胡秀虹, 汤承浩, 吴林冬, 等. Zr掺杂TiO2介孔材料光催化降解头孢氨苄[J]. 化工环保, 2017, 37(4):460-465.
HU X H, TANG C H, WU L D, et al. Photocatalytic degradation of cefalexin by Zr-doped TiO2 mesoporous material[J].Environmental Protection of Chemical Industry, 2017, 37(4):460-465(in Chinese).
|
GASHTASBI F, YENGEJEH R J, BABAEI A A. Photocatalysis assisted by activated-carbon-impregnated magnetite composite for removal of cephalexin from aqueous solution[J]. Korean Journal of Chemical Engineering, 2018, 35(8):1726-1734.
|
WANG Y, WEI H, LIU P, et al. Effect of structural defects on activated carbon catalysts in catalytic wet peroxide oxidation of m-cresol[J]. Catalysis Today, 2015, 258:120-131.
|
GU L, ZHU N, GUO H, et al. Adsorption and Fenton-like degradation of naphthalene dye intermediate on sewage sludge derived porous carbon[J]. Journal of Hazardous Materials, 2013, 246-247:145-153.
|
赵颖,王亚旻,卫皇曌,等. 响应面法优化污泥炭催化湿式过氧化氢氧化降解间甲酚模拟废水[J]. 环境化学, 2016, 35(3):516-525.
ZHAO Y, WANG Y M, WEI H Z, et al. Optimization of m-cresol degradation by sludge-derived carbon in catalytic wet peroxide oxiddation using response surface methodology[J]. Environmental Chemistry, 2016, 35(3):516-525(in Chinese).
|
TU Y, XIONG Y, TIAN S, et al. Catalytic wet air oxidation of 2-chlorophenol over sewage sludge-derived carbon-based catalysts[J]. Journal of Hazardous Materials, 2014, 276:88-96.
|
WEN G, PAN Z H, MA J, et al. Reuse of sewage sludge as a catalyst in ozonation——efficiency for the removal of oxalic acid and the control of bromate formation[J]. Journal of Hazardous Materials, 2012, 239-240:381-388.
|
MA L, JIN C, AN L, et al. Preliminary investigation of the degradation mechanism of o, m and p-cresol using sludge-derived carbon nanosheets by catalytic oxidation based on quantum chemistry[J]. Catalysis Communications, 2019, 120:59-65.
|
陶辉,李文君,陈卫,等. 臭氧氧化降解水中头孢氨苄的效能与机理研究[J]. 给水排水, 2014, 40(11):115-119.
TAO H, LI W J, CHEN W, et al. Degradation efficiency and mechanism of ozone on cephalexin in water[J]. Water & Wastewater Engineering, 2014, 40(11):115-119(in Chinese).
|
YU Y, WEI H, YU L, et al. Catalytic wet air oxidation of m-cresol over a surface-modified sewage sludge-derived carbonaceous catalyst[J]. Catalysis Science & Technology, 2016, 6:1085-1093.
|
YU Y, WEI H, YU L, et al. Surface modification of sewage sludge derived carbonaceous catalyst for m-cresol catalytic wet peroxide oxidation and degradation mechanism[J]. RSC Advances, 2015, 5(52):41867-41876.
|
KO Y, KIM D, KWON C H, et al. Hydrophobic and hydrophilic nanosheet catalysts with high catalytic activity and recycling stability through control of the outermost ligand[J]. Applied Surface Science, 2018, 436:791-802.
|
SANTORO C, KODALI M, KABIR S, et al. Three-dimensional graphene nanosheets as cathode catalysts in standard and supercapacitive microbial fuel cell[J]. Journal of Power Sources, 2017, 356:371-380.
|
ZHANG N, LI B, LI S, et al. Graphene-supported mesoporous titania nanosheets for efficient photodegradation[J]. Journal of Colloid and Interface Science, 2017, 505:711-718.
|
QUINTANILLA A, CASAS J A, RODRíGUEZ J J. Catalytic wet air oxidation of phenol with modified activated carbons and Fe/activated carbon catalysts[J]. Applied Catalysis B:Environmental, 2007, 76(1):135-145.
|
ZHOU J H, SUI Z J, ZHU J, et al. Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR[J]. Carbon, 2007, 45(4):785-796.
|
FIGUEIREDO J L, PEREIRA M F R, FREITAS M M A, et al. Characterization of active sites on carbon catalysts[J]. Industrial & Engineering Chemistry Research, 2007, 46(12):4110-4115.
|
ZHOU J H, SUI Z J, ZHU J, et al. Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR[J]. Carbon, 2007, 45(4):785-796.
|
MORENO-CASTILLA C, LOPEZ-RAMON M V, CARRASCO-MARIN F. Changes in surface chemistry of activated carbons by wet oxidation[J]. Carbon, 2000, 38(14):1995-2001.
|
YUE Z R, JIANG W, WANG L, et al. Surface characterization of electrochemically oxidized carbon fibers[J]. Carbon, 1999, 37(11):1785-1796.
|
TERZYK A P. The influence of activated carbon surface chemical composition on the adsorption of acetaminophen (paracetamol) in vitro:Part Ⅱ. TG, FTIR, and XPS analysis of carbons and the temperature dependence of adsorption kinetics at the neutral pH[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2001, 177(1):23-45.
|
李先如, 王维, 陈静怡, 等. 催化湿式氧化处理头孢氨苄废水[J]. 工业催化,2018, 26(1):74-80.
LI XR, CHEN W, CHEN J Y, et al. Catalytic wet air oxidation of waste water containing cephalexin[J]. Industrial Catalysis, 2018, 26(1):74-80(in Chinese).
|
BANSAL P, VERMA A. Pilot-scale single-step reactor combining photocatalysis and photo-Fenton aiming at faster removal of Cephalexin[J]. Journal of Cleaner Production, 2018, 195:540-551.
|
PEREA L A, PALMA-GOYES R E, VAZQUEZ-ARENAS J, et al. Efficient cephalexin degradation using active chlorine produced on ruthenium and iridium oxide anodes:Role of bath composition, analysis of degradation pathways and degradation extent[J]. Science of the Total Environment, 2018, 648:377-387.
|