DAI G, WANG B, FU C, et al. Pharmaceuticals and personal care products (PPCPs) in urban and suburban rivers of Beijing, China:Occurrence, source apportionment and potential ecological risk[J]. Environmental Science Processes & Impacts, 2016, 18(4):445-455.
孙红文, 应光国. 环境中的新兴污染物研究[J]. 环境化学, 2018, 37(8):1681-1682. SUN H W, YING G G. Research on emerging pollutants in the environment[J]. Environmental Chemistry, 2018, 37(8):1681-1682(in Chinese).
TEMES T, MEISENHEIMER M, MCDOWELL D. Removal of pharmaceuticals during drinking water treatment[J]. Environmental Science&Technology, 2002, 36:3855-3863.
韩莹, 李微微, 高延红, 等. 镍离子催化零价锌去除水中双氯芬酸[J]. 浙江工业大学学报, 2019, 47(1):104-108. HAN Y, LI W W, GAO Y H, et al. Removal of diclofenac from water by zero-valent zinc catalyzed by nickel ions[J]. Journal of Zhejiang University of Technology, 2019, 47(1):104-108(in Chinese).
许俊鸽, 李云琴, 黄华山, 等. 三维花状结构α-FeOOH协同H2O2可见光催化降解双氯芬酸钠[J]. 环境科学, 2015, 36(6):2122-2128. XU J G, LI Y Q, HUANG H S, et al. Catalytic degradation of diclofenac sodium over the catalyst of 3D flower-like α-FeOOH synergized with H2O2 under visible light irradiation[J]. Environmental Science, 2015, 36(6):2122-2128(in Chinese).
曹双双, 段艳平, 涂耀仁, 等. 铁氧磁体纳米颗粒去除水体中新型污染物双氯芬酸[J]. 环境化学, 2018, 37(4):761-768. CAO S S, DUAN Y P, TU Y R, et al. Removal of emerging contaminant diclofenac from water using ferrite nanoparticles[J]. Environmental Chemistry, 2018, 37(4):761-768(in Chinese).
王曦曦, 张继彪, 郑正, 等. 介质阻挡放电对水中双氯芬酸钠的降解[J]. 环境化学, 2010, 29(4):675-679. WANG X X, ZHANG J B, ZHENG Z, et al. Dielectric barrier discharge induced degradation of diclofenac sodiumin aqueous solution[J]. Environmental Chemistry, 2010, 29(4):675-679(in Chinese).
刘晓龙, 张宏. 纳米零价铁在污水处理中的应用及研究进展[J]. 化工管理, 2018(4):90-91. LIU X L, ZHANG H. Application and research progress of nano-zero-valent iron in wastewater treatment[J]. Chemical Enterprise Management, 2018 (4):90-91(in Chinese).
LATTA D, KEMNER K, MISHRA B, et al. Effects of calcium and phosphate on uranium(Ⅳ) oxidation:Comparison between nanoparticulate uraninite and amorphous U IV-phosphate[J]. Geochimica Et Cosmochimica Acta, 2016, 174:122-142.
MCARTHUR K, XING H, QUINN T, et al. Reliability and validity of a translated modified rankin scale assessment-A pilot study in Mandarin and English[J]. Stroke, 2011, 42(3):E247-E247.
李龙飞, 李星, 李永立. 土壤阳离子交换量测定方法的优化与改进[J]. 安徽农业科学, 2019, 47(6):1-2. LI L F, LI X, LI Y L. Optimization and improvement of cation exchange capacity method in agricultural[J]. Journal of Anhui Agricultural Sciences, 2019, 47(6):1-2(in Chinese).
蒋晶, 罗晶晶. 土壤阳离子交换量两种测定方法的比较[J]. 环境研究与监测, 2019, 32(1):12-15. JIANG J, LUO J J. Comparison on two methods for determination of soil cation exchange capacity[J]. Environmental Research and Monitoring, 2019, 32(1):12-15(in Chinese).
陈平, 邱俊, 刘晓东. 膨润土CEC值的测定方法比较[J]. 化工矿物与加工, 2018, 47(10):25-27 , 54. CHEN P, QIU J,LIU X D. Comparison of determination methods for CEC value of bentonite[J]. Industrial Minerals & Processing, 2018, 47(10):25-27, 54(in Chinese).
刘崇敏. 改性粘土复合材料对镉/铅-双酚A复合污染的吸附及降解行为研究[D].广州:华南理工大学, 2018. LIU C M. Modification of clay mineral and their adsorption/degradation performance on Cd/Pb and BPA[D]. Guangzhou:South China University of Technology, 2018(in Chinese).
袁明丽, 苏琼, 梁双, 等. 聚合物基凹凸棒石纳米复合材料的研究进展[J]. 当代化工研究, 2019, 38(2):6-7. YUAN M L, SU Q, LIANG S, et al. Recent advances of polymer-based attapulgite nanocomposites[J]. Modern Chemical Research, 2019, 38(2):6-7(in Chinese).
WU S H, HE H J, LI X, et al. Insights into atrazine degradation by persulfate activation using composite of nanoscale zero-valent iron and graphene:Performances and mechanisms[J]. Chemical Engineering Journal, 2018, 341:126-136.
BAZIAR M, NABIZADEH, RAMIN, et al. Effect of dissolved oxygen/nZVI/persulfate process on the elimination of 4-chlorophenol from aqueous solution:Modeling and optimization study[J]. Korean Journal of Chemical Engineering, 2018, 35(5):1128-1136.
WANG C B, ZHANG W X. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs[J]. Environmental Science and Technology, 1997, 31(7):2154-2156.
温智皓, 段艳平, 孟祥周,等. 城市污水处理厂及其受纳水体中5种典型PPCPs的赋存特征和生态风险[J]. 环境科学, 2013, 34(3):927-932. WEN Z H, DUAN Y P, MENG X Z, et al. Occurrence and risk assessment of five selected PPCPs in municipal wastewater treatment plant and the receiving water[J].Environmental Science, 2013, 34(3):927-932(in Chinese).
杨愿愿.水环境中污水示踪有机化合物的研究与应用[D]. 广州:中国科学院广州地球化学研究所,2018. YANG Y Y. Organic wastewater indicator compounds in the aquatic environment and their application[D]. Guangzhou:Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2018(in Chinese).
贺莹莹. 长江口水体极性有机污染物存在水平及生态风险评价[D]. 大连:大连理工大学, 2014. HE Y Y. Occurrence and ecological risk assessment of polar organic pollutants in water of Yangtze Estuary[D].Dalian:Dalian University of Technology, 2014(in Chinese).
严静娜. 非甾体抗炎药在污水处理系统中的赋存及降解研究-以双氯芬酸为例[D]. 广州:华南理工大学, 2018. YAN J N. Occurrence and degradation mechanism of non-steroidal anti-inflammatory drugs in sewage treatment system-diclofenac represented[D]. Guangzhou:South China University of Technology, 2018(in Chinese).
SINGH A K, SINGH K P. Optimization of phosphate removal from aqueous solution using activated carbon supported zero-valent iron nanoparticles:Application of RSM approach[J]. Applied Water Science, 2018, 8(8):226.
陈海峰, 龚婷婷, 鲜啟鸣. 碳基纳米零价铁-铜复合材料去除水中三氯硝基甲烷[J]. 环境化学, 2019, 38(6):1385-1395. CHEN H F, GONG T T, QIAN Q M. Fabrication of carbon-based Fe-Cu nanoparticles for the removal of trichloronitromethane in water[J]. Environmental Chemistry, 2019, 38(6):1385-1395(in Chinese).
王顺利, 王秀红, 周新初, 等. 沸石-纳米零价铁的制备及其对溶液中Cu2+的吸附研究[J]. 农业环境科学学报, 2017, 36(3):583-590. WANG S L, WANG X H, ZHOU X C, et al. The preparation and application for the composite of nanoscale zero valent iron-zeolite adsorption to Cu2+ from aqueous solution[J]. Journal of Agro-Environment Science, 2017, 36(3):583-590(in Chinese).
罗钰, 白波, 王洪伦, 等. MnO2@海藻酸基炭吸附去除双氯芬酸钠及其再生[J]. 化学工程, 2018, 46(4):22-28. LUO Y,BAI B, WANG H L, et al. Adsorptive removal of diclofenac by MnO2@alginate-carbon and regeneration[J]. Chemical Engineering, 2018, 46(4):22-28(in Chinese).