[1] ZHAO H. Nitrogen removal from wastewater plant secondary effluent in a compound natural treatment system[J]. Ecological Engineering, 2013, 57: 361-365. doi: 10.1016/j.ecoleng.2013.04.026
[2] SAMATYA S, KABAY N, YÜKSEL Ü, et al. Removal of nitrate from aqueous solution by nitrate selective ion exchange resins[J]. Reactive and Functional Polymers, 2006, 66(11): 1206-1214. doi: 10.1016/j.reactfunctpolym.2006.03.009
[3] EL MIDAOUI A, ELHANNOUNI F, TAKY M, et al. Optimization of nitrate removal operation from ground water by electrodialysis[J]. Separation and Purification Technology, 2002, 29(3): 235-244. doi: 10.1016/S1383-5866(02)00092-8
[4] SCHOEMAN J J, STEYN A. Nitrate removal with reverse osmosis in a rural area in South Africa[J]. Desalination, 2003, 155(1): 15-26. doi: 10.1016/S0011-9164(03)00235-2
[5] CHEN G. Electrochemical technologies in wastewater treatment[J]. Separation and Purification Technology, 2004, 38(1): 11-41. doi: 10.1016/j.seppur.2003.10.006
[6] MONICA M D, AGOSTIANO A, CEGLIE A. An electrochemical sewage treatment process[J]. Journal of Applied Electrochemistry, 1980, 10(4): 527-533. doi: 10.1007/BF00614086
[7] GARCIA-SEGURA S, NIENHAUSER A B, FAJARDO A S, et al. Disparities between experimental and environmental conditions: Research steps toward making electrochemical water treatment a reality[J]. Current Opinion in Electrochemistry, 2020, 22: 9-16. doi: 10.1016/j.coelec.2020.03.001
[8] MOREIRA F C, BOAVENTURA R A R, BRILLAS E, et al. Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters[J]. Applied Catalysis B: Environmental, 2017, 202: 217-261. doi: 10.1016/j.apcatb.2016.08.037
[9] GARCIA-SEGURA S. Electrochemical oxidation remediation of real wastewater effluents: A review[J]. Process Safety and Environmental Protection, 2018, 113: 48-67. doi: 10.1016/j.psep.2017.09.014
[10] XU H, MA Y, CHEN J, et al. Electrocatalytic reduction of nitrate: A step towards a sustainable nitrogen cycle[J]. Chemical Society Reviews, 2022, 51(7): 2710-2758. doi: 10.1039/D1CS00857A
[11] ZOU X, XIE J, WANG C, et al. Electrochemical nitrate reduction to produce ammonia integrated into wastewater treatment: Investigations and challenges[J]. Chinese Chemical Letters, 2023, 34(6): 107908. doi: 10.1016/j.cclet.2022.107908
[12] ELENI T, THEODORA V, ALEXANDROS K, et al. Anodic oxidation of textile dyehouse effluents on boron-doped diamond electrode[J]. Journal of Hazardous Materials, 2012, 207-208: 91-96. doi: 10.1016/j.jhazmat.2011.03.107
[13] YANG K , LIN H , FENG X W , et al. Energy-efficient removal of trace antibiotics from low-conductivity water using a Ti4O7 reactive electrochemical ceramic membrane: Matrix effects and implications for byproduct formation[J]. Water Research, 2022, 224: 119047.
[14] GABRIAL A, ANA S. FAJARDO, et al. Enabling circular economy by N-recovery: Electrocatalytic reduction of nitrate with cobalt hydroxide nanocomposites on copper foam treating low conductivity groundwater effluents[J]. Science of the Total Environment, 2023, 887: 163938. doi: 10.1016/j.scitotenv.2023.163938
[15] WANG Y T , WANG C , LI M, et al. Nitrate electroreduction: mechanism insight, in situ characterization, performance evaluation, and challenges[J]. Chemical Society Reviews, 2021, 50: 6720-6733.
[16] LAN H, LIU X, LIU H, et al. Efficient nitrate reduction in a fluidized electrochemical reactor promoted by Pd–Sn/AC particles[J]. Catalysis Letters, 2016, 146(1): 91-99. doi: 10.1007/s10562-015-1615-3
[17] BUNCE N J, BEJAN D. Mechanism of electrochemical oxidation of ammonia[J]. Electrochimica Acta, 2011, 56(24): 8085-8093. doi: 10.1016/j.electacta.2011.07.078
[18] HAND S, CUSICK R D. Electrochemical disinfection in water and wastewater treatment: Identifying impacts of water quality and operating conditions on performance[J]. Environmental Science & Technology, 2021, 55(6): 3470-3482.
[19] ZHOU C, BAI J, ZHANG Y, et al. Novel 3D Pd-Cu(OH)2/CF cathode for rapid reduction of nitrate-N and simultaneous total nitrogen removal from wastewater[J]. Journal of Hazardous Materials, 2021, 401: 123232. doi: 10.1016/j.jhazmat.2020.123232
[20] LI J, YIN M, WANG Y, et al. Improvement of the conventional flat plate electrode: Application of filtered Pd@Ti electrode in the removal of toxic chlorinated PPCPs[J]. Separation and Purification Technology, 2024, 329: 125120. doi: 10.1016/j.seppur.2023.125120
[21] TRELLU C, COETSIER C, ROUCH J C, et al. Mineralization of organic pollutants by anodic oxidation using reactive electrochemical membrane synthesized from carbothermal reduction of TiO2[J]. Water Research, 2018, 131: 310-319. doi: 10.1016/j.watres.2017.12.070
[22] SIMÕES A J A, DÓRIA A R, VIEIRA D S, et al. Electrochemical degradation of ciprofloxacin using a coupled 3D anode to a microfluidic flow-through reactor[J]. Journal of Water Process Engineering, 2023, 51: 103443. doi: 10.1016/j.jwpe.2022.103443
[23] GONZAGA I M D, DÓRIA A R, MORATALLA A, et al. Electrochemical systems equipped with 2D and 3D microwave-made anodes for the highly efficient degradation of antibiotics in urine[J]. Electrochimica Acta, 2021, 392: 139012. doi: 10.1016/j.electacta.2021.139012
[24] WANG B, SHI H, HABTESELASSIE, et al. Simultaneous removal of multidrug-resistant Salmonella enterica serotype typhimurium, antibiotics and antibiotic resistance genes from water by electrooxidation on a Magnéli phase Ti4O7 anode[J]. Chemical Engineering Journal, 2021, 407: 127134-127141. doi: 10.1016/j.cej.2020.127134
[25] XIA Y, DAI Q. Electrochemical degradation of antibiotic levofloxacin by PbO2 electrode: Kinetics, energy demands and reaction pathways[J]. Chemosphere, 2018, 205: 215-222. doi: 10.1016/j.chemosphere.2018.04.103
[26] CARNEIRO J F, AQUINO J M, SILVA BF, et al. Comparing the electrochemical degradation of the fluoroquinolone antibiotics norfloxacin and ciprofloxacin using distinct electrolytes and a BDD anode: evolution of main oxidation byproducts and toxicity[J]. Journal of Environmental Chemical Engineering, 2020, 8(6): 104433-104442. doi: 10.1016/j.jece.2020.104433
[27] MENG X, CHEN Z, WANG C, et al. Development of a three-dimensional electrochemical system using a blue TiO2/SnO2-Sb2O3 anode for treating low-ionic-strength wastewater[J]. Environmental Science & Technology, 2019, 53(23): 13784-13793.
[28] KLIDI N, CLEMATIS D, CARPANESE M P, et al. Electrochemical oxidation of crystal violet using a BDD anode with a solid polymer electrolyte[J]. Separation and Purification Technology, 2018, 208: 178-183.
[29] KHONGTHON W, JOVANOVIC G, YOKOCHI A, et al. Degradation of diuron via an electrochemical advanced oxidation process in a microscale-based reactor[J]. Chemical Engineering Journal, 2016, 292: 298-307. doi: 10.1016/j.cej.2016.02.042
[30] ZHANG Y, LI J, BAI J, et al. Extremely efficient decomposition of ammonia N to N2 using ClO · from reactions of HO · and HOCl generated in Situ on a novel bifacial photoelectroanode[J]. Environmental Science & Technology, 2019, 53(12): 6945-6953.
[31] MARTÍNEZ-HUITLE C A, RODRIGO M A, SIRÉS I, et al. Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: A critical review[J]. Chemical Reviews, 2015, 115(24): 13362-13407. doi: 10.1021/acs.chemrev.5b00361