[1] |
TAHIR K, MIRAN W, JANG J, et al. MnCo2O4 coated carbon felt anode for enhanced microbial fuel cell performance[J]. Chemosphere, 2021, 265: 129098. doi: 10.1016/j.chemosphere.2020.129098
|
[2] |
POURESHGHI F, CALAY R K, DAS S. Enhanced performance of microbial fuel cells using electrochemically treated carbon felt anode[J]. Results in Chemistry, 2023, 6: 101203. doi: 10.1016/j.rechem.2023.101203
|
[3] |
NANDY A, RADOVIĆ J R, NOVOTNIK B, et al. Investigation of crude oil degradation using metal oxide anode-based microbial fuel cell[J]. Bioresource Technology Reports, 2020, 11: 100449. doi: 10.1016/j.biteb.2020.100449
|
[4] |
MATEO S, CAñIZARES P, RODRIGO M A, et al. Driving force of the better performance of metal-doped carbonaceous anodes in microbial fuel cells[J]. Applied Energy, 2018, 225: 52-59. doi: 10.1016/j.apenergy.2018.05.016
|
[5] |
ZENG L, ZHANG L, LI W, et al. Molybdenum carbide as anodic catalyst for microbial fuel cell based on Klebsiella pneumoniae[J]. Biosensors and Bioelectronics, 2010, 25(12): 2696-2700. doi: 10.1016/j.bios.2010.05.002
|
[6] |
ZENG L, CHEN X, LI H, et al. Highly dispersed polydopamine-modified Mo2C/MoO2 nanoparticles as anode electrocatalyst for microbial fuel cells[J]. Electrochimica Acta, 2018, 283: 528-537. doi: 10.1016/j.electacta.2018.06.192
|
[7] |
XU H, CHEN Y, WEN Q, et al. The role of binary transition metal Cobalt-Nickel sulfide as an anode catalyst in specifically selection of Desulfuromonas and improved performance of microbial fuel cell[J]. Chemical Engineering Journal, 2023, 470: 144163. doi: 10.1016/j.cej.2023.144163
|
[8] |
HU M, LI X, XIONG J, et al. Nano-Fe3C@PGC as a novel low-cost anode electrocatalyst for superior performance microbial fuel cells[J]. Biosensors and Bioelectronics, 2019, 142: 111594. doi: 10.1016/j.bios.2019.111594
|
[9] |
HU M, LIN Y, LI X, et al. Nano-Fe3C@2D-NC@CC as anode for improving extracellular electron transfer and electricity generation of microbial fuel cells[J]. Electrochimica Acta, 2022, 404: 139618. doi: 10.1016/j.electacta.2021.139618
|
[10] |
LIU D, CHANG Q, GAO Y, et al. High performance of microbial fuel cell afforded by metallic tungsten carbide decorated carbon cloth anode[J]. Electrochimica Acta, 2020, 330: 135243. doi: 10.1016/j.electacta.2019.135243
|
[11] |
ZOU L, HUANG Y, WU X, et al. Synergistically promoting microbial biofilm growth and interfacial bioelectrocatalysis by molybdenum carbide nanoparticles functionalized graphene anode for bioelectricity production[J]. Journal of Power Sources, 2019, 413: 174-181. doi: 10.1016/j.jpowsour.2018.12.041
|
[12] |
MOHAMED H O, SAYED E T, OBAID M, et al. Transition metal nanoparticles doped carbon paper as a cost-effective anode in a microbial fuel cell powered by pure and mixed biocatalyst cultures[J]. International Journal of Hydrogen Energy, 2018, 43(46): 21560-21571. doi: 10.1016/j.ijhydene.2018.09.199
|
[13] |
ZHAO Z, ZHU Z, WANG F, et al. Bimetallic carbides embedded in heteroatom-doped carbon nanotubes for efficient electrocatalytic hydrogen evolution reaction and high-performance lithium storage[J]. Chemical Engineering Journal, 2021, 415: 128885. doi: 10.1016/j.cej.2021.128885
|
[14] |
ZHU Z, ZHAO Z, BAO X, et al. Boosting lithium-ion storage performance by ultrafine bimetal carbides nanoparticles coupled with Hollow-like carbon composites[J]. Journal of Colloid and Interface Science, 2022, 607: 676-683. doi: 10.1016/j.jcis.2021.09.010
|
[15] |
RASOOL R T, ASHRAF G A, FADHALI M M, et al. Peroxymonosulfate-based photodegradation of naproxen by stimulating (Mo, V, and Zr)-carbide nanoparticles[J]. Journal of Water Process Engineering, 2023, 54: 104027. doi: 10.1016/j.jwpe.2023.104027
|
[16] |
HU R Y, LIU L Y, HE J H, et al. Preparation and electrochemical properties of bimetallic carbide Fe3Mo3C/Mo2C@carbon nanotubes as negative electrode material for supercapacitor[J]. Journal of Energy Storage, 2023, 72: 108656. doi: 10.1016/j.est.2023.108656
|
[17] |
QIU X, YUE X, HUANG S. Bimetallic carbides of Ni6W6C as efficient non-precious metal electrocatalysts for hydrogen oxidation reaction in alkaline medium[J]. Materials Letters, 2022, 324: 132749. doi: 10.1016/j.matlet.2022.132749
|
[18] |
HE C, BO T, WANG B, et al. RGO induced one-dimensional bimetallic carbide nanorods: An efficient and pH-universal hydrogen evolution reaction electrocatalyst[J]. Nano Energy, 2019, 62: 85-93. doi: 10.1016/j.nanoen.2019.05.009
|
[19] |
LU X F, YU L, ZHANG J, et al. Ultrafine Dual‐Phased Carbide Nanocrystals Confined in Porous Nitrogen‐Doped Carbon Dodecahedrons for Efficient Hydrogen Evolution Reaction[J]. Advance Material, 2019, 31(30): 1900699. doi: 10.1002/adma.201900699
|
[20] |
SONG B, WANG Q, ALI J, et al. Biochar-supported Fe3C nanoparticles with enhanced interfacial contact as high-performance binder-free anode material for microbial fuel cells[J]. Chemical Engineering Journal, 2023, 474: 145678. doi: 10.1016/j.cej.2023.145678
|
[21] |
YU S, ZHANG M, LIU Y, et al. Enhanced extracellular electron transfer of CoMn2O4@CNT as microbial fuel cell anode[J]. Journal of Environmental Chemical Engineering, 2023, 11(6): 111201. doi: 10.1016/j.jece.2023.111201
|
[22] |
REN T, LIU Y, SHI C, et al. Bimetal-organic framework-derived porous CoFe2O4 nanoparticles as biocompatible anode electrocatalysts for improving the power generation of microbial fuel cells[J]. Journal of Colloid and Interface Science, 2023, 643: 428-436. doi: 10.1016/j.jcis.2023.04.056
|
[23] |
LIU Y, ZHOU G, SUN Y, et al. Hollow cobalt ferrite nanofibers integrating with carbon nanotubes as microbial fuel cell anode for boosting extracellular electron transfer[J]. Applied Surface Science, 2023, 609: 155386. doi: 10.1016/j.apsusc.2022.155386
|
[24] |
CHENG X, LIU B, QIU Y, et al. Enhanced microorganism attachment and flavin excretion in microbial fuel cells via an N, S-codoped carbon microflower anode[J]. Journal of Colloid and Interface Science, 2023, 648: 327-337. doi: 10.1016/j.jcis.2023.05.154
|
[25] |
WANG H, WEI L, LIU J, et al. Hollow bimetal ZIFs derived Cu/Co/N co-coordinated ORR electrocatalyst for microbial fuel cells[J]. International Journal of Hydrogen Energy, 2020, 45(7): 4481-4489. doi: 10.1016/j.ijhydene.2019.12.043
|
[26] |
JING C, PING Z, MAHMOOD Q. Influence of various nitrogenous electron acceptors on the anaerobic sulfide oxidation[J]. Bioresource Technology, 2010, 101(9): 2931-2937. doi: 10.1016/j.biortech.2009.11.047
|
[27] |
LI C, FENG Y, LIANG D, et al. Spatial-type skeleton induced Geobacter enrichment and tailored bio-capacitance of electroactive bioanode for efficient electron transfer in microbial fuel cells[J]. Science of the Total Environment, 2022, 821: 153123. doi: 10.1016/j.scitotenv.2022.153123
|
[28] |
RISMANI-YAZDI H, CARVER S M, CHRISTY A D, et al. Suppression of methanogenesis in cellulose-fed microbial fuel cells in relation to performance, metabolite formation, and microbial population[J]. Bioresource Technology, 2013, 129: 281-288. doi: 10.1016/j.biortech.2012.10.137
|
[29] |
WANG S S, JIANG L J, XIE S B, et al. Disproportionation of inorganic sulfur compounds by mesophilic chemolithoautotrophic campylobacterota[J]. mSystems, 2022, 8(1): e0095422.
|
[30] |
SUN J, WEI L, YIN R, et al. Microbial iron reduction enhances in-situ control of biogenic hydrogen sulfide by FeOOH granules in sediments of polluted urban waters[J]. Water Research, 2020, 171: 115453. doi: 10.1016/j.watres.2019.115453
|