[1] |
Weber R, Gaus C, Tysklind M, et al. Dioxin- and POP-contaminated sites-contemporary and future relevance and challenges: Overview on background, aims and scope of the series[J]. Environmental Science and Pollution Research International, 2008, 15(5): 363-393
|
[2] |
Jones K C, De Voogt P. Persistent organic pollutants (POPs): State of the science[J]. Environmental Pollution, 1999, 100(1): 209-221
|
[3] |
Biswas G, Srinivasan S, Anandatheerthavarada H K, et al. Dioxin-mediated tumor progression through activation of mitochondria-to-nucleus stress signaling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(1): 186-191
|
[4] |
Furness S G, Whelan F. The pleiotropy of dioxin toxicity-xenobiotic misappropriation of the aryl hydrocarbon receptor's alternative physiological roles[J]. Pharmacology Therapeutics, 2009, 124(3): 336-353
|
[5] |
Quintana F J, Basso A S, Iglesias A H, et al. Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor[J]. Nature, 2008, 453(7191): 65-71
|
[6] |
Xie H Q, Xu H M, Fu H L, et al. AhR-mediated effects of dioxin on neuronal acetylcholinesterase expression in vitro[J]. Environment Health Perspect, 2013, 121(5): 613-618
|
[7] |
Denison M S, Zhao B, Baston D S, et al. Recombinant cell bioassay systems for the detection and relative quantitation of halogenated dioxins and related chemicals[J]. Talanta, 2004, 63(5): 1123-1133
|
[8] |
Behnisch P A, Hosoe K, Sakai S I. Bioanalytical screening methods for dioxins and dioxin-like compounds a review of bioassay/biomarker technology[J]. Environment International, 2001, 27(5), 413-439
|
[9] |
国家履行斯德哥尔摩公约工作协调组办公室. 中华人民共和国履行关于持久性有机污染物的斯德哥尔摩公约国家履约计划 [M]. 北京:中国环境科学出版社,2008
|
[10] |
Chae K, Cho L K, McKinney J D. Synthesis of 1-amino-3,7,8-trichlorodibenzop- dioxinand1-amino-2,3,7,8-tetrachlorodibenzo- p-dioxin as haptenic compounds[J]. Journal of Agricultural and Food Chemistry, 1977, 25(5), 1207-1209
|
[11] |
Albro P W, Luster M I, Chae K, et al. A radioimmunoassay for chlorinated dibenzo-p-dioxins[J]. Toxicology and Applied Pharmacology, 1979, 50(1):137-146
|
[12] |
Khler G, Milstein C. Pillars Article: Continuous cultures of fused cells secreting antibody of predefined specificity[J]. Nature,1975, 256 (5517):495-497
|
[13] |
Stanker L H, Watkins B E, Rogers N, et al. Monoclonal antibodies for dioxin: Antibody characterization and assay development [J]. Toxicology, 1987: 229-243
|
[14] |
王晶, 王林, 黄晓蓉, 等. 食品安全快速检测技术[M]. 北京: 化学工业出版社,2002
|
[15] |
王叔淳. 食品卫生检验技术手册[M]. 北京:化学工业出版社,2002
|
[16] |
Matsuki T, Nakama E, Kishino J, et al. A simplified dioxin analysis system-automatic sample preparation devise and dioxin biosensor[J]. Organohalogen Compounds, 2005, 67: 39-41
|
[17] |
周志广,许鹏军,任玥.自动净化和新型酶联免疫法测定废气中的二噁英[J]. 分析测试学报,2013, 32(1):127-132
|
[18] |
Chuang J C, Van Emon J M, Schrock M E. High-throughput screening of dioxins in sediment and soil using selective pressurized liquid extraction with immunochemical detection[J]. Chemosphere, 2009, 77(9): 1217-1223
|
[19] |
Okuyama M, Kobayashi N, Takeda W, et al. Enzyme-linked immunosorbent assay for monitoring toxic dioxin congeners in milk based on a newly generated monoclonal anti-dioxin antibody[J]. Analytical Chemistry, 2004, 76, 1948-1956
|
[20] |
Kurosawa S, Aizawa H, Park J W. Quartz crystal microbalance immunosensor for highly sensitive 2,3,7,8-tetrachlorodibenzo -p-dioxin detection in fly ash from municipal solid waste incinerators[J]. Analyst, 2005, 130(11): 1495-1501
|
[21] |
Harrison R O, Eduljee G H. Immunochemical analysis for dioxins-progress and prospects[J]. The Science of the Total Environment,1999,239:1-18
|
[22] |
周志广,赵斌,许鹏军,等. 新型酶联免疫测定废气中二噁英类物质[J]. 环境化学,2013, 32(7):1358-1364
|
[23] |
|
[24] |
Allen R. AhRC PCRTM-Receptor Capture PCR [EB/OL].[2014-6-18]. Http:// www.hybrizyme. Com/PCRoveriew.html
|
[25] |
Wei X, Ching L Y, Cheng S H, et al. The detection of dioxin- and estrogen-like pollutants in marine and freshwater fishes cultivated in Pearl River Delta, China[J]. Environmental Pollution, 2010, 158(6): 2302-2309
|
[26] |
Jaborek-Hugo S, Von Holst C, Allen R, et al. Use of an immunoassay as a means to detect polychlorinated biphenyls in animal fat[J]. Food Additives and Contaminants, 2001, 18(2): 121-127
|
[27] |
Barletta J M, Edelman D C, Constantine N T. Lowering the detection limits of HIV-1 viral load using real-time immuno-PCR for HIV-1 p24 antigen[J]. American Journal of Clinical Pathology, 2004, 122(1): 20-27
|
[28] |
Barletta J M, Edelman D C, Highsmith W E, et al. Detection of ultra-low levels of pathologic prion protein in scrapie infected hamster brain homogenates using real-time immuno-PCR[J]. Journal of Virological Methods, 2005, 127(2): 154-164
|
[29] |
Sugawara K, Kobayashi D, Saito K, et al. A highly sensitive immuno-polymerase chain reaction assay for human angiotensinogen using the identical first and second polyclonal antibodies[J]. Clinica chimica acta, 2000, 299(1): 45-54
|
[30] |
Chen H Y, Zhuang H S. Real-time immuno-PCR assay for detecting PCBs in soil samples[J]. Analytical Bioanalytical Chemistry, 2009, 394: 1205-1211
|
[31] |
Glass T R, Ohmura N, Morita K, et al. Improving an immunoassay response to related polychlorinated biphenylanalytes by mix in gantibodies[J]. Analytical Chemistry, 2006, 78: 7240-7247
|
[32] |
Tian W, Xie H Q, Fu H, et al. Immunoanalysis methods for the detection of dioxins and related chemicals[J]. Sensors (Basel), 2012, 12(12): 16710-16731
|
[33] |
Fillmann G, Galloway T S, Sanger R C, et al. Relative performance of immunochemical (enzyme-linked immunosorbent assay) and gas chromatography-electron-capture detection techniques to quantify polychlorinated biphenyls in mussel tissues[J]. Analytica Chimica Acta, 2002, 461(1): 75-84
|
[34] |
Shelver W L, Parrotta C D, Slawecki R, et al. Development of a magnetic particle immunoassay for polybrominated diphenyl ethers and application to environmental and food matrices[J]. Chemosphere, 2008, 73(1): S18-S23
|
[35] |
DeVito M J, Ma X F, Babish J G, et al. Dose-response relationships in mice following subchronic exposure to 2, 3, 7, 8-tetrachlorodibenzo-dioxin: CYP1A1, CYP1A2, estrogen receptor, and protein tyrosine phosphorylation[J]. Toxicology and Applied Pharmacology, 1994, 124(1): 82-90
|
[36] |
Hamada M, Satsu H, Natsume Y, et al. TCDD-induced CYP1A1 expression, an index of dioxin toxicity, is suppressed by flavonoids permeating the human intestinal Caco-2 cell monolayers[J]. Journal of Agricultural and Food Chemistry, 2006, 54(23): 8891-8898
|
[37] |
Farrell K, Safe L, Safe S. Synthesis and AhR binding properties of radiolabeled PCDF congeners[J]. Archives of Biochemistry and Biophysics, 1987,259:185 -195
|
[38] |
Wang Y, Yang D, Chang A, et al. Synthesis of a ligand-quencher conjugate for the ligand binding study of the aryl hydrocarbon receptor using a FRET assay[J]. Medicinal Chemistry Research, 2012, 21(6): 711-721
|
[39] |
Zhao B, DeGroot D E, Hayashi A, et al. CH223191 is a ligand-selective antagonist of the Ah (Dioxin) receptor[J]. Toxicological Sciences, 2010, 117(2): 393-403
|
[40] |
Sun X, Li F, Wang Y J, et al. Development of an exonuclease protection mediated PCR bioassay for sensitive detection of Ah receptor agonists[J]. Toxicological Sciences, 2004, 80(1): 49-53
|
[41] |
Wheelock G D, Hurst K R, Babish J G. Bioimmunoassay of aryl hydrocarbon (Ah) receptor transformation in vitro by 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD) [J]. Toxicol Methods, 1996, 6:41-50
|
[42] |
Abbott B D, Held G A, Wood C R, et al. AhR, ARNT, and CYP1A1 mRNA quantitation in cultured human embryonic palates exposed to TCDD and comparison with mouse palate in vivo and in culture[J]. Toxicological Sciences, 1999, 47(1): 62-75
|
[43] |
Munkittrick K R, Servos M R, Van Der Kraak G J, et al. Survey of receiving-water environmental impacts associated with discharges from pulp mills: 2. Gonad size, liver size, hepatic erod activity and plasma sex steroid levels in white sucker[J].Environmental Toxicology and Chemistry, 1994, 13(7): 1089-1101
|
[44] |
Jnsson E M, Brandt I, Brunstrm B. Gill filament-based EROD assay for monitoring waterborne dioxin-like pollutants in fish[J]. Environmental Science & Technology, 2002, 36(15): 3340-3344
|
[45] |
Jnsson M, Abrahamson A, Brunstrm B, et al. EROD activity in gill filaments of anadromous and marine fish as a biomarker of dioxin-like pollutants[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2003, 136(3): 235-243
|
[46] |
Engwall M, Brunstrm B, Nf C, et al. Levels of dioxin-like compounds in sewage sludge determined with a bioassay based on EROD induction in chicken embryo liver cultures[J]. Chemosphere, 1999, 38(10): 2327-2343
|
[47] |
Petrulis J R, Bunce N J. Competitive inhibition by inducer as a confounding factor in the use of the ethoxyresorufin-deethylase (EROD) assay to estimate exposure to dioxin-like compounds[J]. Toxicology Letters, 1999, 105(3): 251-260
|
[48] |
Tillitt D E, Giesy J P, Ankley G T. Characterization of the H4IIE rat hepatoma cell bioassay as a tool for assessing toxic potency of planar halogenated hydrocarbons in environmental samples[J]. Environmental Science & Technology, 1991, 25(1): 87-92
|
[49] |
Sanderson J T, Jac M M, Abrahaw B, et al. Comparison of Ah receptor-mediated luciferase and ethoxyresoufin-o-deethylase induction in H4IIE cells: Implication for their use as bioanalytical tools for the detection of polyhalogennated aromatic hydrocarbons[J]. Toxicology and Applied Pharmacology, 1996, 137(2):316-325
|
[50] |
Behnisch P A, Hosoe K, Brouwer A, et al. Screening of dioxin-like toxicity equivalents for various matrices with wildtype and recombinant rat hepatoma H4IIE cells[J]. Toxicological Sciences, 2002, 69(1): 125-130
|
[51] |
Li W, Wu W Z, Xu Y, et al. Measuring TCDD equivalents in environmental samples with the micro-EROD assay: Comparison with HRGC/HRMS data[J]. Bulletin of Environmental Contamination and Toxicology, 2002, 68(1): 111-117
|
[52] |
Della Torre C, Mariottini M, Malysheva A, et al. Occurrence of PCDD/PCDFs and PCBs in soil and comparison with CYP1A response in PLHC-1 cell line[J]. Ecotoxicology and Environmental Safety, 2013, 94: 104-111
|
[53] |
Kang Y, Cheung K C, Cai Z W, et al. Chemical and bioanalytical characterization of dioxins in indoor dust in Hong Kong[J]. Ecotoxicology and Environmental Safety, 2011, 74(4): 947-952
|
[54] |
El-Fouly M H, Richter C, Giesy J P, et al. Production of a novel recombinant cell line for use as a bioassay system for detection of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin-like chemicals[J]. Environmental toxicology and chemistry, 1994, 13(10): 1581-1588
|
[55] |
Zhao B, Baston D S, Khan E, et al. Enhancing the response of CALUX and CAFLUX cell bioassays for quantitative detection of dioxin-like compounds[J]. Science China Chemistry, 2010, 53(5): 1010-1016
|
[56] |
Takeuchi S, Iida M, Yabushita H, et al. In vitro screening for aryl hydrocarbon receptor agonistic activity in 200 pesticides using a highly sensitive reporter cell line, DR-EcoScreen cells, and in vivo mouse liver cytochrome P450-1A induction by propanil, diuron and linuron[J]. Chemosphere, 2008, 74(1): 155-165
|
[57] |
Zhou Z G, Zhao B, Kojima H, et al. Simple and rapid determination of PCDD/Fs in flue gases from various waste incinerators in China using DR-EcoScreen cells[J]. Chemosphere, 2014, 102:24-30
|
[58] |
Kojima H, Takeuchi S, Tsutsumi T, et al. Determination of dioxin concentrations in fish and seafood samples using a highly sensitive reporter cell line, DR-EcoScreen cells[J]. Chemosphere, 2011, 83(6): 753-759
|
[59] |
Commission Directive 2002/69/EC. laying down the sampling methods and the methods of analysis for the official control of dioxins and the determination of dioxin-like PCBs in foodstuffs[S]. European Commission, 2002
|
[60] |
Zhang T, Yu G, Wang B, et al. Bioanalytical characterization of dioxin-like activity in sewage sludge from Beijing, China[J]. Chemosphere, 2009, 75(5): 649-653
|
[61] |
Wang B, Yu G, Huang J, et al. Probabilistic ecological risk assessment of OCPs, PCBs, and DLCs in the Haihe River, China[J]. The Scientific World Journal, 2010, 10: 1307-1317
|
[62] |
Li S Z, Pei X H, Zhang W, et al. Functional analysis of the dioxin response elements (DREs) of the murine CYP1A1gene promoter: Beyond the core DRE sequence[J]. International Journal of Molecular Sciences, 2014, 15:6475-6487
|
[63] |
He G, Tsutsumi T, Zhao B, et al. Third-generation Ah receptor-responsive luciferase reporter plasmids: Amplification of dioxin-responsive elements dramatically increases CALUX bioassay sensitivity and responsiveness[J]. Toxicological Sciences, 2011, 123(2): 511-522
|
[64] |
Van Langenhove K, Croes K, Denison M S, et al. The CALUX bio-assay: Analytical comparison between mouse hepatoma cell lines with a low (H1L6.1c3) and high (H1L7.5c1) number of dioxin response elements[J]. Talanta, 2011, 85(4): 2039-2046
|
[65] |
Yang J H, Lee H G, Park K Y. Development of human dermal epithelial cell-based bioassay for the dioxins[J]. Chemosphere, 2008, 72(8): 1188-1192
|
[66] |
Novotna A, Pavek P, Dvorak Z. Novel stably transfected gene reporter human hepatoma cell line for assessment of aryl hydrocarbon receptor transcriptional activity: Construction and characterization[J]. Environmental Science & Technology, 2011, 45(23): 10133-10139
|
[67] |
Hahn M E. Biomarkers and bioassays for detecting dioxin-like compounds in the marine environment[J]. Science of the Total Environment, 2002, 289(1): 49-69
|