[1] |
YAN K, WANG H, LAN Z, et al. Heavy metal pollution in the soil of contaminated sites in China: Research status and pollution assessment over the past two decades[J]. Journal of Cleaner Production, 2022, 373: 133780. doi: 10.1016/j.jclepro.2022.133780
|
[2] |
WU Y, LI X, YU L, et al. Review of soil heavy metal pollution in China: Spatial distribution, primary sources, and remediation alternatives[J]. Resources, Conservation and Recycling, 2022, 181: 106261. doi: 10.1016/j.resconrec.2022.106261
|
[3] |
石航源, 王鹏, 郑家桐, 等. 中国省域土壤重金属空间分布特征及分区管控对策[J]. 环境科学, 2023, 44(8): 4706-4716.
|
[4] |
SARWAR N, IMRAN M, SHAHEEN M R, et al. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives[J]. Chemosphere, 2017, 171: 710-721. doi: 10.1016/j.chemosphere.2016.12.116
|
[5] |
LI Y, LIAO X, LI W. Combined sieving and washing of multi-metal-contaminated soils using remediation equipment: A pilot-scale demonstration[J]. Journal of Cleaner Production, 2019, 212: 81-89. doi: 10.1016/j.jclepro.2018.11.294
|
[6] |
徐雷, 代惠萍, 魏树和. 淋洗剂在重金属污染土壤修复中的研究进展[J]. 中国环境科学, 2021, 41(11): 5237-5244. doi: 10.3969/j.issn.1000-6923.2021.11.032
|
[7] |
GUSIATIN Z M, KULIKOWSKA D, KLIK B. New-generation washing agents in remediation of metal-polluted soils and methods for washing effluent treatment: A review[J]. International Journal of Environmental Research and Public Health, 2020, 17(17): 6220. doi: 10.3390/ijerph17176220
|
[8] |
JELUSIC M, LESTAN D. Remediation and reclamation of soils heavily contaminated with toxic metals as a substrate for greening with ornamental plants and grasses[J]. Chemosphere, 2015, 138: 1001-1007. doi: 10.1016/j.chemosphere.2014.12.047
|
[9] |
GOLMAEI M, KINNARINEN T, JERNSTRöM E, et al. Extraction of hazardous metals from green liquor dregs by ethylenediaminetetraacetic acid[J]. Journal of Environmental Management, 2018, 212: 219-227.
|
[10] |
高一丹, 袁旭音, 汪宜敏, 等. 不同螯合剂对两类Cd和Ni污染土壤的淋洗修复对比[J]. 中国环境科学, 2022, 42(1): 250-257.
|
[11] |
HUANG G, YOU J, ZHOU X, et al. Effects of low molecular weight organic acids on Cu accumulation by castor bean and soil enzyme activities[J]. Ecotoxicology and Environmental Safety, 2020, 203: 110983. doi: 10.1016/j.ecoenv.2020.110983
|
[12] |
LIU Q, DENG Y, TANG J, et al. Potassium lignosulfonate as a washing agent for remediating lead and copper co-contaminated soils[J]. Science of the Total Environment, 2019, 658: 836-842. doi: 10.1016/j.scitotenv.2018.12.228
|
[13] |
ROTT E, STEINMETZ H, METZGER J W. Organophosphonates: A review on environmental relevance, biodegradability and removal in wastewater treatment plants[J]. Science of the Total Environment, 2018, 615: 1176-1191. doi: 10.1016/j.scitotenv.2017.09.223
|
[14] |
MENG Q, PENG B, SHEN C. Synthesis of F127/PAA hydrogels for removal of heavy metalions from organic wastewater[J]. Colloids and Surfaces B: Biointerfaces, 2018, 167: 176-182. YANG S R, HE C S, XIE Z H, et al. Efficient activation of PAA by FeS for fast removal of pharmaceuticals: The dual role of sulfur species in regulating the reactive oxidized species[J]. Water Research, 2022, 217: 118402.
|
[15] |
SHARMA N, BHARDWAJ N K, SINGH R B P. Environmental issues of pulp bleaching and prospects of peracetic acid pulp bleaching: A review[J]. Journal of Cleaner Production, 2020, 256: 120338. doi: 10.1016/j.jclepro.2020.120338
|
[16] |
HAN Y, ZHANG C, ZHU L, et al. Effect of alternating electromagnetic field and ultrasonic on CaCO3 scale inhibitive performance of EDTMPS[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 99: 104-112. doi: 10.1016/j.jtice.2019.03.008
|
[17] |
STUDNIK H, LIEBSCH S, FORLANI G, et al. Amino polyphosphonates-chemical features and practical uses, environmental durability and biodegradation[J]. New Biotechnology, 2015, 32(1): 1-6. doi: 10.1016/j.nbt.2014.06.007
|
[18] |
RIEDEL R, KRAHL K, BUDER K, et al. Novel standard biodegradation test for synthetic phosphonates[J]. Journal of microbiological methods, 2023, 212: 106793. doi: 10.1016/j.mimet.2023.106793
|
[19] |
WANG G, PAN X, ZHANG S, et al. Remediation of heavy metal contaminated soil by biodegradable chelator–induced washing: Efficiencies and mechanisms[J]. Environmental Research, 2020, 186: 109554. doi: 10.1016/j.envres.2020.109554
|
[20] |
TANG J, HE J, LIU T, et al. Removal of heavy metals with sequential sludge washing techniques using saponin: optimization conditions, kinetics, removal effectiveness, binding intensity, mobility and mechanism[J]. RSC advances, 2017, 7(53): 33385-33401. doi: 10.1039/C7RA04284A
|
[21] |
LI Q, WANG Y, LI Y, et al. Speciation of heavy metals in soils and their immobilization at micro-scale interfaces among diverse soil components[J]. Science of the Total Environment, 2022, 825: 153862. doi: 10.1016/j.scitotenv.2022.153862
|
[22] |
HAKANSON L. An ecological risk index for aquatic pollution control. A sedimentological approach[J]. Water Research, 1980, 14(8): 975-1001. doi: 10.1016/0043-1354(80)90143-8
|
[23] |
Zhu H, Yuan X, Zeng G, et al. Ecological risk assessment of heavy metals in sediments of xiawan Port based on modified potential ecological risk index[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(6): 1470-1477. doi: 10.1016/S1003-6326(11)61343-5
|
[24] |
YU X, LIAO W, WU Q, et al. Green remediation of cadmium-contaminated soil by cellulose nanocrystals[J]. Journal of Hazardous Materials, 2023, 443: 130312. doi: 10.1016/j.jhazmat.2022.130312
|
[25] |
WANG G, ZHANG S, XU X, et al. Heavy metal removal by GLDA washing: Optimization, redistribution, recycling, and changes in soil fertility[J]. Science of the Total Environment, 2016, 569-570: 557-568. doi: 10.1016/j.scitotenv.2016.06.155
|
[26] |
张朝阳, 彭平安, 宋建中, 等. 改进BCR法分析国家土壤标准物质中重金属化学形态[J]. 生态环境学报, 2012, 21(11): 1881-1884. doi: 10.3969/j.issn.1674-5906.2012.11.019
|
[27] |
RAHMAN S, RAHMAN I M M, NI S, et al. Enhanced remediation of arsenic-contaminated excavated soil using a binary blend of biodegradable surfactant and chelator[J]. Journal of Hazardous Materials, 2022, 431: 128562. doi: 10.1016/j.jhazmat.2022.128562
|
[28] |
YANG S, LI Y, LIU G-M, et al. Sequential washing and eluent regeneration with agricultural waste extracts and residues for facile remediation of meta-contaminated agricultural soils[J]. Science of the Total Environment, 2022, 835: 155548. doi: 10.1016/j.scitotenv.2022.155548
|
[29] |
FENG C, CHEN Y, ZHANG S, et al. Removal of lead, zinc and cadmium from contaminated soils with two plant extracts: Mechanism and potential risks[J]. Ecotoxicology and Environmental Safety, 2020, 187: 109829. doi: 10.1016/j.ecoenv.2019.109829
|
[30] |
NOLTE T M, PEIJNENBURG W J G M, HENDRIKS A J, et al. Quantitative structure-activity relationships for green algae growth inhibition by polymer particles[J]. Chemosphere, 2017, 179: 49-56. doi: 10.1016/j.chemosphere.2017.03.067
|
[31] |
ZHAO Z, ZHANG X, RUAN D, et al. Efficient removal of heavy metal ions by diethylenetriaminepenta (methylene phosphonic) acid-doped hydroxyapatite[J]. Science of the Total Environment, 2022, 849: 157557. doi: 10.1016/j.scitotenv.2022.157557
|
[32] |
ZHU S, KHAN M A, KAMEDA T, et al. New insights into the capture performance and mechanism of hazardous metals Cr3+ and Cd2+ onto an effective layered double hydroxide based material[J]. Journal of Hazardous Materials, 2022, 426: 128062. doi: 10.1016/j.jhazmat.2021.128062
|
[33] |
HE Z, LONG L, YUAN H, et al. Remediation of heavy-metal-contaminated soil with two organic acids: Washing efficiency, recovery performance, and benefit analysis[J]. Journal of Cleaner Production, 2023, 393: 136235. doi: 10.1016/j.jclepro.2023.136235
|
[34] |
GU Y, YEUNG A T, LI H. Enhanced electrokinetic remediation of cadmium-contaminated natural clay using organophosphonates in comparison with EDTA[J]. Chinese Journal of Chemical Engineering, 2018, 26(5): 1152-1159. doi: 10.1016/j.cjche.2017.10.012
|
[35] |
NKOH J N, XU R K, YAN J, et al. Mechanism of Cu(II) and Cd(II) immobilization by extracellular polymeric substances (Escherichia coli) on variable charge soils[J]. Environmental Pollution, 2019, 247: 136-145. doi: 10.1016/j.envpol.2019.01.038
|
[36] |
LI L, YANG B, JI G, et al. Mg/Al layered double hydroxides intercalated with ethylenediamine-tetramethylene phosphonic acid for efficient removal of Pb2+ and Cd2+ ions and the intercalation mechanism study[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 675: 132087. doi: 10.1016/j.colsurfa.2023.132087
|
[37] |
PARK J, HUANG S, KOEL B E, et al. Enhanced Feammox activity and perfluorooctanoic acid (PFOA) degradation by Acidimicrobium sp. Strain A6 using PAA-coated ferrihydrite as an electron acceptor[J]. Journal of Hazardous Materials, 2023, 459: 132039. doi: 10.1016/j.jhazmat.2023.132039
|
[38] |
QIAO J, SUN H, LUO X, et al. EDTA-assisted leaching of Pb and Cd from contaminated soil[J]. Chemosphere, 2017, 167: 422-428. doi: 10.1016/j.chemosphere.2016.10.034
|
[39] |
李静, 林青, 徐绍辉. 不同pH/离子强度时Cu/Cd复合污染土壤解吸和迁移特征[J]. 土壤学报, 2023, 60(4): 1026-1034.
|
[40] |
GAO J, QIU Y R, LI M L, et al. Removal of Co(II) from aqueous solution by complexation-ultrafiltration and shear stability of PAA−Co complex[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(6): 1346-1352. doi: 10.1016/S1003-6326(19)65041-7
|
[41] |
CHEN M, BI R, ZHANG R, et al. Tunable surface charge and hydrophilicity of sodium polyacrylate intercalated layered double hydroxide for efficient removal of dyes and heavy metal ions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 617: 126384. doi: 10.1016/j.colsurfa.2021.126384
|
[42] |
陈春乐, 杨婷, 邹县梅, 等. 可生物降解螯合剂亚氨基二琥珀酸和谷氨酸N, N-二乙酸对重金属污染土壤的淋洗修复及动力学特征[J]. 生态与农村环境学报, 2021, 37(3): 394-401.
|
[43] |
XU L, DAI H, SKUZA L, et al. Co-high-efficiency washing agents for simultaneous removal of Cd, Pb and As from smelting soil with risk assessment[J]. Chemosphere, 2022, 300: 134581. doi: 10.1016/j.chemosphere.2022.134581
|
[44] |
ZHANG S, WEN J, HU Y, et al. Humic substances from green waste compost: An effective washing agent for heavy metal (Cd, Ni) removal from contaminated sediments[J]. Journal of Hazardous Materials, 2019, 366: 210-218. doi: 10.1016/j.jhazmat.2018.11.103
|
[45] |
CHIANG P N, TONG O Y, CHIOU C S, et al. Reclamation of zinc-contaminated soil using a dissolved organic carbon solution prepared using liquid fertilizer from food-waste composting[J]. Journal of Hazardous Materials, 2016, 301: 100-105. doi: 10.1016/j.jhazmat.2015.08.015
|
[46] |
HE J, LIN Q, LUO Y, et al. Removal of arsenic from contaminated soils by combining tartaric acid with dithionite: An efficient composite washing agent[J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 109877. doi: 10.1016/j.jece.2023.109877
|
[47] |
WANG Y, LIN Q, XIAO R, et al. Removal of Cu and Pb from contaminated agricultural soil using mixed chelators of fulvic acid potassium and citric acid[J]. Ecotoxicology and Environmental Safety, 2020, 206: 111179. doi: 10.1016/j.ecoenv.2020.111179
|
[48] |
胡红青, 贺纪正, 李学垣, 等. 有机酸对酸性土壤吸附磷的影响[J]. 华中农业大学学报, 1997(1): 41-46.
|
[49] |
RAURET G, LóPEZ-SáNCHEZ J F, SAHUQUILLO A, et al. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials[J]. Journal of environmental monitoring, 1999, 1(1): 57-61. doi: 10.1039/a807854h
|
[50] |
GABARRóN M, ZORNOZA R, MARTíNEZ-MARTíNEZ S, et al. Effect of land use and soil properties in the feasibility of two sequential extraction procedures for metals fractionation[J]. Chemosphere, 2019, 218: 266-272. doi: 10.1016/j.chemosphere.2018.11.114
|
[51] |
KENNOU B, EL MERAY M, ROMANE A, et al. Assessment of heavy metal availability (Pb, Cu, Cr, Cd, Zn) and speciation in contaminated soils and sediment of discharge by sequential extraction[J]. Environmental Earth Sciences, 2015, 74(7): 5849-5858. doi: 10.1007/s12665-015-4609-y
|
[52] |
GAO L, WANG Z, LI S, et al. Bioavailability and toxicity of trace metals (Cd, Cr, Cu, Ni, and Zn) in sediment cores from the Shima River, South China[J]. Chemosphere, 2018, 192: 31-42. doi: 10.1016/j.chemosphere.2017.10.110
|