[1] |
汤保华, 祝凌燕, 周启星. 多溴二苯醚( PBDEs)对环境的污染及其生态化学行为[J]. 生态学杂志, 2008, 27 (1): 96-104
|
[2] |
万斌, 郭良宏. 多溴苯醚的环境毒理学研究进展[J]. 环境化学, 2011, 30(1):143-152
|
[3] |
张利飞, 黄业茹, 董亮. 多溴联苯醚在中国的污染现状研究进展[J]. 环境化学, 2010, 29(5):787-795
|
[4] |
赵恒, 孟祥周, 向楠, 等. 上海市受纳污水河流中多溴联苯醚的生态风险评价[J]. 环境化学, 2012, 31(5):573-579
|
[5] |
黄飞飞, 李敬光, 赵云峰, 等. 我国沿海地区贝类样品中十溴联苯醚污染水平分析[J]. 环境化学, 2011, 30(2):418-422
|
[6] |
Meerts I A, Letcher R J, Hoving S, et al. In vitro estrogenicity of polybrominated diphenyl ethers, hydroxylated PDBEs, and polybrominated bisphenol A compounds[J]. Environ Health Perspect, 2001, 109: 399-407
|
[7] |
Hamers T, Kamstra J H, Sonneveld E, et al. In vitro profiling of the endocrine-disrupting potency of brominated flame retardants[J]. Toxicol Sci, 2006, 92: 157-173
|
[8] |
Mercado-Feliciano M, Bigsby R M. Hydroxylated metabolites of the polybrominated diphenyl ether mixture DE-71 are weak estrogen receptor alpha ligands[J]. Environ Health Perspect, 2008, 116: 1315-1321
|
[9] |
Kojima H, Takeuchi S, Uramaru N, et al. Nuclear hormone receptor activity of polybrominated diphenyl ethers and their hydroxylated and methoxylated metabolites in transactivation assays using chinese hamster ovary cells[J]. Environ Health Persp, 2009, 117: 1210-1218
|
[10] |
Kitamura S, Shinohara S, Iwase E, et al. Affinity for thyroid hormone and estrogen receptors of hydroxylated polybrominated diphenyl ethers[J]. J Health Sci, 2008, 54(5): 607-614
|
[11] |
Liu H L, Hu W, Sun H, et al. In vitro profiling of endocrine disrupting potency of 2,2',4,4'-tetrabromodiphenyl ether (BDE47) and related hydroxylated analogs (HO-PBDEs)[J]. Marine Pollution Bulletin, 2011,63:287-296
|
[12] |
Jain A N. Effects of protein conformation in docking: Improved pose prediction through protein pocket adaptation[J]. J. Comput Aid Mol Des, 2009, 23: 355-374
|
[13] |
Hu J W, Eriksson L, Bergman , et al. Molecular orbital studies on brominated diphenyl ethers. Part Ⅱ—Reactivity and quantitative structure-activity(property) relationships[J]. Chemosphere, 2005, 59:1043-1057
|
[14] |
Zeng X, Freeman P K, Vasil’ev Y V, et al. Theoretical calculation of thermodynamic properties of polybrominated diphenyl ethers[J]. J Chem Eng Data, 2005, 50:1548-1556
|
[15] |
Grabda M, Oleszek-Kudlak S, Shibata E, et al. Gas phase thermodynamic properties of PBDEs, PBBs, PBPs, HBCD and TBBPA predicted using DFT method[J]. J Mol Struct (Theochem), 2007, 822:38-44
|
[16] |
Bastos P M, Eriksson J, Vidarson J, et al. Oxidative transformation of polybrominated diphenylether congeners (PBDEs) and of hydroxylated PBDEs(OH-PBDEs) [J]. Environ Sci Pollut Res, 2008,15: 606-613
|
[17] |
Fang H, Tong W D, Shi L M, et al.Structure-activity relationships for a large diverse set of natural, synthetic, and environmental estrogens[J]. Chem ResToxicol, 2001, 14: 280-294
|
[18] |
Yang W H, Liu X H, Liu H L, et al. Molecular docking and comparative molecular similarity indices analysis study of estrogenicity of polybrominated diphenyl ethers and their analogues[J]. Environmental Toxicology and Chemistry, 2010, 29: 660-668
|
[19] |
Cross J B, Thompson D C, Rai B K, et al. Comparison of several molecular docking programs:Pose prediction and virtual screening accuracy[J]. J ChemInf Model, 2009, 49: 1455-1474
|
[20] |
Yang W H, Wei S, Liu H L, et al. Insights into the structural and conformational requirements of polybrominated diphenyl ethers and metabolites as potential estrogens based on molecular docking[J]. Chemosphere, 2011, 84:328-335
|
[21] |
Brzozowski A, Pike A, Dauter Z, et al. Molecular basis of agonism and antagonism in the oestrogen receptor[J]. Nature, 1997, 389: 753-758
|
[22] |
Shiau A K, Barstad D, Loria P M, et al. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen[J]. Cell, 1998, 95: 927-937
|
[23] |
Yang W H, Wang Z Y, Liu H L, et al. Exploring the binding features of polybrominated diphenyl ethers as estrogen receptor antagonists: Docking studies[J]. SAR and QSAR in Environmental Research, 2010, 21: 351-367
|