李新. 拟除虫菊酯类杀虫剂研发及市场概况[J]. 农药, 2016, 55(9):625-630 Li X. The R & D and market profile of the pyrethroid insecticides [J]. Agrochemicals, 2016, 55(9):625-630(in Chinese)
陈媛, 赖鲸慧, 张梦梅, 等. 拟除虫菊酯类农药在农产品中的污染现状及减除技术研究进展[J]. 食品科学, 2022, 43(9):285-292 Chen Y, Lai J H, Zhang M M, et al. Status of pyrethroid pesticide pollution in agricultural products and technologies for its removal:A review [J]. Food Science, 2022, 43(9):285-292(in Chinese)
提清清, 聂兆广, 杨凡昌, 等. 拟除虫菊酯农药暴露途径及对人体健康的影响[J]. 环境科学与技术, 2017, 40(12):240-248 Ti Q Q, Nie Z G, Yang F C, et al. Study on exposure routes of pyrethroid insecticides and its effects on human health [J]. Environmental Science & Technology, 2017, 40(12):240-248(in Chinese)
Saillenfait A M, Ndiaye D, Sabaté J P. Pyrethroids:Exposure and health effects:An update [J]. International Journal of Hygiene and Environmental Health, 2015, 218(3):281-292
Tang W X, Wang D, Wang J Q, et al. Pyrethroid pesticide residues in the global environment:An overview [J]. Chemosphere, 2018, 191:990-1007
Yuan Y W, Chen C, Zheng C M, et al. Residue of chlorpyrifos and cypermethrin in vegetables and probabilistic exposure assessment for consumers in Zhejiang Province, China [J]. Food Control, 2014, 36(1):63-68
Jin Y X, Liu J W, Wang L G, et al. Permethrin exposure during puberty has the potential to enantioselectively induce reproductive toxicity in mice [J]. Environment International, 2012, 42:144-151
Righi D A, Xavier F G, Palermo-Neto J. Cyhalothrin increased c-fos immunoreactivity at the paraventricular nucleus of the hypothalamus in rats, and suppressed macrophage activity in an adrenal-dependent fashion [J]. Environmental Toxicology and Pharmacology, 2009, 27(1):96-102
Pitzer E M, Williams M T, Vorhees C V. Effects of pyrethroids on brain development and behavior:Deltamethrin [J]. Neurotoxicology and Teratology, 2021, 87:106983
Hu Y, Zhang Y, Vinturache A, et al. Effects of environmental pyrethroids exposure on semen quality in reproductive-age men in Shanghai, China [J]. Chemosphere, 2020, 245:125580
Zhang X, Zhang T T, Ren X H, et al. Pyrethroids toxicity to male reproductive system and offspring as a function of oxidative stress induction:Rodent studies [J]. Frontiers in Endocrinology, 2021, 12:656106
Zhang J Y, Zhang J, Liu R, et al. Endocrine-disrupting effects of pesticides through interference with human glucocorticoid receptor [J]. Environmental Science & Technology, 2016, 50(1):435-443
马兴好, 宁萑, 王华, 等. 哺乳期氯氰菊酯暴露对断乳期雄性小鼠生殖内分泌的影响[J]. 环境与健康杂志, 2009, 26(6):496-498 , 565 Ma X H, Ning H, Wang H, et al. Effects of maternal cypermethrin exposure during lactation on testicles and steroidogenesis of weaning offspring [J]. Journal of Environment and Health, 2009, 26(6):496-498, 565(in Chinese)
Irani D, Borle S, Balasinor N, et al. Maternal cypermethrin exposure during perinatal period dysregulates gonadal steroidogenesis, gametogenesis and sperm epigenome in F1 rat offspring [J]. Reproductive Toxicology, 2022, 111:106-119
Gan H Y, Zhu B Q, Zhou F M, et al. Perinatal exposure to low doses of cypermethrin induce the puberty-related hormones and decrease the time to puberty in the female offspring [J]. Environmental Science and Pollution Research International, 2023, 30(2):2665-2675
柴晓静, 王振全, 邓晓辉, 等. Ⅱ-型拟除虫菊酯对雄性小鼠中枢神经系统氧化应激的影响[J]. 现代预防医学, 2007, 34(16):3017-3019 Chai X J, Wang Z Q, Deng X H, et al. Effects of Ⅱ-pyrethrins on oxidative stress of central nervous system of mice [J]. Modern Preventive Medicine, 2007, 34(16):3017-3019(in Chinese)
周礼华, 高扬丽, 郭策, 等. 氯氰菊酯对小鼠大脑及小脑组织的氧化损伤[J]. 齐齐哈尔医学院学报, 2014, 35(14):2032-2033 Zhou L H, Gao Y L, Guo C, et al. Effects of cypermethrin on oxidative damage of mice cerebral cortex and cerebellar cortex [J]. Journal of Qiqihar University of Medicine, 2014, 35(14):2032-2033(in Chinese)
Ye X Q, Li F X, Zhang J Y, et al. Pyrethroid insecticide cypermethrin accelerates pubertal onset in male mice via disrupting hypothalamic-pituitary-gonadal axis [J]. Environmental Science & Technology, 2017, 51(17):10212-10221
Yilmaz B, Terekeci H, Sandal S, et al. Endocrine disrupting chemicals:Exposure, effects on human health, mechanism of action, models for testing and strategies for prevention [J]. Reviews in Endocrine & Metabolic Disorders, 2020, 21(1):127-147
叶小青. 拟除虫菊酯杀虫剂暴露对青春期性成熟的影响及机制[D]. 杭州:浙江大学, 2018:43-46 Ye X Q. The effects and mechanism of pyrethroids exposure on pubertal development [D]. Hangzhou:Zhejiang University, 2018:43 -46(in Chinese)
Singh D, Bhagat S, Raijiwala P, et al. Perinatal exposure of pregnant rats to cypermethrin delays testicular descent, impairs fertility in F1 male progeny leading to developmental defects in F2 generation [J]. Chemosphere, 2017, 185:376-385
Ma T, Zhou Y, Xia Y H, et al. Environmentally relevant perinatal exposure to DBP disturbs testicular development and puberty onset in male mice [J]. Toxicology, 2021, 459:152860
Mylchreest E, Sar M, Cattley R C, et al. Disruption of androgen-regulated male reproductive development by di(n-butyl) phthalate during late gestation in rats is different from flutamide [J]. Toxicology and Applied Pharmacology, 1999, 156(2):81-95
Moody S, Goh H, Bielanowicz A, et al. Prepubertal mouse testis growth and maturation and androgen production are acutely sensitive to di-n-butyl phthalate [J]. Endocrinology, 2013, 154(9):3460-3475
Ye X Q, Liu J. Effects of pyrethroid insecticides on hypothalamic-pituitary-gonadal axis:A reproductive health perspective [J]. Environmental Pollution, 2019, 245:590-599
李素环, 汪永红, 田占庄, 等. Kisspeptin/GPR54信号通路促使性早熟形成的作用观察[J]. 中国病理生理杂志, 2015, 31(8):1345-1351 Li S H, Wang Y H, Tian Z Z, et al. Role of kisspeptin/GPR54 signaling pathways in prompting formation of precocious puberty [J]. Chinese Journal of Pathophysiology, 2015, 31(8):1345-1351(in Chinese)
Shafer T J, Meyer D A, Crofton K M. Developmental neurotoxicity of pyrethroid insecticides:Critical review and future research needs [J]. Environmental Health Perspectives, 2005, 113(2):123-136
Chen H Y, Xiao J G, Hu G, et al. Estrogenicity of organophosphorus and pyrethroid pesticides [J]. Journal of Toxicology and Environmental Health Part A, 2002, 65(19):1419-1435
Taylor J S, Thomson B M, Lang C N, et al. Estrogenic pyrethroid pesticides regulate expression of estrogen receptor transcripts in mouse Sertoli cells differently from 17beta-estradiol [J]. Journal of Toxicology and Environmental Health Part A, 2010, 73(16):1075-1089
Tyler C R, Beresford N, van der Woning M, et al. Metabolism and environmental degradation of pyrethroid insecticides produce compounds with endocrine activities [J]. Environmental Toxicology and Chemistry, 2000, 19(4):801-809
Wielogórska E, Elliott C T, Danaher M, et al. Endocrine disruptor activity of multiple environmental food chain contaminants [J]. Toxicology in Vitro:An International Journal Published in Association with BIBRA, 2015, 29(1):211-220
袁博, 柏金秀, 谢雪兰, 等. 中枢性性早熟基因诊断最新研究进展[J]. 中国性科学, 2021, 30(6):134-137 Yuan B, Bai J X, Xie X L, et al. Advances in the gene diagnosis of central precocious puberty [J]. Chinese Journal of Human Sexuality, 2021, 30(6):134-137(in Chinese)
Parent A S, Franssen D, Fudvoye J, et al. Developmental variations in environmental influences including endocrine disruptors on pubertal timing and neuroendocrine control:Revision of human observations and mechanistic insight from rodents [J]. Frontiers in Neuroendocrinology, 2015, 38:12-36
马慧慧. 氯氰菊酯对小鼠垂体LβT2细胞分泌促性腺激素干扰作用的机制研究[D]. 杭州:浙江大学, 2014:1 Ma H H. Endocrine-disrupting effects of cypermethrin on synthesis of gonadotropin hormones in mouse pituitary cells [D]. Hangzhou:Zhejiang University, 2014:1(in Chinese)
MacNicol A M, Odle A K, Childs G V. ELAVL1 elevates insights:The ups and downs of regulated mRNA translation in the control of gonadotropin release [J]. Endocrinology, 2019, 160(10):2466-2468
Odle A K, Beneš H, Melgar Castillo A, et al. Association of GnRHR mRNA with the stem cell determinant Musashi:A mechanism for leptin-mediated modulation of GnRHR expression [J]. Endocrinology, 2018, 159(2):883-894
Wang H, Wang S F, Ning H, et al. Maternal cypermethrin exposure during lactation impairs testicular development and spermatogenesis in male mouse offspring [J]. Environmental Toxicology, 2011, 26(4):382-394
Huang C B, Li X D. Maternal cypermethrin exposure during the perinatal period impairs testicular development in C57BL male offspring [J]. PLoS One, 2014, 9(5):e96781
Götz V, Qiao S, Beck A, et al. Transient receptor potential (TRP) channel function in the reproductive axis [J]. Cell Calcium, 2017, 67:138-147
Geraci F, Giudice G. Mechanisms of Ca2+ liberation at fertilization [J]. Biochemical and Biophysical Research Communications, 2005, 335(2):265-269
Wang H X, Zhang R, Li Z, et al. Cypermethrin induces Sertoli cell apoptosis through mitochondrial pathway associated with calcium [J]. Toxicology Research, 2021, 10(4):742-750
Li F X, Ma H H, Liu J. Pyrethroid insecticide cypermethrin modulates gonadotropin synthesis via calcium homeostasis and ERK1/2 signaling in LβT2 mouse pituitary cells [J]. Toxicological Sciences, 2018, 162(1):43-52
Wang X Z, Liu S S, Sun Y, et al. Beta-cypermethrin impairs reproductive function in male mice by inducing oxidative stress [J]. Theriogenology, 2009, 72(5):599-611
Ravula A R, Yenugu S. Effect of oral administration of a mixture of pyrethroids at doses relevant to human exposure on the general and male reproductive physiology in the rat [J]. Ecotoxicology and Environmental Safety, 2021, 208:111714
Yuan C, Wang C, Gao S Q, et al. Effects of permethrin, cypermethrin and 3-phenoxybenzoic acid on rat sperm motility in vitro evaluated with computer-assisted sperm analysis [J]. Toxicology in Vitro:An International Journal Published in Association with BIBRA, 2010, 24(2):382-386
Wang Q, Shen J Y, Zhang R, et al. Effects and mechanisms of pyrethroids on male reproductive system [J]. Toxicology, 2020, 438:152460
Jurewicz J, Radwan M, Wielgomas B, et al. The effect of environmental exposure to pyrethroids and DNA damage in human sperm [J]. Systems Biology in Reproductive Medicine, 2015, 61(1):37-43
Ji G X, Xia Y K, Gu A H, et al. Effects of non-occupational environmental exposure to pyrethroids on semen quality and sperm DNA integrity in Chinese men [J]. Reproductive Toxicology, 2011, 31(2):171-176