[1] |
岳敏, 谷学新, 邹洪, 等. 多环芳烃的危害与防治[J]. 首都师范大学学报(自然科学版), 2003(3): 40-44+31.
|
[2] |
平立凤, 骆永明. 有机质对多环芳烃环境行为影响的研究进展[J]. 土壤, 2005(4): 362-369.
|
[3] |
LORS C, RYNGAERT A, Périé F, et al. Evolution of bacterial community during bioremediation of PAHs in a coal tar contaminated soil[J]. Chemosphere, 2010, 81(10): 1263-1271. doi: 10.1016/j.chemosphere.2010.09.021
|
[4] |
COSTERA Á, FEIDT C, DZIURLA M A, et al. Bioavailability of polycyclic aromatic hydrocarbons (PAHs) from soil and hay matrices in lactating goats[J]. Journal of Agricultural and Food Chemistry, 2009, 57(12): 5352-5357. doi: 10.1021/jf9003797
|
[5] |
UMEH A C, DUAN L, NAIDU R, et al. Time-dependent remobilization of nonextractable benzo[a]pyrene residues in contrasting soils: effects of aging, spiked concentration, and soil properties[J]. Environmental Science & Technology, 2018, 52(21): 12295-12305.
|
[6] |
NORTHCOTT G L, JONES K C. Partitioning, extractability, and formation of nonextractable PAH residues in soil. 1. compound differences in aging and sequestration[J]. Environmental Science & Technology, 2001, 35(6): 1103-1110.
|
[7] |
RICHNOW H H, ESCHENBACH A, MAHRO B, et al. Formation of nonextractable soil residues: a stable isotope approach[J]. Environmental Science & Technology, 1999, 33(21): 3761-3767.
|
[8] |
BERRY D F, BOYD S A. Decontamination of soil through enhanced formation of bound residues[J]. Environmental Science & Technology, 1985, 19(11): 1132-1133.
|
[9] |
GAO Y, YUAN X, LIN X, et al. Low-molecular-weight organic acids enhance the release of bound PAH residues in soils[J]. Soil and Tillage Research, 2015, 145: 103-110. doi: 10.1016/j.still.2014.09.008
|
[10] |
WEI R, WEI S, YAO C, et al. Distribution and biodegradation of nonextractable polycyclic aromatic hydrocarbons in particle-size aggregates of field-contaminated soils[J]. Journal of Soils and Sediments, 2023, 23(11): 3748-3760. doi: 10.1007/s11368-023-03578-9
|
[11] |
ESCHENBACH A, WIENBERG R, MAHRO B. Fate and stability of nonextractable residues of [14C] PAH in contaminated soils under environmental stress conditions[J]. Environmental Science & Technology, 1998, 32(17): 2585-2590.
|
[12] |
LIU C, SHI H, WANG C, et al. Thermal remediation of soil contaminated with polycyclic aromatic hydrocarbons: pollutant removal process and influence on soil functionality[J]. Toxics, 2022, 10(8): 474. doi: 10.3390/toxics10080474
|
[13] |
GAN S, LAU E V, NG H K. Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs)[J]. Journal of Hazardous Materials, 2009, 172(2-3): 532-549. doi: 10.1016/j.jhazmat.2009.07.118
|
[14] |
LEE J K, KIM B U, PARK D. Thermal treatment of petroleum contaminated soils by a fluidized bed desorber[J]. Korean Journal of Chemical Engineering, 1999, 16(5): 684-687. doi: 10.1007/BF02708152
|
[15] |
鲍士旦. 土壤农化分析(第三版)[M]. 北京: 中国农业出版社, 2000.
|
[16] |
窦森. 土壤有机质[M]. 北京: 科学出版社, 2010.
|
[17] |
RICHNOW H H, ANNWEILER E, KONING M, et al. Tracing the transformation of labelled [1-13C]phenanthrene in a soil bioreactor[J]. Environmental Pollution, 2000, 108(1): 91-101. doi: 10.1016/S0269-7491(99)00205-5
|
[18] |
UMEH A C, DUAN L, NAIDU R, et al. Enhanced recovery of nonextractable benzo[a]pyrene residues in contrasting soils using exhaustive methanolic and nonmethanolic alkaline treatments[J]. Analytical Chemistry, 2018, 90(21): 13104-13111. doi: 10.1021/acs.analchem.8b04440
|
[19] |
中华人民共和国环境保护部. 土壤和沉积物多环芳烃的测定 高效液相色谱法: HJ 784-2016[S]. 北京: 中国环境科学出版社, 2016.
|
[20] |
生态环境部, 国家市场监督管理总局. 土壤环境质量建设用地土壤污染风险管控标准: GB 36600—2018[S]. 北京: 中国标准出版社, 2018.
|
[21] |
夏天翔, 姜林, 魏萌, 等. 焦化厂土壤中PAHs的热脱附行为及其对土壤性质的影响[J]. 化工学报, 2014, 65(4): 1470-1480.
|
[22] |
陈星, 宋昕, 吕正勇, 等. PAHs污染土壤的热修复可行性[J]. 环境工程学报, 2018, 12(10): 2833-2844.
|
[23] |
BERTIN G, SVHIAVON M. Les résidus non extractibles de produits phytosanitaires dans les sols[J]. Agronomie, 1989, 9(2): 117-124. doi: 10.1051/agro:19890201
|
[24] |
NORTHCOTT G L, JOENS K C. Experimental approaches and analytical techniques for determining organic compound bound residues in soil and sediment[J]. Environmental Pollution, 2000, 108(1): 19-43. doi: 10.1016/S0269-7491(99)00199-2
|
[25] |
BPLLAG J M, LOLL M J. Incorporation of xenobiotics into soil humus[J]. Experientia, 1983, 39(11): 1221-1231. doi: 10.1007/BF01990359
|
[26] |
RICHNOW H H, SEIFERT R, HEFTER J, et al. Metabolites of xenobiotica and mineral oil constituents linked to macromolecular organic matter in polluted environments[J]. Organic Geochemistry, 1994, 22(3-5): 671-IN10. doi: 10.1016/0146-6380(94)90132-5
|
[27] |
RICHNOW H H, SEIFERTt R, KASTNER M, et al. Rapid screening of PAH-residues in bioremediated soils[J]. Chemosphere, 1995, 31(8): 3991-3999. doi: 10.1016/0045-6535(95)00271-9
|
[28] |
DOICK K J, BURAUEL P, JONES K C, et al. Distribution of aged 14 C−PCB and 14 C−PAH residues in particle-size and humic fractions of an agricultural soil[J]. Environmental Science & Technology, 2005, 39(17): 6575-6583.
|
[29] |
O’BRIEN P L, DESUTTER T M, CASEY F X M, et al. Thermal remediation alters soil properties-a review[J]. Journal of Environmental Management, 2018, 206: 826-835. doi: 10.1016/j.jenvman.2017.11.052
|
[30] |
CERTINIG. Effects of fire on properties of forest soils: a review[J]. Oecologia, 2005, 143(1): 1-10. doi: 10.1007/s00442-004-1788-8
|
[31] |
张新英, 李发生, 许端平, 等. 热解吸对土壤中POPs农药的去除及土壤理化性质的影响[J]. 环境工程学报, 2012, 6(4): 1381-1386.
|
[32] |
XING B. Sorption of naphthalene and phenanthrene by soil humic acids[J]. Environmental Pollution, 2001, 111(2): 303-309. doi: 10.1016/S0269-7491(00)00065-8
|
[33] |
ZHENG T, HU T, ZHANG J, et al. Dynamics in imidacloprid sorption related to changes of soil organic matter content and quality along a 20-year cultivation chronosequence of citrus orchards[J]. Environmental Pollution, 2021, 291: 118069. doi: 10.1016/j.envpol.2021.118069
|
[34] |
JARUKAS L, ISANNUSKAS L, KASPARAVICIENE G, et al. Determination of organic compounds, fulvic acid, humic acid, and humin in peat and sapropel alkaline extracts[J]. Molecules, 2021, 26(10): 2995. doi: 10.3390/molecules26102995
|
[35] |
ZHANG Z, LIU S, WANG X, et al. Differences in structure and composition of soil humic substances and their binding for polycyclic aromatic hydrocarbons in different climatic zones[J]. Environmental Pollution, 2023, 322: 121121. doi: 10.1016/j.envpol.2023.121121
|
[36] |
ZHANG L, LEBOEUF E J, XING B. Thermal analytical investigation of biopolymers and humic- and carbonaceous-based soil and sediment organic matter[J]. Environmental Science & Technology, 2007, 41(14): 4888-4894.
|
[37] |
DELAPP R C, LEBOUEF E J. Thermal analysis of whole soils and sediment[J]. Journal of Environmental Quality, 2004, 33(1): 330-337. doi: 10.2134/jeq2004.3300
|
[38] |
VERGNOUS A, GUILIANO M, DI R R, et al. Quantitative and mid-infrared changes of humic substances from burned soils[J]. Environmental Research, 2011, 111(2): 205-214. doi: 10.1016/j.envres.2010.03.005
|
[39] |
LI D C, XU W F, MU Y, et al. Remediation of petroleum-contaminated soil and simultaneous recovery of oil by fast pyrolysis[J]. Environmental Science & Technology, 2018, 52(9): 5330-5338.
|