[1] |
DING S, LI Y, ZHU T, et al. Regeneration performance and carbon consumption of semi-coke and activated coke for SO2 and NO removal[J]. Journal of Environment Sciences (China), 2015, 34(8): 37-43.
|
[2] |
TIAN Y H, HU S D, JING X D, et al. Desulfurization performances of activated coke prepared from fine blue-coke[J]. Water, Air, & Soil Pollution, 2020, 231(12): 1383-1387.
|
[3] |
LI P, AILIJIANG N, CAO X X, et al. Pretreatment of coal gasification wastewater by adsorption using activated carbons and activated coke[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2015, 482: 177-183.
|
[4] |
ZHANG J, LI C T, DU X Y, et al. Recycle of waste activated coke as an efficient sorbent for Hg0 removal from coal-fired flue gas[J]. Fuel, 2022, 324: 124645. doi: 10.1016/j.fuel.2022.124645
|
[5] |
BUCZEK B. Analysis of spent active coke properties by spouted bed technique[J]. Chemical and Process Engineering, 2013, 34(3): 415-421.
|
[6] |
LI J, ZHOU B X, CHANG J C, et al. Study on thermal regeneration of saturated activated coke coupled with SO2 carbothermal reduction to produce elemental sulfur[J]. Energy, 2023, 278: 127909. doi: 10.1016/j.energy.2023.127909
|
[7] |
SUN F, GAO J, ZHU Y, et al. Mechanism of SO2 adsorption and desorption on commercial activated coke[J]. Korean Journal of Chemical Engineering, 2011, 28(11): 2218-2225. doi: 10.1007/s11814-011-0078-5
|
[8] |
秦文芳. 活性焦基改良剂对盐碱地的改良效应[D]. 太原: 山西大学, 2021.
|
[9] |
HU Z J, ZHOU H, ZHANG W L, et al. The influence of the porous structure of activated coke for the treatment of gases from coal combustion on its mechanical strength[J]. Processes, 2020, 8(8): 900. doi: 10.3390/pr8080900
|
[10] |
JOSE LUIS F, MANUE FERNANDO R P, MARIA M A, et al. Modification of the surface chemistry of activated carbons[J]. Carbon, 1999, 37(9): 1379-1389. doi: 10.1016/S0008-6223(98)00333-9
|
[11] |
JASTRZAB K, Changes of activated coke properties in cyclic adsorption treatment of flue gases[J]. Fuel Processing Technology, 2012, 104: 371-377.
|
[12] |
ZHANG J H, HE Z J, GUO Q, et al. Effects of microwave modification on the desulfurization and denitrification of activated coke[J]. Bioresources, 2021, 16(1): 729-746.
|
[13] |
秦文芳, 宋慧平, 范远, 等. 活性焦对晋北盐碱地土壤性质和两种植物生长的影响[J]. 应用生态学报, 2021, 32(5): 1799-1806.
|
[14] |
OVIEDO-OCANA E R, TORRES-LOZADA P, MARMOLEJO-REBELLON L F, et al. Stability and maturity of biowaste composts derived by small municipalities: correlation among physical, chemical and biological indices[J]. Waste Management, 2015, 44: 63-71. doi: 10.1016/j.wasman.2015.07.034
|
[15] |
TESSFAW Z A, BEYENE A, NEBIYU A, et al. Co-composting of khat-derived biochar with municipal solid waste: a sustainable practice of waste management[J]. Sustainability, 2020, 12(24): 10668. doi: 10.3390/su122410668
|
[16] |
WANG M M, WU Y C, ZHAO J Y, et al. Comparison of composting factors, heavy metal immobilization, and microbial activity after biochar or lime application in straw-manure composting[J]. Bioresource Technology, 2022, 363: 127872. doi: 10.1016/j.biortech.2022.127872
|
[17] |
李宇航, 邢泽炳, 马玮键, 等. 生物炭对鸡粪好氧堆肥过程的影响[J]. 农业工程, 2021, 11(8): 53-58. doi: 10.3969/j.issn.2095-1795.2021.08.009
|
[18] |
夏璇. 生物炭对鸡粪好氧堆肥中养分含量及腐殖化的影响研究[D]. 重庆: 重庆大学, 2019.
|
[19] |
石建新. 添加生物炭猪粪堆肥腐殖化及应用研究[D]. 塔里木: 塔里木大学, 2023.
|
[20] |
张浩然. 添加不同生物质炭对牛粪堆肥碳氮养分保蓄的影响[D]. 西宁: 青海师范大学, 2022.
|
[21] |
LUO C, LI S H, REN P Y, et al. Enhancing the carbon content of coal gangue for composting through sludge amendment: A feasibility study[J]. Environmental Pollution, 2024, 348: 123439. doi: 10.1016/j.envpol.2024.123439
|
[22] |
孙志华, 张金水, 同延安, 等. 添加风化煤对蘑菇渣牛粪堆肥的影响[J]. 西北农业学报, 2012, 21(2): 162-166.
|
[23] |
黄宏林, 何广聪, 覃侠龙, 等. 粉煤灰对牛粪好氧堆肥进程的影响[J]. 养殖与饲料, 2021, 20(1): 10-14.
|
[24] |
中国国家标准化管理委员会. 复混肥料中游离水含量的测定: GB/T 8576-2010[S]. 北京: 中国标准出版社, 2010.
|
[25] |
中华人民共和国农业农村部. 有机肥料: NY 525-2021[S]. 北京: 中国农业出版社, 2021.
|
[26] |
中华人民共和国农业农村部. 肥料 汞、砷、镉、铅、铬含量的测定[S]. 北京: 中国标准出版社, 2010.
|
[27] |
徐伟栋, 张佳楠, 王俊梅, 等. 鸡粪堆肥周期中养分指标和腐熟程度变化研究[J]. 安徽农业科学, 2021, 49(8): 153-156.
|
[28] |
周亚文, 张宇航, 沈玉君, 等. 初始含水率对人粪污好氧堆肥腐熟及微生物群落结构变化的影响[J]. 环境工程学报, 2022, 16(12): 4108-4120. doi: 10.12030/j.cjee.202207035
|
[29] |
杨海君, 许云海, 肖为, 等. 温度和物料配比对城市园林绿化废物与鸡粪水浴法好氧堆肥的影响[J]. 水土保持通报, 2019, 39(6): 35-43.
|
[30] |
RICH N, BHARTI A, KUMAR S. Effect of bulking agents and cow dung as inoculant on vegetable waste compost quality[J]. Bioresource Technology, 2018, 252: 83-90. doi: 10.1016/j.biortech.2017.12.080
|
[31] |
WANG W, ZHANG L, SUN X Y. Improvement of two-stage composting of green waste by addition of eggshell waste and rice husks[J]. Bioresource Technology, 2021, 320(Pt B): 124388.
|
[32] |
AYILARA M S, OLANREWAJU O S, BABALOLA O, et al. Waste management through composting: challenges and potentials[J]. Sustainability, 2020, 12(11): 4456. doi: 10.3390/su12114456
|
[33] |
肖庆超, 刘莉萍, 白云, 等. 焦炉烟气脱硫脱硝超低排放改造工艺探析[J]. 环境工程, 2023, 41(S1): 621-624.
|
[34] |
冯红梅, 秦永胜, 李筱帆, 等. 添加菌剂和鸡粪对园林废弃物堆肥效果的影响[J]. 北方园艺, 2015, 15: 156-160. doi: 10.11937/bfyy.201515042
|
[35] |
刘祥, 李辉, 丁旻, 等. 翻抛频率与混合比对鸡粪槽式好氧堆肥的影响[J]. 农业工程, 2023, 13(7): 35-41.
|
[36] |
敖静, 李杨, 刘晓辉, 等. 鸡粪堆肥发酵过程微生物数量与温度及酶变化的相关性研究[J]. 微生物学杂志, 2020, 40(5): 67-72. doi: 10.3969/j.issn.1005-7021.2020.05.009
|
[37] |
FANG C, YUAN X R, LIAO K K, et al. Micro-aerobic conditions based on membrane-covered improves the quality of compost products: Insights into fungal community evolution and dissolved organic matter characteristics[J]. Bioresource Technology, 2022, 362: 127849. doi: 10.1016/j.biortech.2022.127849
|
[38] |
YANG Y, WANG G Y, LI G X, et al. Selection of sensitive seeds for evaluation of compost maturity with the seed germination index[J]. Waste Management, 2021, 136: 238-243. doi: 10.1016/j.wasman.2021.09.037
|
[39] |
LIU G K, WANG L W, LI Y K, et al. Biomass and coal modification to prepare activated coke for desulfurization and denitrification[J]. Energies, 2022, 15(8): 2904. doi: 10.3390/en15082904
|
[40] |
钱虎林, 曹先中, 邓成豪, 等. 活性焦脱硫脱硝技术及其改性方法研究进展[J]. 煤化工, 2021, 49(5): 82-85.
|
[41] |
薛刚, 厉桂香, 李希臣, 等. 不同配比堆肥替代化肥对土壤性状及小麦产量的影响[J]. 农业科技与信息, 2023, 2: 57-60. doi: 10.3969/j.issn.1003-6997.2023.02.015
|