[1] Lindqvist O, Johansson K, Bringmark L, et al. Mercury in the swedish environment-recent research on causes, consequences and corrective methods[J]. Water air and soil pollution, 1991, 55(1):1-261
[2] Monperrus M, Tessier E, Point D, et al. The biogeochemistry of mercury at the sediment-water interface in the thau lagoon. 2. evaluation of mercury methylation potential in both surface sediment and the water column[J]. Estuarine Coastal and Shelf Science, 2007, 72(3):485-496
[3] RodrIguez MartIn-Doimeadios R C, Tessier E, Amouroux D, et al. Mercury methylation/demethylation and volatilization pathways in estuarine sediment slurries using species-specific enriched stable isotopes[J]. Marine Chemistry, 2004, 90(1/4):107-123
[4] Barkay T, Miller S M, Summers A O. Bacterial mercury resistance from atoms to ecosystems[J]. FEMS Microbiology Reviews, 2003, 27(2/3):355-384
[5] Eckley C S, Hintelmann H. Determination of mercury methylation potentials in the water column of Lakes Across Canada[J]. Science of The Total Environment, 2006, 368(1):111-125
[6] Monperrus M, Tessier E, Amouroux D, et al. Mercury methylation, demethylation and reduction rates in coastal and marine surface waters of the mediterranean sea[J]. Marine Chemistry, 2007, 107(1):49-63
[7] Raposo J C, Ozamiz G, Etxebarria N, et al. Mercury biomethylation assessment in the estuary of bilbao (North of Spain)[J]. Environmental Pollution, 2008, 156(2):482-488
[8] 刘金玲, 丁振华. 汞的甲基化研究进展[J]. 地球与环境, 2007, 35(3):215-222
[9] 胡海燕, 冯新斌, 曾永平, 等. 汞的微生物甲基化研究进展[J]. 生态学杂志, 2011, 30(05):874-882
[10] Whalin L, Kim E H, Mason R. Factors influencing the oxidation, reduction, methylation and demethylation of mercury species in coastal waters[J]. Marine Chemistry, 2007, 107(3):278-294
[11] Compeau G C, Bartha R. Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment[J]. Applied and Environmental Microbiology, 1985, 50(2):498-502
[12] King J K, Kostka J E, Frischer M E, et al. Sulfate-reducing bacteria methylate mercury at variable rates in pure culture and in marine sediments[J]. Applied and Environmental Microbiology, 2000, 66(6):2430-2437
[13] Fleming E J, Mack E E, Green P G, et al. Mercury methylation from unexpected sources: molybdate-inhibited freshwater sediments and an iron-reducing bacterium[J]. Applied and Environmental Microbiology, 2006, 72(1):457-464
[14] Kerin E J, Gilmour C C, Roden E, et al. Mercury methylation by dissimilatory iron-reducing bacteria[J]. Applied and Environmental Microbiology, 2006, 72(12):7919-7921
[15] Hamelin S P, Amyot M, Barkay T, et al. Methanogens: Principal methylators of mercury in Lake Periphyton[J]. Environmental Science & Technology, 2011, 45(18):7693-7700
[16] Vonk J, Sijpesteijn A. Studies on the methylation of mercuric chloride by pure cultures of bacteria and fungi[J]. Antonie van Leeuwenhoek, 1973, 39(1):505-513
[17] Landner L. Biochemical model for the biological methylation of mercury suggested from methylation studies in vivo with neurospora crassa[J]. Nature, 1971, 230(5294):452-454
[18] Gårdfeldt K, Munthe J, Strömberg D, et al. A Kinetic study on the abiotic methylation of divalent mercury in the aqueous phase[J]. Science of The Total Environment, 2003, 304(1/3):127-136
[19] Weber J H. Review of possible paths for abiotic methylation of mercury(Ⅱ) in the aquatic environment[J]. Chemosphere, 1993, 26(11):2063-2077
[20] Castro L, Dommergue A l, Larose C, et al. A theoretical study of abiotic methylation reactions of gaseous elemental mercury by halogen-containing molecules[J]. The Journal of Physical Chemistry A, 2011, 115(22):5602-5608
[21] Hall B, Bloom N S, Munthe J. An experimental study of two potential methylation agents of mercury in the atmosphere: Ch3i and Dms[J]. Water, Air, and Soil Pollution, 1995, 80(1/4):337-341
[22] Celo V, Lean D R S, Scott S L. Abiotic methylation of mercury in the aquatic environment[J]. Science of The Total Environment, 2006, 368(1):126-137
[23] Falter R. Experimental study on the unintentional abiotic methylation of inorganic mercury during analysis: Part 1: Localisation of the compounds effecting the abiotic mercury methylation[J]. Chemosphere, 1999, 39(7):1051-1073
[24] Kim E H, Mason R P, Porter E T, et al. The impact of resuspension on sediment mercury dynamics, and methylmercury production and fate: A mesocosm study[J]. Marine Chemistry, 2006, 102(3/4):300-315
[25] Han S, Obraztsova A, Pretto P, et al. Biogeochemical factors affecting mercury methylation in sediments of the venice lagoon, italy[J]. Environmental Toxicology and Chemistry, 2007, 26(4):655-663
[26] Marvin-DiPasquale M, Agee J, McGowan C, et al. Methyl-mercury degradation pathways: A comparison among three mercury-impacted ecosystems[J]. Environmental Science & Technology, 2000, 34(23):4908-4916
[27] Oremland R S, Culbertson C W, Winfrey M R. Methylmercury decomposition in sediments and bacterial cultures: Involvement of methanogens and sulfate reducers in oxidative demethylation[J]. Applied and Environmental Microbiology, 1991, 57(1):130-137
[28] Marvin-DiPasquale M C, Oremland R S. Bacterial methylmercury degradation in florida everglades peat sediment[J]. Environmental Science & Technology, 1998, 32(17):2556-2563
[29] Lehnherr I, St. Louis V L. Importance of ultraviolet radiation in the photodemethylation of methylmercury in freshwater ecosystems[J]. Environmental Science & Technology, 2009, 43(15):5692-5698
[30] Suda I, Suda M, Hirayama K. Degradation of methyl and ethyl mercury by singlet oxygen generated from sea water exposed to sunlight or ultraviolet light[J]. Archives of Toxicology, 1993, 67(5):365-368
[31] Hammerschmidt C R, Fitzgerald W F. Iron-mediated photochemical decomposition of methylmercury in an Arctic Alaskan Lake[J]. Environmental Science & Technology, 2010, 44(16):6138-6143
[32] Black F J, Poulin B A, Flegal A R. Factors controlling the abiotic photo-degradation of monomethylmercury in surface waters[J]. Geochimica et Cosmochimica Acta, 2012, 84(0):492-507
[33] Smith T, Pitts K, McGarvey J A, et al. Bacterial oxidation of mercury metal vapor, Hg(0)[J]. Applied and Environmental Microbiology, 1998, 64(4):1328-1332
[34] Magos L, Halbach S, Clarkson T W. Role of catalase in the oxidation of mercury vapor[J]. Biochemical Pharmacology, 1978, 27(9):1373-1377
[35] Ebinghaus R, Kock H H, Temme C, et al. Antarctic springtime depletion of atmospheric mercury[J]. Environmental Science & Technology, 2002, 36(6):1238-1244
[36] Lindberg S E, Brooks S, Lin C J, et al. Dynamic oxidation of gaseous mercury in the arctic troposphere at polar sunrise[J]. Environmental Science & Technology, 2002, 36(6):1245-1256
[37] Munthe J. The aqueous oxidation of elemental mercury by ozone[J]. Atmospheric Environment. Part A. General Topics, 1992, 26(8):1461-1468
[38] Yamamoto M. Possible mechanism of elemental mercury oxidation in the presence of SH compounds in aqueous solution[J]. Chemosphere, 1995, 31(2):2791-2798
[39] Seigneur C, Wrobel J, Constantinou E. A Chemical kinetic mechanism for atmospheric inorganic mercury[J]. Environmental Science & Technology, 1994, 28(9):1589-1597
[40] Amyot M, Gill G A, Morel F M M. Production and loss of dissolved gaseous mercury in coastal seawater[J]. Environmental Science & Technology, 1997, 31(12):3606-3611
[41] Gu B, Bian Y, Miller C L, et al. Mercury reduction and complexation by natural organic matter in anoxic environments[J]. Proceedings of the National Academy of Sciences, 2011, 108(4):1479-1483
[42] Zheng W, Liang L, Gu B. Mercury reduction and oxidation by reduced natural organic matter in anoxic environments[J]. Environmental Science & Technology, 2011, 46(1):292-299
[43] Barkay T, Turner R, VandenBrook A, et al. The relationships of Hg (Ⅱ) volatilization from a freshwater pond to the abundance of mer genes in the gene pool of the indigenous microbial community[J]. Microbial Ecology, 1991, 21(1):151-161
[44] Siciliano S D, O'Driscoll N J, Lean D R S. Microbial reduction and oxidation of mercury in freshwater lakes[J]. Environmental Science & Technology, 2002, 36(14):3064-3068
[45] Freedman Z, Zhu C, Barkay T. Mercury resistance and mercuric reductase activities and expression among chemotrophic thermophilic aquificae[J]. Applied and Environmental Microbiology, 2012, 78(18):6568-6575
[46] Wiatrowski H A, Ward P M, Barkay T. Novel reduction of mercury(Ⅱ) by mercury-sensitive dissimilatory metal reducing bacteria[J]. Environmental Science & Technology, 2006, 40(21):6690-6696
[47] Ben-Bassat D, Mayer A M. Light-induced hg volatilization and O2 evolution in chlorella and the effect of DCMU and methylamine[J]. Physiologia Plantarum, 1978, 42(1):33-38
[48] Devars S, Avilés C, Cervantes C, et al. Mercury uptake and removal by Euglena gracilis[J]. Archives of Microbiology, 2000, 174(3):175-180
[49] Nriagu J O. Mechanistic steps in the photoreduction of mercury in natural waters[J]. Science of the Total Environment, 1994, 154(1):1-8
[50] Zhang H, Lindberg S E. Sunlight and iron(Ⅲ)-induced photochemical production of dissolved gaseous mercury in freshwater[J]. Environmental Science & Technology, 2001, 35(5):928-935
[51] Skogerboe R K, Wilson S A. Reduction of ionic species by fulvic acid[J]. Analytical Chemistry, 1981, 53(2):228-232
[52] Allard B and Arsenie I. Abiotic reduction of mercury by humic substances in aquatic systeman important process for the mercury cycle[J]. Water, Air, & Soil Pollution, 1991, 56(1):457-464
[53] Wiatrowski H A, Das S, Kukkadapu R, et al. Reduction of Hg(Ⅱ) to Hg(0) by magnetite[J]. Environmental Science & Technology, 2009, 43(14):5307-5313
[54] Wood J M, Kennedy F S, Rosen C G. Synthesis of methyl-mercury compounds by extracts of a methanogenic bacterium[J]. Nature, 1968, 220(5163):173-174
[55] Jensen S, Jernelov A. Biological methylation of mercury in aquatic organisms[J]. Nature, 1969, 223(5207):753-754
[56] Yamada M, Tonomura K. Formation of methylmercury compounds from inorganic mercury by clostridium cochlearium[J]. Journal of Fermentation technology, 1972, 50:159-166
[57] Wood J M. Biological cycles for toxic elements in the environment[J]. Science, 1974, 183(4129):1049-1052
[58] Compeau G C, Bartha R. Effect of salinity on mercury-methylating activity of sulfate-reducing bacteria in estuarine sediments[J]. Applied and Environmental Microbiology, 1987, 53(2):261-265
[59] Kuhl M, Jorgensen B B. Microsensor measurements of sulfate reduction and sulfide oxidation in compact microbial communities of aerobic biofilms[J]. Applied and Environmental Microbiology, 1992, 58(4):1164-1174
[60] Langer C S, Fitzgerald W F, Visscher P T, et al. Biogeochemical cycling of methylmercury at barn island salt marsh, stonington, Ct, USA[J]. Wetlands Ecology and Management, 2001, 9(4):295-310
[61] Branfireun B A, Roulet N T, Kelly C A, et al. In situ sulphate stimulation of mercury methylation in a boreal peatland: Toward a link between acid rain and methylmercury contamination in remote environments[J]. Global Biogeochemical Cycles, 1999, 13(3):743-750
[62] Gilmour C C, Elias D A, Kucken A M, et al. Sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 as a model for understanding bacterial mercury methylation[J]. Applied and Environmental Microbiology, 2011, 77(12):3938-3951
[63] Fröhlich J, Sass H, Babenzien H D, et al. Isolation of Desulfovibrio intestinalis sp. nov. from the hindgut of the lower termite Mastotermes darwiniensis[J]. Canadian Journal of Microbiology, 1999, 45(2):145-152
[64] Moore B. A new screen test and selective medium for the rapid detection of epidemic strains of staph. aureus[J]. The Lancet, 1960, 276(7148):453-458
[65] Richmond M H, John M. Co-transduction by a staphylococcal phage of the genes responsible for penicillinase synthesis and resistance to mercury salts[J]. Nature, 1964, 202(4939):1360-1361
[66] Tonomura K, Kanzaki F. The reductive decomposition of organic mercurials by cell-free extract of a mercury-resistant pseudomonad[J]. Biochimica et Biophysica Acta (BBA)-General Subjects, 1969, 184(1):227-229
[67] Schottel J, Mandal A, Clark D A N, et al. Volatilisation of mercury and organomercurials determined by inducible r-factor systems in enteric bacteria[J]. Nature, 1974, 251(5473):335-337
[68] Clark D L, Weiss A A, Silver S. Mercury and organomercurial resistances determined by plasmids in pseudomonas[J]. Journal of bacteriology, 1977, 132(1):186-196
[69] Bruce K D, Hiorns W D, Hobman J L, et al. Amplification of DNA from native populations of soil bacteria by using the polymerase chain reaction[J]. Applied and Environmental Microbiology, 1992, 58(10):3413-3416
[70] Osborn A M, Bruce K D, Strike P, et al. Distribution, diversity and evolution of the bacterial mercury resistance (Mer) operon[J]. FEMS Microbiology Reviews, 1997, 19(4):239-262
[71] Yurieva O, Kholodii G, Minakhin L, et al. Intercontinental spread of promiscuous mercury-resistance transposons in environmental bacteria[J]. Molecular Microbiology, 1997, 24(2):321-329
[72] Chen B, Wang T, Yin Y, et al. Methylation of inorganic mercury by methylcobalamin in aquatic systems[J]. Applied Organometallic Chemistry, 2007, 21(6):462-467
[73] Chatziefthimiou A, Crespo-Medina M, Wang Y, et al. The isolation and initial characterization of mercury resistant chemolithotrophic thermophilic bacteria from mercury rich geothermal springs[J]. Extremophiles, 2007, 11(3):469-479
[74] Ramond J B, Berthe T, Lafite R, et al. Relationships between hydrosedimentary processes and occurrence of mercury-resistant bacteria (mera) in estuary mudflats (Seine, France)[J]. Marine Pollution Bulletin, 2008, 56(6):1168-1176
[75] Soge O O, Beck N K, White T M, et al. A Novel transposon, Tn6009, composed of a tn916 element linked with a staphylococcus aureus mer operon[J]. Journal of Antimicrobial Chemotherapy, 2008, 62(4):674-680
[76] Ullrich S M, Tanton T W, Abdrashitova S A. Mercury in the aquatic environment: a review of factors affecting methylation[J]. Critical Reviews in Environmental Science and Technology, 2001, 31(3):241-293
[77] Avramescu M L, Yumvihoze E, Hintelmann H, et al. Biogeochemical factors influencing net mercury methylation in contaminated freshwater sediments from the St. Lawrence River in Cornwall, Ontario, Canada[J]. Science of the Total Environment, 2011, 409(5):968-978
[78] Neujahr H Y, Bertilsson L. Methylation of mercury compounds by methylcobalamin[J]. Biochemistry, 1971, 10(14):2805-2808
[79] Rudolf K. Thauer E S, Hamilton W A, Barton L L. Energy metabolism and phylogenetic diversity of sulphate-reducing bacteria// w.a.h. l.l. barton, sulphate-reducing bacteria: environmental and engineered systems[M]. Cambridge:Cambridge University Press, 2007: 1
[80] Konhauser K. Introduction to geomicrobiology[M]. Oxford U. K: Blackwell publishing, 2007:74
[81] Berman M, Chase T Jr, Bartha R. Carbon flow in mercury biomethylation by Desulfovibrio desulfuricans[J]. Applied and Environmental Microbiology, 1990, 56(1):298-300
[82] Choi S C, Chase T Jr, Bartha R. Metabolic pathways leading to mercury methylation in Desulfovibrio desulfuricans Ls[J]. Applied and Environmental Microbiology, 1994b, 60(11):4072-4077
[83] Choi S C, Bartha R. Cobalamin-mediated mercury methylation by Desulfovibrio desulfuricans Ls[J]. Applied and Environmental Microbiology, 1993, 59(1):290-295
[84] Choi S C, Chase T Jr, Bartha R. Enzymatic catalysis of mercury methylation by desulfovibrio desulfuricans Ls[J]. Applied and Environmental Microbiology, 1994, 60(4):1342-1346
[85] Drott A. Chemical speciation and transformation of mercury in contaminated sediments//Faculty of Forest Sciences Department of Forest Ecology and Management Umeå[M]. Uppsala: Swedish University of Agricultural Sciences, Doctoral thesis, 2009: 22
[86] Ekstrom E B, Morel F M M, Benoit J M. Mercury methylation independent of the acetyl-coenzyme a pathway in sulfate-reducing bacteria[J]. Applied and Environmental Microbiology, 2003, 69(9):5414-5422
[87] Ekstrom E B, Morel F M. Mercury methylation by sulfate-reducing bacteria independent of vitamin B12[J]. Materials and Geoenvironment, 2004, 51:968-970
[88] Benoit J M, Mason R P, Gilmour C C, et al. Constants for mercury binding by dissolved organic matter isolates from the florida everglades[J]. Geochimica et Cosmochimica Acta, 2001, 65(24):4445-4451
[89] Ekstrom E B, Morel F M M. Cobalt limitation of growth and mercury methylation in sulfate-reducing bacteria[J]. Environmental Science & Technology, 2008, 42(1):93-99
[90] Graham A M, Bullock A L, Maizel A C, et al. A detailed assessment of the kinetics of Hg-cell association, Hg methylation, and MeHg degradation in several desulfovibrio species[J]. Applied and Environmental Microbiology, 2012
[91] Schasfer J, Rocks S, Zheng W, et al. Active transport, substrate specificity, and methylation of Hg(Ⅱ) in anaerobic bacteria[J]. Proceedings of the National Academy of Sciences, 2011, 108(21):8714-8719
[92] Brown S D, Gilmour C C, Kucken A M, et al. Genome sequence of the mercury-methylating strain Desulfovibrio desulfuricans ND132[J]. Journal of bacteriology, 2011, 193(8):2078-2079
[93] Nascimento A M, Chartone-Souza E. Operon mer: Bacterial resistance to mercury and potential for bioremediation of contaminated environments[J]. Genetics and molecular research : GMR, 2003, 2(1):92-101
[94] Susana S, Dias T, Ramalhosa E. Mercury methylation versus demethylation: main processes involved//Clampet A P. Methylmercury: Formation, sources and health effects2011[M]. New York: Nova Science Publishers: 123-166
[95] Merritt K A, Amirbahman A. Mercury methylation dynamics in estuarine and coastal marine environmentsA Critical Review[J]. Earth-Science Reviews, 2009, 96(1/2):54-66
[96] Bridou R, Monperrus M, Gonzalez P R, et al. Simultaneous determination of mercury methylation and demethylation capacities of various sulfate-reducing bacteria using species-specific isotopic tracers[J]. Environmental Toxicology and Chemistry, 2011, 30(2):337-344
[97] Oremland R S, Miller L G, Dowdle P, et al. Methylmercury oxidative degradation potentials in contaminated and pristine sediments of the carson river, nevada[J]. Applied and Environmental Microbiology, 1995, 61(7):2745-53
[98] Hines M E, Faganeli J, Adatto I, et al. Microbial mercury transformations in marine, estuarine and freshwater sediment downstream of the Idrija mercury mine, Slovenia[J]. Applied Geochemistry, 2006, 21(11):1924-1939
[99] Hines M E, Horvat M, Faganeli J, et al. Mercury biogeochemistry in the Idrija river, slovenia, from above the mine into the gulf of trieste[J]. Environmental Research, 2000, 83(2):129-139
[100] Hines M E, Poitras E N, Covelli S, et al. Mercury methylation and demethylation in Hg-contaminated lagoon sediments (Marano and Grado lagoon, italy)[J]. Estuarine Coastal and Shelf Science, 2012, 113:85-95
[101] Warner K A, Roden E E, Bonzongo J C. Microbial mercury transformation in anoxic freshwater sediments under iron-reducing and other electron-accepting conditions[J]. Environmental Science & Technology, 2003, 37(10):2159-2165
[102] Inoue C, Sugawara K, Kusano T. The merR regulatory gene in thiobacillus ferrooxidans is spaced apart from the Mer structural genes[J]. Molecular Microbiology, 1991, 5(11):2707-2718
[103] Liebert C A, Wireman J, Smith T, et al. Phylogeny of mercury resistance (Mer) operons of gram-negative bacteria isolated from the fecal flora of primates[J]. Applied and Environmental Microbiology, 1997, 63(3):1066-1076
[104] Ng S, Davis B, Palombo E, et al. A Tn5051-like Mer-containing transposon identified in a heavy metal tolerant strain Achromobacter sp. Ao22[J]. BMC Research Notes, 2009, 2(1):38
[105] Zawadzka A, Crawford R, Paszczynski A. Pyridine-2,6-Bis(thiocarboxylic acid) produced by Pseudomonas stutzeri KC reduces chromium(VI) and precipitates mercury, cadmium, lead and arsenic[J]. BioMetals, 2007, 20(2):145-158
[106] Petrovski S, Blackmore D W, Jackson K L, et al. Mercury(Ⅱ)-resistance transposons Tn502 and Tn512, from Pseudomonas clinical strains, are structurally different members of the Tn5053 Family[J]. Plasmid, 2011, 65(1):58-64
[107] Schaefer J K, Letowski J, Barkay T. Mer -mediated resistance and volatilization of Hg(Ⅱ) under anaerobic conditions[J]. Geomicrobiology Journal, 2002, 19(1):87-102
[108] 仇广乐, 冯新斌, 王少锋. 贵州汞矿矿区不同位置土壤中总汞和甲基汞污染特征的研究[J]. 环境科学, 2006, 27(3):550-554
[109] Rothenberg S E, Feng X. Mercury cycling in a flooded rice paddy[J]. Journal of Geophysical Research, 2012, 117(G3):G03003