[1] |
GOBLER C J. Climate change and harmful algal blooms: Insights and perspective[J]. Harmful Algae, 2020, 91: 101731. doi: 10.1016/j.hal.2019.101731
|
[2] |
FOLCIK A M, KLEMASHEVICH C, PILLAI S D. Response of Microcystis aeruginosa and Microcystin-LR to electron beam irradiation doses[J]. Radiation Physics and Chemistry, 2021, 186: 109534. doi: 10.1016/j.radphyschem.2021.109534
|
[3] |
TANABE Y, HODOKI Y, SANO T, et al. Adaptation of the freshwater bloom-forming cyanobacterium Microcystis aeruginosa to brackish water is driven by recent horizontal transfer of sucrose genes[J]. Frontiers in Microbiology, 2018, 9: 1150. doi: 10.3389/fmicb.2018.01150
|
[4] |
BURATTI F M, MANGANELLI M, VICHI S, et al. Cyanotoxins: producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation[J]. Archives of Toxicology, 2017, 91(3): 1049-1130. doi: 10.1007/s00204-016-1913-6
|
[5] |
MUNOZ M, NIETO-SANDOVAL J, CIRÉS S, et al. Degradation of widespread cyanotoxins with high impact in drinking water (microcystins, cylindrospermopsin, anatoxin-a and saxitoxin) by CWPO[J]. Water Research, 2019, 163: 114853. doi: 10.1016/j.watres.2019.114853
|
[6] |
ANDERSON D M, GLIBERT P M, BURKHOLDER J M. Harmful algal blooms and eutrophication: Nutrient sources, composition, and consequences[J]. Estuaries, 2002, 25: 704-726. doi: 10.1007/BF02804901
|
[7] |
王磊, 魏群, 马湘蒙, 等. 硫酸亚铁协同过硫酸氢钾去除铜绿微囊藻[J]. 环境工程学报, 2021, 15(11): 3572-3580. doi: 10.12030/j.cjee.202108114
|
[8] |
WATSON S E, TAYLOR C H, BELL V, et al. Impact of copper sulphate treatment on cyanobacterial blooms and subsequent water quality risks[J]. Journal of Environmental Management, 2024, 366: 121828. doi: 10.1016/j.jenvman.2024.121828
|
[9] |
TSAI K P. Management of target algae by using copper-based algaecides: Effects of algal cell density and sensitivity to copper[J]. Water Air and Soil Pollution, 2016, 227(7): 238. doi: 10.1007/s11270-016-2926-8
|
[10] |
ZHOU J, WANG T, XIE X. Rationally designed tubular coaxial-electrode copper ionization cells (CECICs) harnessing non-uniform electric field for efficient water disinfection[J]. Environment International, 2019, 128: 30-36. doi: 10.1016/j.envint.2019.03.072
|
[11] |
FLISAR K, MEGLIC S H, MORELJ J, et al. Testing a prototype pulse generator for a continuous flow system and its use for E. coli inactivation and microalgae lipid extraction[J]. Bioelectrochemistry, 2014, 100: 44-51. doi: 10.1016/j.bioelechem.2014.03.008
|
[12] |
HUO Z Y, LIU H, WANG W L, et al. Low-voltage alternating current powered polydopamine-protected copper phosphide nanowire for electroporation-disinfection in water[J]. Journal of Materials Chemistry A, 2019, 7(13): 7347-7354. doi: 10.1039/C8TA10942G
|
[13] |
BODÉNÈS P, BENSALEM S, FRANçAIS O, et al Inducing reversible or irreversible pores in Chlamydomonas reinhardtii with electroporation: Impact of treatment parameters[J]. Algal Research, 2019, 37: 124-132.
|
[14] |
LUENGO E, MARTÍNEZ J M, COUSTETS M, et al. A comparative study on the effects of millisecond- and microsecond-pulsed electric field treatments on the permeabilization and extraction of pigments from Chlorella vulgaris[J]. The Journal of Membrane Biology, 2015, 248(5): 883-891. doi: 10.1007/s00232-015-9796-7
|
[15] |
LIU P, ZHOU J, WANG T, et al. Efficient microalgae inactivation and growth control by locally enhanced electric field treatment (LEEFT)[J]. Environmental Science: Nano, 2020, 7(7): 2021-2031. doi: 10.1039/C9EN01366K
|
[16] |
刘佩蕊. 低压电场驱动灭活与磁性纳米材料捕获藻细胞的效能与机制研究[D]. 北京: 北京林业大学, 2020.
|
[17] |
XIAN X, LI X, YE C, et al. Higher sensitivity to Cu2+ exposure of Microcystis aeruginosa in late lag phase is beneficial to its control[J]. Water Research, 2022, 214: 118207. doi: 10.1016/j.watres.2022.118207
|
[18] |
LI X, CHEN S, ZENG J, et al. Impact of chlorination on cell inactivation, toxin release and degradation of cyanobacteria of development and maintenance stage[J]. Chemical Engineering Journal, 2020, 397: 125378. doi: 10.1016/j.cej.2020.125378
|
[19] |
PARNIAKOV O, BARBA F J, GRIMI N, et al. Pulsed electric field and pH assisted selective extraction of intracellular components from microalgae Nannochloropsis[J]. Algal Research 2015, 8: 128-134.
|
[20] |
JOANNES C, SIPAUT C S, DAYOU J, et al. The potential of using pulsed electric field (PEF) technology as the cell disruption method to extract lipid from microalgae for biodiesel production[J]. International Journal of Renewable Energy Research, 2015, 5(2): 598-621.
|
[21] |
TANG X, KRAUSFELDT L E, SHAO K, et al. Seasonal gene expression and the ecophysiological implications of toxic Microcystis aeruginosa blooms in Lake Taihu[J]. Environmental Science & Technology, 2018, 52(19): 11049-11059.
|
[22] |
希日古丽·麦木提敏, 土玛日斯·木合塔尔, 王云, 等. 纳米塑料对硫酸铜抑制铜绿微囊藻生长的影响作用[J]. 生态毒理学报, 2024, 19(2): 1-10. doi: 10.7524/AJE.1673-5897.20240401004
|
[23] |
WANG G, ZHANG Q, LI J, et al. Combined effects of erythromycin and enrofloxacin on antioxidant enzymes and photosynthesis-related gene transcription in Chlorella vulgaris[J]. Aquatic Toxicology, 2019, 212: 138-145.
WANG G, ZHANG Q, LI J, et al. Combined effects of erythromycin and enrofloxacin on antioxidant enzymes and photosynthesis-related gene transcription in Chlorella vulgaris[J]. Aquatic Toxicology, 2019, 212: 138-145.
|
[24] |
LIU P R, ZHOU J F, HONG Y, et al. Electric-field enhanced microalgae inactivation using a flow-through copper ionization cell[J]. Journal of Hazardous Materials, 2020, 400: 123320. doi: 10.1016/j.jhazmat.2020.123320
|
[25] |
SILVA J C, ECHEVESTE P, LOMBARDI A T. Higher biomolecules yield in phytoplankton under copper exposure[J]. Ecotoxicology and Environmental Safety, 2018, 161: 57-63. doi: 10.1016/j.ecoenv.2018.05.059
|
[26] |
TRIPATHI B N, GAUR J P. Physiological behavior of Scenedesmus sp. during exposure to elevated levels of Cu and Zn and after withdrawal of metal stress[J]. Protoplasma, 2006, 229(1): 1-9. doi: 10.1007/s00709-006-0196-9
|
[27] |
CHILLAPPAGARI S, MIETHKE M, TRIP H, et al. Copper acquisition is mediated by YcnJ and regulated by YcnK and CsoR in Bacillus subtilis[J]. Journal of Bacteriology, 2009, 191(7): 2362-2370. doi: 10.1128/JB.01616-08
|
[28] |
王寿兵, 徐紫然, 马小雪, 等. Cu2+对铜绿微囊藻生长及叶绿素荧光主要参数的影响研究[J]. 中国环境科学, 2016, 36(12): 3759-3765. doi: 10.3969/j.issn.1000-6923.2016.12.030
|
[29] |
LI B, ZHANG X, DENG J, et al. A new perspective of copper-iron effects on bloom-forming algae in a highly impacted environment[J]. Water Research, 2021, 195: 116889. doi: 10.1016/j.watres.2021.116889
|
[30] |
ZAMYADI A, FAN Y, DALY R I, et al. Chlorination of Microcystis aeruginosa: toxin release and oxidation, cellular chlorine demand and disinfection by-products formation[J]. Water Research, 2013, 47(3): 1080-1090. doi: 10.1016/j.watres.2012.11.031
|
[31] |
LI X, CHEN S, ZENG J, et al. Comparing the effects of chlorination on membrane integrity and toxin fate of high- and low-viability cyanobacteria[J]. Water Research, 2020, 177: 115769. doi: 10.1016/j.watres.2020.115769
|