Adeel M, Song X M, Wang Y Y, et al. Environmental impact of estrogens on human, animal and plant life:A critical review[J]. Environment International, 2017, 99:107-119
Arnon S, Dahan O, Elhanany S, et al. Transport of testosterone and estrogen from dairy-farm waste lagoons to groundwater[J]. Environmental Science & Technology, 2008, 42(15):5521-5526
Vulliet E, Wiest L, Baudot R, et al. Multi-residue analysis of steroids at sub-ng/L levels in surface and ground-waters using liquid chromatography coupled to tandem mass spectrometry[J]. Journal of Chromatography A, 2008, 1210(1):84-91
Finlay-Moore O, Hartel P G, Cabrera M L. 17β-estradiol and testosterone in soil and runoff from grasslands amended with broiler litter[J]. Journal of Environmental Quality, 2000, 29(5):1604-1611
Liu Z H, Kanjo Y, Mizutani S. Urinary excretion rates of natural estrogens and androgens from humans, and their occurrence and fate in the environment:A review[J]. Science of the Total Environment, 2009, 407(18):4975-4985
Liu X W, Shi J H, Zhang H, et al. Estimating estrogen release and load from humans and livestock in Shanghai, China[J]. Journal of Environmental Quality, 2014, 43(2):568-577
Tomkins P, Saaristo M, Bertram M G, et al. An endocrine-disrupting agricultural contaminant impacts sequential female mate choice in fish[J]. Environmental Pollution, 2018, 237:103-110
Morthorst J E, Holbech H, Bjerregaard P. Trenbolone causes irreversible masculinization of zebrafish at environmentally relevant concentrations[J]. Aquatic Toxicology, 2010, 98(4):336-343
Barbosa I R, Nogueira A J A, Soares A M V M. Acute and chronic effects of testosterone and 4-hydroxyandrostenedione to the crustacean Daphnia magna[J]. Ecotoxicology and Environmental Safety, 2008, 71(3):757-764
Nicholson J K, Connelly J, Lindon J C, et al. Metabonomics:A platform for studying drug toxicity and gene function[J]. Nature Reviews Drug Discovery, 2002, 1(2):153-161
李英帅. 应用代谢组学技术进行中医药研究探讨[J]. 安徽中医学院学报, 2008, 27(6):1-5
耿柠波, 张海军, 王菲迪, 等. 代谢组学技术在环境毒理学研究中的应用[J]. 生态毒理学报, 2016, 11(3):26-35 Geng N B, Zhang H J, Wang F D, et al. A review on the application of metabonomic approaches in environmental toxicology[J]. Asian Journal of Ecotoxicology, 2016, 11(3):26-35(in Chinese)
Kaletta T, Hengartner M O. Finding function in novel targets:C. elegans as a model organism[J]. Nature Reviews Drug Discovery, 2006, 5(5):387-399
Salzer L, Witting M. Quo vadis Caenorhabditis elegans metabolomics-A review of current methods and applications to explore metabolism in the nematode[J]. Metabolites, 2021, 11(5):284
Jenkins M B, Endale D M, Schomberg H H, et al. 17beta-estradiol and testosterone in drainage and runoff from poultry litter applications to tilled and no-till crop land under irrigation[J]. Journal of Environmental Management, 2009, 90(8):2659-2664
Hänel V, Pendleton C, Witting M. The sphingolipidome of the model organism Caenorhabditis elegans[J]. Chemistry and Physics of Lipids, 2019, 222:15-22
Gao H J, Qi G F, Yin R, et al. Bacillus cereus strain S2 shows high nematicidal activity against Meloidogyne incognita by producing sphingosine[J]. Scientific Reports, 2016, 6:28756
Green C D, Maceyka M, Cowart L A, et al. Sphingolipids in metabolic disease:The good, the bad, and the unknown[J]. Cell Metabolism, 2021, 33(7):1293-1306
Lee S, Kang H G, Jeong P S, et al. Heat stress impairs oocyte maturation through ceramide-mediated apoptosis in pigs[J]. The Science of the Total Environment, 2021, 755(Pt 1):144144
Lazúrová Z, Mitro P. Adenosine-A mediator with multisystemic effects (or a hormone?)[J]. Vnitrni Lekarstvi, 2017, 63(9):617-623
Witting M, Schmitt-Kopplin P. The Caenorhabditis elegans lipidome:A primer for lipid analysis in Caenorhabditis elegans[J]. Archives of Biochemistry and Biophysics, 2016, 589:27-37
Böttinger L, Horvath S E, Kleinschroth T, et al. Phosphatidylethanolamine and cardiolipin differentially affect the stability of mitochondrial respiratory chain super complexes[J]. Journal of Molecular Biology, 2012, 423(5):677-686
Birner R, Bürgermeister M, Schneiter R, et al. Roles of phosphatidylethanolamine and of its several biosynthetic pathways in Saccharomyces cerevisiae[J]. Molecular Biology of the Cell, 2001, 12(4):997-1007
Cappello T, Fernandes D, Maisano M, et al. Sex steroids and metabolic responses in mussels Mytilus galloprovincialis exposed to drospirenone[J]. Ecotoxicology and Environmental Safety, 2017, 143:166-172
Mukherjee I, Ghosh M, Meinecke M. MICOS and the mitochondrial inner membrane morphology-When things get out of shape[J]. FEBS Letters, 2021, 595(8):1159-1183
Sun Y, Sun X P, Zhao L M, et al. DJ-1 deficiency causes metabolic abnormality in ornidazole-induced asthenozoospermia[J]. Reproduction, 2020, 160(6):931-941
Bauer M A, Carmona-Gutiérrez D, Ruckenstuhl C, et al. Spermidine promotes mating and fertilization efficiency in model organisms[J]. Cell Cycle, 2013, 12(2):346-352
Rong K, Zheng H, Yang R B, et al. Melatonin and its metabolite N(1)-acetyl-N(1)-formyl-5-methoxykynuramine improve learning and memory impairment related to Alzheimer's Disease in rats[J]. Journal of Biochemical and Molecular Toxicology, 2020, 34(2):e22430
Tan D X, Manchester L C, Burkhardt S, et al. N1-acetyl-N2-formyl-5-methoxykynuramine, a biogenic amine and melatonin metabolite, functions as a potent antioxidant[J]. FASEB Journal:Official Publication of the Federation of American Societies for Experimental Biology, 2001, 15(12):2294-2296
Yang M H, Guan S Y, Tao J L, et al. Melatonin promotes male reproductive performance and increases testosterone synthesis in mammalian Leydig cells[J]. Biology of Reproduction, 2021, 104(6):1322-1336
Ofosu J, Qazi I H, Fang Y, et al. Use of melatonin in sperm cryopreservation of farm animals:A brief review[J]. Animal Reproduction Science, 2021, 233:106850
ChaithraShree A R, Ingole S D, Dighe V D, et al. Effect of melatonin on bovine sperm characteristics and ultrastructure changes following cryopreservation[J]. Veterinary Medicine and Science, 2020, 6(2):177-186
Zhao W R, Ding H R, Hu S, et al. An efficient biocatalytic synthesis of imidazole-4-acetic acid[J]. Biotechnology Letters, 2018, 40(7):1049-1055
Barros C D S, Livramento J B, Mouro M G, et al. L-arginine reduces nitro-oxidative stress in cultured cells with mitochondrial deficiency[J]. Nutrients, 2021, 13(2):534
Kharbanda K K, Rogers D D, Mailliard M E, et al. Role of elevated S-adenosylhomocysteine in rat hepatocyte apoptosis:Protection by betaine[J]. Biochemical Pharmacology, 2005, 70(12):1883-1890
Arumugam M K, Chava S, Rasineni K, et al. Elevated S-adenosylhomocysteine induces adipocyte dysfunction to promote alcohol-associated liver steatosis[J]. Scientific Reports, 2021, 11(1):14693
Tian R, Yang C, Chai S M, et al. Evolutionary impacts of purine metabolism genes on mammalian oxidative stress adaptation[J]. Zoological Research, 2022, 43(2):241-254
Fang Z J, Pyne S, Pyne N J. Ceramide and sphingosine 1-phosphate in adipose dysfunction[J]. Progress in Lipid Research, 2019, 74:145-159
Rashki Ghaleno L, Alizadeh A, Drevet J R, et al. Oxidation of sperm DNA and male infertility[J]. Antioxidants, 2021, 10(1):97
Emer E, Yildiz O, Seyrek M, et al. High-dose testosterone and dehydroepiandrosterone induce cardiotoxicity in rats:Assessment of echocardiographic, morphologic, and oxidative stress parameters[J]. Human & Experimental Toxicology, 2016, 35(5):562-572
Ramezani Tehrani F, Noroozzadeh M, Zahediasl S, et al. Prenatal testosterone exposure worsen the reproductive performance of male rat at adulthood[J]. PLoS One, 2013, 8(8):e71705
Barati E, Nikzad H, Karimian M. Oxidative stress and male infertility:Current knowledge of pathophysiology and role of antioxidant therapy in disease management[J]. Cellular and Molecular Life Sciences, 2020, 77(1):93-113
Leonardi R, Zhang Y M, Rock C O, et al. Coenzyme A:Back in action[J]. Progress in Lipid Research, 2005, 44(2-3):125-153
Tahiliani A G, Beinlich C J. Pantothenic acid in health and disease[J]. Vitamins and Hormones, 1991, 46:165-228
Ma T, Liu T H, Xie P F, et al. UPLC-MS-based urine nontargeted metabolic profiling identifies dysregulation of pantothenate and CoA biosynthesis pathway in diabetic kidney disease[J]. Life Sciences, 2020, 258:118160
Yin L J, Luo M, Wang R, et al. Mitochondria in sex hormone-induced disorder of energy metabolism in males and females[J]. Frontiers in Endocrinology, 2021, 12:749451
Sokolova I M, Frederich M, Bagwe R, et al. Energy homeostasis as an integrative tool for assessing limits of environmental stress tolerance in aquatic invertebrates[J]. Marine Environmental Research, 2012, 79:1-15