[1] 李小林, 王毅力. 载镧磁性水凝胶吸附剂对水中磷酸根的吸附性能研究, 2019中国环境科学学会科学技术年会论文集(第二卷)[C]. 中国环境科学学会, 西安, 2019.
[2] CORDELL D, DRANGERT J, WHITE S. The story of phosphorus: Global food security and food for thought[J]. Global Environmental Change, 2009, 19(2): 292-305. doi: 10.1016/j.gloenvcha.2008.10.009
[3] 蒋松竹, 郭黎卿, 尹训飞, 等. 美国污水处理厂深度除磷技术分析[J]. 环境污染与防治, 2015, 37(3): 102-106,110.
[4] LI Y, MA J, YU M, et al. Carbon felt (CF) acted as an “ionic capacitor” to enhance flow electrode capacitive deionization (FCDI) desalination performance[J]. Desalination, 2024, 575: 117341. doi: 10.1016/j.desal.2024.117341
[5] DI CAPUA F, DE SARIO S, FERRARO A, et al. Phosphorous removal and recovery from urban wastewater: Current practices and new directions[J]. Science of The Total Environment, 2022, 823: 153750. doi: 10.1016/j.scitotenv.2022.153750
[6] LOGANATHAN P, VIGNESWARAN S, KANDASAMY J, et al. Removal and Recovery of Phosphate From Water Using Sorption[J]. Critical Reviews in Environmental Science and Technology, 2014, 44(8): 847-907. doi: 10.1080/10643389.2012.741311
[7] LIN X, XIE Y, LU H, et al. Facile preparation of dual La-Zr modified magnetite adsorbents for efficient and selective phosphorus recovery[J]. Chemical Engineering Journal, (Lausanne, Switzerland : 1996). 2021, 413: 127530.
[8] LIU H, SHAN J, CHEN Z, et al. Efficient recovery of phosphate from simulated urine by Mg/Fe bimetallic oxide modified biochar as a potential resource[J]. Science of The Total Environment, 2021, 784: 147546. doi: 10.1016/j.scitotenv.2021.147546
[9] SHENG X, CHEN S, ZHAO Z, et al. Metal element-based adsorbents for phosphorus capture: Chaperone effect, performance and mechanism[J]. Chemosphere, 2024, 352: 141350. doi: 10.1016/j.chemosphere.2024.141350
[10] SU Y, YANG W, SUN W, et al. Synthesis of mesoporous cerium–zirconium binary oxide nano adsorbents by a solvothermal process and their effective adsorption of phosphate from water[J]. Chemical Engineering Journal, 2015, 268: 270-279. doi: 10.1016/j.cej.2015.01.070
[11] YANG W, SHI X, DONG H, et al. Fabrication of a reusable polymer-based cerium hydroxide nanocomposite with high stability for preferable phosphate removal[J], Chemical Engineering Journal (Lausanne, Switzerland : 1996), 2021, 405: 126649.
[12] HE J, XU Y, XIONG Z, et al. The enhanced removal of phosphate by structural defects and competitive fluoride adsorption on cerium-based adsorbent[J]. Chemosphere (Oxford), 2020, 256: 127056. doi: 10.1016/j.chemosphere.2020.127056
[13] KAJJUMBA G W, FISCHER D, RISSO L, et al. Application of cerium and lanthanum coagulants in wastewater treatment—A comparative assessment to magnesium, aluminum, and iron coagulants[J]. Chemical Engineering Journal (Lausanne, Switzerland : 1996), 2021, 426: 131268.
[14] SHAN S, ZHANG T, WANG W, et al. Magnetite/hydrated cerium(III) carbonate for efficient phosphate elimination from aqueous solutions and the mechanistic investigation[J]. Chemical Engineering Journal (Lausanne, Switzerland : 1996), 2021, 425: 128894.
[15] TANG Q, SHI C, SHI W, et al. Preferable phosphate removal by nano-La(III) hydroxides modified mesoporous rice husk biochars: Role of the host pore structure and point of zero charge[J]. Science of the Total Environment, 2019, 662: 511-520. doi: 10.1016/j.scitotenv.2019.01.159
[16] ZHANG C, LI Y, WANG F, et al. Performance of magnetic zirconium-iron oxide nanoparticle in the removal of phosphate from aqueous solution[J]. Applied Surface Science, 2017, 396: 1783-1792. doi: 10.1016/j.apsusc.2016.11.214
[17] LI X, WANG Y, DONG S, et al. Tuning the lanthanum hydrolysis induced assembly process using long linear chains with –N+(CH3)3 groups for efficient phosphate removal[J]. Chemical Engineering Journal, 2023, 451: 138713. doi: 10.1016/j.cej.2022.138713
[18] WANG Z, XING M, FANG W, et al. One-step synthesis of magnetite core/zirconia shell nanocomposite for high efficiency removal of phosphate from water[J]. Applied Surface Science, 2016, 366: 67-77. doi: 10.1016/j.apsusc.2016.01.059
[19] 刘晨阳, 王毅力, 李小林, 等. Fe3O4负载非晶态(碳酸)氧化锆复合材料对磷的吸附性能及机理[J]. 环境工程学报, 2022, 16(4): 1133-1144. doi: 10.12030/j.cjee.202112066
[20] 马锋锋, 赵保卫, 刁静茹, 等. 磁性生物炭对水体中对硝基苯酚的吸附特性[J]. 中国环境科学, 2019, 39(1): 170-178. doi: 10.3969/j.issn.1000-6923.2019.01.019
[21] 张妍. 镁改性污泥炭对水体中氮磷吸附性能研究[D]. 大连: 大连海事大学, 2023.
[22] 李秀玲, 宾冰, 龚盈盈, 等. 铁锰改性桑枝生物炭的构筑及对水体磷的吸附[J]. 工业水处理, 2024.
[23] DRENKOVA-TUHTAN A, SCHNEIDER M, FRANZREB M, et al. Pilot-scale removal and recovery of dissolved phosphate from secondary wastewater effluents with reusable ZnFeZr adsorbent @ Fe3O4/SiO2 particles with magnetic harvesting[J]. Water Research (Oxford), 2017, 109: 77-87. doi: 10.1016/j.watres.2016.11.039
[24] HUANG W, LI D, LIU Z, et al. Kinetics, isotherm, thermodynamic, and adsorption mechanism studies of La(OH)3-modified exfoliated vermiculites as highly efficient phosphate adsorbents[J]. Chemical Engineering Journal (Lausanne, Switzerland : 1996), 2014, 236: 191-201.
[25] DONG S, WANG Y, ZHAO Y, et al. La3+/La(OH)3 loaded magnetic cationic hydrogel composites for phosphate removal: Effect of lanthanum species and mechanistic study[J]. Water Research, 2017, 126: 433-441. doi: 10.1016/j.watres.2017.09.050
[26] 马锋锋, 郑旭东, 张建, 等. 污泥生物炭对水体中磷的吸附[J]. 中国环境科学, 2024, 44(3): 1347-1356. doi: 10.3969/j.issn.1000-6923.2024.03.017
[27] LI X, WANG Y, LI J, et al. Rapid and selective harvest of low-concentration phosphate by La(OH)3 loaded magnetic cationic hydrogel from aqueous solution: Surface migration of phosphate from –N+(CH3)3 to La(OH)3[J]. Science of the Total Environment, 2021, 800: 149418. doi: 10.1016/j.scitotenv.2021.149418
[28] LI R, WANG J J, ZHOU B, et al. Enhancing phosphate adsorption by Mg/Al layered double hydroxide functionalized biochar with different Mg/Al ratios[J]. Science of the total environment, 2016, 559: 121-129. doi: 10.1016/j.scitotenv.2016.03.151
[29] KOILRAJ P, SASAKI K. Selective removal of phosphate using La-porous carbon composites from aqueous solutions: Batch and column studies[J]. Chemical Engineering Journal (Lausanne, Switzerland : 1996), 2017, 317: 1059-1068.
[30] LÜRLING M, WAAJEN G, VAN OOSTERHOUT F. Humic substances interfere with phosphate removal by lanthanum modified clay in controlling eutrophication[J]. Water Research, 2014, 54: 78-88. doi: 10.1016/j.watres.2014.01.059
[31] QI Z, JOSHI T P, LIU R, et al. Synthesis of Ce(III)-doped Fe3O4 magnetic particles for efficient removal of antimony from aqueous solution[J]. Journal of Hazardous Materials, 2017, 329: 193-204. doi: 10.1016/j.jhazmat.2017.01.007
[32] QU J, AKINDOLIE M S, FENG Y, et al. One-pot hydrothermal synthesis of NaLa(CO3)2 decorated magnetic biochar for efficient phosphate removal from water: Kinetics, isotherms, thermodynamics, mechanisms and reusability exploration[J]. Chemical Engineering Journal (Lausanne, Switzerland : 1996), 2020, 394: 124915.
[33] BANI-SALAMEH A A, AHMAD A A, ALSAAD A M, et al. Synthesis, Optical, Chemical and Thermal Characterizations of PMMA-PS/CeO2 Nanoparticles Thin Film[J]. Polymers, 2021, 13(7): 1158. doi: 10.3390/polym13071158
[34] SHANG Y, XU X, QI S, et al. Preferable uptake of phosphate by hydrous zirconium oxide nanoparticles embedded in quaternary-ammonium Chinese reed[J]. Journal of Colloid and Interface Science, 2017, 496: 118-129. doi: 10.1016/j.jcis.2017.02.019
[35] ZHANG X, SUN F, HE J, et al. Robust phosphate capture over inorganic adsorbents derived from lanthanum metal organic frameworks[J]. Chemical Engineering Journal (Lausanne, Switzerland : 1996), 2017, 326: 1086-1094.
[36] XIE J, WANG Z, LU S, et al. Removal and recovery of phosphate from water by lanthanum hydroxide materials[J]. Chemical Engineering Journal (Lausanne, Switzerland : 1996), 2014, 254: 163-170.
[37] FANG L, WU B, LO I M C. Fabrication of silica-free superparamagnetic ZrO2@Fe3O4 with enhanced phosphate recovery from sewage: Performance and adsorption mechanism[J]. Chemical Engineering Journal (Lausanne, Switzerland : 1996), 2017, 319: 258-267.