance determinant from the oral metagenome[J]. Antimicrobial Agents and Chemotherapy, 2003,47(4): 1430-1432
|
[76] |
Nonaka L, Suzuki S. New Mg2+-dependent oxytetracycline resistance determinant tet 34 in Vibrio isolates from marine fish intestinal contents[J]. Antimicrobial Agents and Chemotherapy, 2002,46(5): 1550-1552
|
[77] |
Dantas G, Sommer M O A, Oluwasegun R D, et al. Bacteria subsisting on antibiotics[J]. Science, 2008,320(5872): 100-103
|
[78] |
Li B, Zhang T. Biodegradation and adsorption of antibiotics in the activated sludge process[J]. Environmental Science & Technology, 2010,44(9): 3468-3473
|
[79] |
Gartiser S, Urich E, Alexy R, et al. Ultimate biodegradation and elimination of antibiotics in inherent tests[J]. Chemosphere, 2007,67(3): 604-613
|
[80] |
Kim S, Eichhorn P, Jensen J N, et al. Removal of antibiotics in wastewater: Effect of hydraulic and solid retention times on the fate of tetracycline in the activated sludge process[J]. Environmental Science & Technology, 2005,39(15): 5816-5823
|
[81] |
Breazeal M V, Novak J T, Vikesland P J, et al. Effect of wastewater colloids on membrane removal of antibiotic resistance genes[J]. Water Research, 2013,47(1): 130-140
|
[82] |
侯树宇,张清敏,多淼, 等. 白腐真菌和细菌对芘的协同生物降解研究[J]. 农业环境科学学报, 2005,24(2): 318-321
|
[83] |
Gullberg E, Cao S, Berg O G, et al. Selection of resistant bacteria at very low antibiotic concentrations[J]. Plos Pathogens, 2011,7(7): e1002158
|
[84] |
Knapp C W, Engemann C A, Hanson M L, et al. Indirect evidence of transposon-mediated selection of antibiotic resistance genes in aquatic systems at low-level oxytetracycline exposures[J]. Environmental Science & Technology, 2008,42(14): 5348-5353
|
[85] |
贾燕南, 文湘华, 李佳喜. 木质素降解酶对四环素的降解可行性[J]. 环境科学学报, 2008,28(1): 69-75
|
[86] |
Wen X H, Jia Y N, Li J X. Degradation of tetracycline and oxytetracycline by crude lignin peroxidase prepared from Phanerochaete chrysosporiumA white rot fungus[J]. Chemosphere, 2009,75(8): 1003-1007
|
[87] |
Wen X H, Jia Y N, Li J X. Enzymatic degradation of tetracycline and oxytetracycline by crude manganese peroxidase prepared from Phanerochaete chrysosporium[J]. Journal of Hazardous Materials, 2010,177(1/3): 924-928
|
[88] |
Shi Y J, Wang X H, Qi Z, et al. Sorption and biodegradation of tetracycline by nitrifying granules and the toxicity of tetracycline on granules[J]. Journal of Hazardous Materials, 2011,191(1/3): 103-109
|
[89] |
Pruden A, Pei R, Storteboom H, et al. Antibiotic resistance genes as emerging contaminants: Studies in northern Colorado[J]. Environmental Science & Technology, 2006,40(23): 7445-7450
|
[90] |
Yu Z, Michel F C, Hansen G, et al. Development and application of real-Time PCR assays for quantification of genes encoding tetracycline resistance[J]. Applied and Environmental Microbiology, 2005,(11): 6926-6933
|