[1] GITHALA C K, TRIVEDI R. Review on synthesis method, biomolecules involved, size affecting factors and potential applications of silver nanoparticles[J]. Biocatalysis and Agricultural Biotechnology, 2023, 54: 102912. doi: 10.1016/j.bcab.2023.102912
[2] BANU A N, KUDESIA N, RAUT A M, et al. Toxicity, bioaccumulation, and transformation of silver nanoparticles in aqua biota: A review[J]. Environmental Chemistry Letters, 2021, 19(6): 4275-4296. doi: 10.1007/s10311-021-01304-w
[3] LEE W S, KIM E, CHO H J, et al. The Relationship between Dissolution Behavior and the Toxicity of Silver Nanoparticles on Zebrafish Embryos in Different Ionic Environments[J]. Nanomaterials, 2018, 8(9): 10.
[4] GUO Z, ZENG G M, CUI K P, et al. Toxicity of environmental nanosilver: mechanism and assessment[J]. Environmental Chemistry Letters, 2019, 17(1): 319-333. doi: 10.1007/s10311-018-0800-1
[5] GUO Z, CHEN G, ZENG G, et al. Are silver nanoparticles always toxic in the presence of environmental anions?[J]. Chemosphere, 2017, 171: 318-323. doi: 10.1016/j.chemosphere.2016.12.077
[6] XIU Z M, ZHANG Q B, PUPPALA H L, et al. Negligible Particle-Specific Antibacterial Activity of Silver Nanoparticles[J]. Nano Letters, 2012, 12(8): 4271-4275. doi: 10.1021/nl301934w
[7] ZUO Y, CHEN G, ZENG G, et al. Transport, fate, and stimulating impact of silver nanoparticles on the removal of Cd(II) by Phanerochaete chrysosporium in aqueous solutions[J]. Journal of Hazardous Materials, 2015, 285: 236-244. doi: 10.1016/j.jhazmat.2014.12.003
[8] DEONARINE A, LAU B L T, AIKEN G R, et al. Effects of Humic Substances on Precipitation and Aggregation of Zinc Sulfide Nanoparticles[J]. Environmental Science & Technology, 2011, 45(8): 3217-3223.
[9] JIN X, XUE X. Computational fluid dynamics analysis of solid oxide electrolysis cells with delaminations[J]. International Journal of Hydrogen Energy, 2010, 35(14): 7321-7328. doi: 10.1016/j.ijhydene.2010.04.158
[10] TEJAMAYA M, RöMER I, MERRIFIELD R C, et al. Stability of Citrate, PVP, and PEG Coated Silver Nanoparticles in Ecotoxicology Media[J]. Environmental Science & Technology, 2012, 46(13): 7011-7017.
[11] NAVARRO E, PICCAPIETRA F, WAGNER B, et al. Toxicity of silver nanoparticles to chlamydomonas reinhardtii[J]. Environmental Science & Technology, 2008, 42(23): 8959-8964.
[12] ARNAOUT C L, GUNSCH C K. Impacts of Silver Nanoparticle Coating on the Nitrification Potential of Nitrosomonas europaea[J]. Environmental Science & Technology, 2012, 46(10): 5387-5395.
[13] MARAMBIO-JONES C, HOEK E M V. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment[J]. Journal of Nanoparticle Research, 2010, 12(5): 1531-1551. doi: 10.1007/s11051-010-9900-y
[14] MUMPER C K, OSTERMEYER A K, SEMPRINI L, et al. Influence of ammonia on silver nanoparticle dissolution and toxicity to Nitrosomonas europaea[J]. Chemosphere, 2013, 93(10): 2493-2498. doi: 10.1016/j.chemosphere.2013.08.098
[15] RADNIECKI T S, STANKUS D P, NEIGH A, et al. Influence of liberated silver from silver nanoparticles on nitrification inhibition of Nitrosomonas europaea[J]. Chemosphere, 2011, 85(1): 43-49. doi: 10.1016/j.chemosphere.2011.06.039
[16] LI M H, POKHREL S, JIN X, et al. Stability, bioavailability, and bacterial toxicity of ZnO and iron-doped ZnO nanoparticles in aquatic media[J]. Environmental Science & Technology, 2011, 45(2): 755-761.
[17] LIU X, JIN X, CAO B, et al. Bactericidal activity of silver nanoparticles in environmentally relevant freshwater matrices: Influences of organic matter and chelating agent[J]. Journal of Environmental Chemical Engineering, 2014, 2(1): 525-531. doi: 10.1016/j.jece.2013.10.008
[18] 罗晴, 甄毓, 彭宗波, 等. 三亚河红树林表层沉积物中好氧氨氧化微生物的分布特征及潜在硝化速率[J]. 环境科学, 2020, 41(8): 3787-3796.
[19] HUIJIE L, ULANOV A V, MASARU N, et al. Global metabolomic responses of Nitrosomonas europaea 19718 to cold stress and altered ammonia feeding patterns[J]. Applied microbiology and biotechnology, 2020, 100(4): 1843-1852.
[20] 周慧, 王中慧, 晋卫军. 分析化学教材中关于离子活度系数计算公式的讨论[J]. 化学教育(中英文), 2022, 43: 82-85.
[21] JOHNSON A C, JüRGENS M D, LAWLOR A J, et al. Particulate and colloidal silver in sewage effluent and sludge discharged from British wastewater treatment plants[J]. Chemosphere, 2014, 112: 49-55. doi: 10.1016/j.chemosphere.2014.03.039
[22] XIU Z M, MA J, ALVAREZ P J J. Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions[J]. Environmental Science & Technology, 2011, 45(20): 9003-9008.
[23] 李玉萍, 盛玉敏. 微库仑法测定原油盐含量影响因素探讨[J]. 河南化工, 2014, 31: 52-56.
[24] 王小锋, 嵇黎茜, 陈昌云, 等. 基于电化学方法测定沉淀溶解平衡常数的实验探究[J]. 南京晓庄学院学报, 2017, 33: 43-46.
[25] LEVARD C, REINSCH B C, MICHEL F M, et al. Sulfidation processes of PVP-coated silver nanoparticles in aqueous solution: Impact on dissolution rate[J]. Environmental Science & Technology, 2011, 45(12): 5260-5266.
[26] BEDDOW J, STOLPE B, COLE P, et al. Effects of engineered silver nanoparticles on the growth and activity of ecologically important microbes[J]. Environmental Microbiology Reports, 2014, 6(5): 448-458. doi: 10.1111/1758-2229.12147
[27] 徐忠强. 化工废水治理研究及应用现状[J]. 炼油与化工, 2023, 34: 9-12.
[28] 庄爱娟. 纳米银溶胶的制备及其性能研究[D]. 青岛: 青岛科技大学, 2011.
[29] 林辰昕, 缪爱军. 银纳米颗粒在秀丽隐杆线虫体内的累积及毒性效应研究进展[J]. 南京大学学报(自然科学), 2023, 59: 722-730.
[30] 张朝涛, 王春慧, 李雪, 等. 酶提取-单颗粒电感耦合等离子质谱法分析樱桃番茄纳米银颗粒及其吸收规律研究[J]. 中国无机分析化学, 2023, 13: 1271-1281. doi: 10.3969/j.issn.2095-1035.2023.12.001
[31] 杨亚宁. 环境中离子强度对纳米银物化特性及其毒理学效应的影响[D]. 合肥: 中国科学技术大学, 2019.
[32] 张甲赓. 不同水质条件中纳米银对大型溞的急性毒性效应及其影响机理[D]. 徐州: 中国矿业大学, 2023.
[33] 苗芳芳. 基于形态模拟的污染场地重金属溯源风险评价方法研究与应用[D]. 北京: 华北电力大学, 2022.
[34] 卢雪蓉, 冯晓丽, 刘朝莹, 等. 纳米银的迁移转化对环境微生物毒性的影响[J]. 生态毒理学报, 2018, 13: 9. doi: 10.7524/AJE.1673-5897.20180615003
[35] BAALOUSHA M, NUR Y, RöMER I, et al. Effect of monovalent and divalent cations, anions and fulvic acid on aggregation of citrate-coated silver nanoparticles[J]. Science of the Total Environment, 2013, 454-455: 119-131. doi: 10.1016/j.scitotenv.2013.02.093
[36] CUMBERLAND S A, LEAD J R. Particle size distributions of silver nanoparticles at environmentally relevant conditions[J]. Journal of Chromatography A, 2009, 1216(52): 9099-9105. doi: 10.1016/j.chroma.2009.07.021
[37] LI X A, LENHART J J, WALKER H W. Dissolution-Accompanied Aggregation Kinetics of Silver Nanoparticles[J]. Langmuir, 2010, 26(22): 16690-16698. doi: 10.1021/la101768n
[38] NOWACK B, BUCHELI T D. Occurrence, behavior and effects of nanoparticles in the environment[J]. Environmental Pollution, 2007, 150(1): 5-22. doi: 10.1016/j.envpol.2007.06.006
[39] LEVARD C, HOTZE E M, LOWRY G V, et al. Environmental Transformations of Silver Nanoparticles: Impact on Stability and Toxicity[J]. Environmental Science & Technology, 2012, 46(13): 6900-6914.
[40] LEVARD C, MITRA S, YANG T, et al. Effect of Chloride on the Dissolution Rate of Silver Nanoparticles and Toxicity to E. coli[J]. Environmental Science & Technology, 2013, 47(11): 5738-5745.
[41] HUANG Z Z, ZENG Z T, SONG Z X, et al. Antimicrobial efficacy and mechanisms of silver nanoparticles against Phanerochaete chrysosporium in the presence of common electrolytes and humic acid[J]. Journal of Hazardous Materials, 2020, 383: 10.
[42] ANDERSON J W, SEMPRINI L, RADNIECKI T S. Influence of water hardness on silver ion and silver nanoparticle fate and toxicity toward Nitrosomonas europaea[J]. Environmental Engineering Science, 2014, 31(7): 403-409. doi: 10.1089/ees.2013.0426
[43] LI Y, ZHAO J, SHANG E X, et al. Effects of chloride ions on dissolution, ROS generation, and toxicity of silver nanoparticles under UV irradiation[J]. Environmental Science & Technology, 2018, 52(8): 4842-4849.