[1] JOSEPH L, JUN B M, JANG M, et al. Removal of contaminants of emerging concern by metal-organic framework nanoadsorbents: A review[J]. Chemical Engineering Journal, 2019, 369: 928-946. doi: 10.1016/j.cej.2019.03.173
[2] BOLONG N, ISMAIL A F, SALIM M R, et al. A review of the effects of emerging contaminants in wastewater and options for their removal[J]. Desalination, 2009, 239(1): 229-246.
[3] CHEN Y X, LIN M W, ZHUANG D. Wastewater treatment and emerging contaminants: Bibliometric analysis[J]. Chemosphere, 2022, 297: 133932. doi: 10.1016/j.chemosphere.2022.133932
[4] 李秋爽, 於方, 曹国志, 等. 新污染物治理进展及“十四五”期间和长期治理思路研究[J]. 环境保护, 2021, 49: 13-19.
[5] KABIR E R, RAHMAN M S, RAHMAN I. A review on endocrine disruptors and their possible impacts on human health[J]. Environmental Toxicology and Pharmacology, 2015, 40(1): 241-258. doi: 10.1016/j.etap.2015.06.009
[6] BARBO N, STOIBER T, V. NAIDENKO O, et al. Locally caught freshwater fish across the United States are likely a significant source of exposure to PFOS and other perfluorinated compounds[J]. Environmental Research, 2023, 220: 115165. doi: 10.1016/j.envres.2022.115165
[7] AL AUKIDY M, VERLICCHI P, JELIC A, et al. Monitoring release of pharmaceutical compounds: Occurrence and environmental risk assessment of two WWTP effluents and their receiving bodies in the Po Valley, Italy[J]. Science of the Total Environment, 2012, 438: 15-25. doi: 10.1016/j.scitotenv.2012.08.061
[8] SU L, XUE Y, LI L, et al. Microplastics in Taihu Lake, China[J]. Environmental Pollution, 2016, 216: 711-719. doi: 10.1016/j.envpol.2016.06.036
[9] CARVALHO I T, SANTOS L. Antibiotics in the aquatic environments: A review of the European scenario[J]. Environment International, 2016, 94: 736-757. doi: 10.1016/j.envint.2016.06.025
[10] JJEMBA P K. Excretion and ecotoxicity of pharmaceutical and personal care products in the environment[J]. Ecotoxicology and Environmental Safety, 2006, 63(1): 113-130. doi: 10.1016/j.ecoenv.2004.11.011
[11] RYU J, OH J, SNYDER S A, et al. Determination of micropollutants in combined sewer overflows and their removal in a wastewater treatment plant (Seoul, South Korea)[J]. Environmental Monitoring and Assessment, 2014, 186(5): 3239-3251. doi: 10.1007/s10661-013-3613-5
[12] NGOC HAN T, REINHARD M, GIN K Y-H. Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review[J]. Water Research, 2018, 133: 182-207. doi: 10.1016/j.watres.2017.12.029
[13] DUAN Y, ZHOU S, DENG L, et al. Enhanced photocatalytic degradation of sulfadiazine via g-C3N4/carbon dots nanosheets under nanoconfinement: Synthesis, Biocompatibility and Mechanism[J]. Journal of Environmental Chemical Engineering, 2020, 8(6): 104612. doi: 10.1016/j.jece.2020.104612
[14] PENG X, HU F, ZHANG T, et al. Amine-functionalized magnetic bamboo-based activated carbon adsorptive removal of ciprofloxacin and norfloxacin: A batch and fixed-bed column study[J]. Bioresource Technology, 2018, 249: 924-934. doi: 10.1016/j.biortech.2017.10.095
[15] PHOON B L, ONG C C, SAHEED M S M, et al. Conventional and emerging technologies for removal of antibiotics from wastewater[J]. Journal of Hazardous Materials, 2020, 400: 122961. doi: 10.1016/j.jhazmat.2020.122961
[16] CHENG D L, NGO H H, GUO W S, et al. Bioprocessing for elimination antibiotics and hormones from swine wastewater[J]. Science of the Total Environment, 2018, 621: 1664-1682. doi: 10.1016/j.scitotenv.2017.10.059
[17] WANG J-S, YI X-H, XU X, et al. Eliminating tetracycline antibiotics matrix via photoactivated sulfate radical-based advanced oxidation process over the immobilized MIL-88A: Batch and continuous experiments[J]. Chemical Engineering Journal, 2022, 431: 133213. doi: 10.1016/j.cej.2021.133213
[18] ZHANG X, ZHANG Y, NGO H H, et al. Characterization and sulfonamide antibiotics adsorption capacity of spent coffee grounds based biochar and hydrochar[J]. Science of the Total Environment, 2020, 716: 137015. doi: 10.1016/j.scitotenv.2020.137015
[19] GULEN B, DEMIRCIVI P. Adsorption properties of flouroquinolone type antibiotic ciprofloxacin into 2: 1 dioctahedral clay structure: Box-Behnken experimental design[J]. Journal of Molecular Structure, 2020, 1206: 127659. doi: 10.1016/j.molstruc.2019.127659
[20] YEO Z Y, CHAI S P, ZHU P W, et al. An overview: synthesis of thin films/membranes of metal organic frameworks and its gas separation performances[J]. Rsc Advances, 2014, 4(97): 54322-54334. doi: 10.1039/C4RA08884K
[21] ROWSELL J L C, YAGHI O M. Metal–organic frameworks: a new class of porous materials[J]. Microporous and Mesoporous Materials, 2004, 73(1): 3-14.
[22] SUN K, LYU Q, ZHENG X Y, et al. Enhanced water treatment performance of ceramic-based forward osmosis membranes via MOF interlayer[J]. Water Research, 2024, 254: 121395. doi: 10.1016/j.watres.2024.121395
[23] LI J, LIN G, ZHONG Z, et al. A novel magnetic Ti-MOF/chitosan composite for efficient adsorption of Pb (II) from aqueous solutions: Synthesis and investigation[J]. International Journal of Biological Macromolecules, 2024, 258: 129170. doi: 10.1016/j.ijbiomac.2023.129170
[24] ANIK Ü, TIMUR S, DURSUN Z. Metal organic frameworks in electrochemical and optical sensing platforms: a review[J]. Microchimica Acta, 2019, 186(3): 196. doi: 10.1007/s00604-019-3321-0
[25] WANG H, YUAN X, WU Y, et al. Synthesis and applications of novel graphitic carbon nitride/metal-organic frameworks mesoporous photocatalyst for dyes removal[J]. Applied Catalysis B: Environmental, 2015, 174-175: 445-454. doi: 10.1016/j.apcatb.2015.03.037
[26] KUNDU T, MITRA S, PATRA P, et al. Mechanical Downsizing of a Gadolinium(III)-based Metal-Organic Framework for Anticancer Drug Delivery[J]. Chemistry-a European Journal, 2014, 20(33): 10514-10518. doi: 10.1002/chem.201402244
[27] CHUI S S Y, LO S M F, CHARMANT J P H, et al. A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n[J]. Science, 1999, 283(5405): 1148-1150. doi: 10.1126/science.283.5405.1148
[28] CONDE-GONZáLEZ J E, PEñA-MéNDEZ E M, RYBáKOVá S, et al. Adsorption of silver nanoparticles from aqueous solution on copper-based metal organic frameworks (HKUST-1)[J]. Chemosphere, 2016, 150: 659-666. doi: 10.1016/j.chemosphere.2016.02.005
[29] ZHANG W, HU Y, GE J, et al. A Facile and General Coating Approach to Moisture/Water-Resistant Metal–Organic Frameworks with Intact Porosity[J]. Journal of the American Chemical Society, 2014, 136(49): 16978-16981. doi: 10.1021/ja509960n
[30] WANG T, ZHU H, ZENG Q, et al. Strategies for Overcoming Defects of HKUST-1 and Its Relevant Applications[J]. Advanced Materials Interfaces, 2019, 6(13): 1900423. doi: 10.1002/admi.201900423
[31] GOYAL P, PARUTHI A, MENON D, et al. Fe doped bimetallic HKUST-1 MOF with enhanced water stability for trapping Pb(II) with high adsorption capacity[J]. Chemical Engineering Journal, 2022, 430: 133088. doi: 10.1016/j.cej.2021.133088
[32] PAN J, BAI X, LI Y, et al. HKUST-1 derived carbon adsorbents for tetracycline removal with excellent adsorption performance[J]. Environmental Research, 2022, 205: 112425. doi: 10.1016/j.envres.2021.112425
[33] LIU B, SHIOYAMA H, AKITA T, et al. Metal-Organic Framework as a Template for Porous Carbon Synthesis[J]. Journal of the American Chemical Society, 2008, 130(16): 5390-5391. doi: 10.1021/ja7106146
[34] ZHANG H, DENG L, CHEN J, et al. How MoS2 assisted sulfur vacancies featured Cu2S in hollow Cu2S@MoS2 nanoboxes to activate H2O2 for efficient sulfadiazine degradation?[J]. Chemical Engineering Journal, 2022, 446: 137364. doi: 10.1016/j.cej.2022.137364
[35] TRAN T V, NGUYEN D T C, NGUYEN T T, et al. Metal-organic framework HKUST-1-based Cu/Cu2O/CuO@C porous composite: Rapid synthesis and uptake application in antibiotics remediation[J]. Journal of Water Process Engineering, 2020, 36: 101319. doi: 10.1016/j.jwpe.2020.101319
[36] LIU J, DONG C C, DENG Y X, et al. Molybdenum sulfide Co-catalytic Fenton reaction for rapid and efficient inactivation of Escherichia colis[J]. Water Research, 2018, 145: 312-320. doi: 10.1016/j.watres.2018.08.039
[37] ZENG Z, YE S, WU H, et al. Research on the sustainable efficacy of g-MoS2 decorated biochar nanocomposites for removing tetracycline hydrochloride from antibiotic-polluted aqueous solution[J]. Science of the Total Environment, 2019, 648: 206-217. doi: 10.1016/j.scitotenv.2018.08.108
[38] LI J, ZHANG X, WANG T, et al. Construction of layered hollow Fe3O4/Fe1−xS @MoS2 composite with enhanced photo-Fenton and adsorption performance[J]. Journal of Environmental Chemical Engineering, 2020, 8(3): 103762. doi: 10.1016/j.jece.2020.103762
[39] ZHOU Q, JIANG X, GUO Y, et al. An ultra-high surface area mesoporous carbon prepared by a novel MnO-templated method for highly effective adsorption of methylene blue[J]. Chemosphere, 2018, 201: 519-529. doi: 10.1016/j.chemosphere.2018.03.045
[40] SANI N A A, LAU W J, ISMAIL A F. Polyphenylsulfone-based solvent resistant nanofiltration (SRNF) membrane incorporated with copper-1, 3, 5-benzenetricarboxylate (Cu-BTC) nanoparticles for methanol separation[J]. Rsc Advances, 2015, 5(17): 13000-13010. doi: 10.1039/C4RA14284E
[41] SELLAOUI L, EDI-SOETAREDJO F, MOHAMED M, et al. A novel application of HKUST-1 for textile dyes removal in single and binary solutions: Experimental investigation combined with physical modelling[J]. Chemical Engineering Journal, 2024, 480: 147958. doi: 10.1016/j.cej.2023.147958
[42] NAGARAJU G, THARAMANI C N, CHANDRAPPA G T, et al. Hydrothermal synthesis of amorphous MoS2 nanofiber bundles via acidification of ammonium heptamolybdate tetrahydrate[J]. Nanoscale Research Letters, 2007, 2(9): 461-468. doi: 10.1007/s11671-007-9087-z
[43] DUTTA S, RAY C, MALLICK S, et al. A Gel-Based Approach To Design Hierarchical CuS Decorated Reduced Graphene Oxide Nanosheets for Enhanced Peroxidase-like Activity Leading to Colorimetric Detection of Dopamine[J]. The Journal of Physical Chemistry C, 2015, 119(41): 23790-23800. doi: 10.1021/acs.jpcc.5b08421
[44] WU S, WEN G, SCHLOEGL R, et al. Carbon nanotubes oxidized by a green method as efficient metal-free catalysts for nitroarene reduction[J]. Physical Chemistry Chemical Physics, 2015, 17(3): 1567-1571. doi: 10.1039/C4CP04658G
[45] YU F, BAI X, LIANG M, et al. HKUST-1-Derived Cu@Cu(I)@Cu(II)/Carbon adsorbents for ciprofloxacin removal with high adsorption performance[J]. Separation and Purification Technology, 2022, 288: 120647. doi: 10.1016/j.seppur.2022.120647
[46] JUNG K-W, KIM J-H, CHOI J-W. Synthesis of magnetic porous carbon composite derived from metal-organic framework using recovered terephthalic acid from polyethylene terephthalate (PET) waste bottles as organic ligand and its potential as adsorbent for antibiotic tetracycline hydrochloride[J]. Composites Part B: Engineering, 2020, 187: 107867. doi: 10.1016/j.compositesb.2020.107867
[47] WANG S, YANG S. Spectroscopic characterization of the copper sulphide core/shell nanowires[J]. Materials Science and Engineering: C, 2001, 16(1): 37-40.
[48] XIA S M, DENG L, LIU X, et al. Fabrication of magnetic nickel incorporated carbon nanofibers for superfast adsorption of sulfadiazine: Performance and mechanisms exploration[J]. Journal of Hazardous Materials, 2022, 423: 127219. doi: 10.1016/j.jhazmat.2021.127219
[49] 裴曼一, 李梅, 裴建川, 等. 铁铜改性稻壳炭对双氯芬酸钠吸附性能[J]. 环境工程学报, 2024, 18: 737-746. doi: 10.12030/j.cjee.202311085
[50] 韩融, 王成杰, 郭亚凯, 等. 污泥-赤泥混合生物炭的制备及对环丙沙星的吸附研究[J]. 安全与环境学报, 2023, 23: 2069-2080.