Sizochenko N, Syzochenko M, Fjodorova N, et al. Evaluating genotoxicity of metal oxide nanoparticles:Application of advanced supervised and unsupervised machine learning techniques[J]. Ecotoxicology and Environmental Safety, 2019, 185:109733
Joint Research Centre. JRC QSAR model database-Guideline for authors and editors[R]. Brussel:Joint Research Centre, 2017
Organization for Economic Co-operation and Development(OECD). The report from the expert group on (quantitative) structure-activity relationships on the principles for the validation of (Q)SARs[R]. Paris:OECD, 2004
Minerali E, Foil D H, Zorn K M, et al. Evaluation of assay central machine learning models for rat acute oral toxicity prediction[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(42):16020-16027
中华人民共和国生态环境部. 新化学物质环境管理登记办法[S]. 北京:中华人民共和国生态环境部, 2020
中华人民共和国生态环境部. 中国现有化学物质名录[S]. 北京:中华人民共和国生态环境部, 2020
Bouhedjar K, Benfenati E, Nacereddine A K. Modelling quantitative structure activity-activity relationships (QSAARs):Auto-pass-pass, a new approach to fill data gaps in environmental risk assessment under the REACH regulation[J]. SAR and QSAR in Environmental Research, 2020, 31(10):785-801
中华人民共和国生态环境部. 新化学物质环境管理登记指南[S]. 北京:中华人民共和国生态环境部, 2020
Karcher W, Hansen B G, Leeuwen C V, et al. Predictions for existing chemicals-A multilateral QSAR project[J]. SAR and QSAR in Environmental Research, 1995, 3(3):217-221
United States Environmental Protection Agency (US EPA). Frank R. Lautenberg Chemical Safety for the 21st Century Act[S]. Washington DC:US EPA, 2016
United States Environmental Protection Agency (US EPA). Guidance on the development, evaluation, and application of environmental models[S]. Washington DC:US EPA, 2009
United States Environmental Protection Agency (US EPA). Best modeling practices-Model development[R]. Washington DC:US EPA, 2009
United States Environmental Protection Agency (US EPA). Best modeling practices-Model evaluation[R]. Washington DC:US EPA, 2009
United States Environmental Protection Agency (US EPA). Best modeling practices-Model application[R]. Washington DC:US EPA, 2009
United States Environmental Protection Agency (US EPA). Best modeling practices-The model life-cycle[R]. Washington DC:US EPA, 2009
Jaworska J S, Comber M, Auer C, et al. Summary of a workshop on regulatory acceptance of (Q)SARs for human health and environmental endpoints[J]. Environmental Health Perspectives, 2003, 111(10):1358-1360
Organization for Economic Co-operation and Development (OECD). Guidance document on the validation of (quantitative) structure-activity relationship models[R]. Paris:OECD, 2014
Zind H, Mondamert L, Remaury Q B, et al. Occurrence of carbamazepine, diclofenac, and their related metabolites and transformation products in a French aquatic environment and preliminary risk assessment[J]. Water Research, 2021, 196:117052
Joint Research Centre. JRC QSAR model database-Guideline and protocol template for reviewers[R]. Brussel:Joint Research Centre, 2017
于洋, 左平春, 张楠, 等. 计算毒理学在农药风险评估中的应用[J]. 农药科学与管理, 2017, 38(4):24-30 Yu Y, Zuo P C, Zhang N, et al. Application of computational toxicology in risk assessment of pesticide[J]. Pesticide Science and Administration, 2017, 38(4):24-30(in Chinese)
于洋, 郑永权, 张楠, 等. 蔬菜常用农药在地下水中残留风险评估[J]. 生态毒理学报, 2017, 12(4):183-192 Yu Y, Zheng Y Q, Zhang N, et al. Groundwater risk assessment of pesticides commonly used on vegetables[J]. Asian Journal of Ecotoxicology, 2017, 12(4):183-192(in Chinese)
左平春, 于洋, 张楠, 等. 农药环境风险评估中常用的计算毒理学模型软件[J]. 生态毒理学报, 2017, 12(4):98-109 Zuo P C, Yu Y, Zhang N, et al. Commonly-used model softwares of computational toxicology in pesticide environmental risk assessment[J]. Asian Journal of Ecotoxicology, 2017, 12(4):98-109(in Chinese)