[1] |
SUN B, ZHANG L, YANG L, et al. Agricultural non-point source pollution in China: Causes and mitigation measures[J]. Ambio, 2012, 41(4): 370-379. doi: 10.1007/s13280-012-0249-6
|
[2] |
WANG X Y. Management of agricultural nonpoint source pollution in China: Current status and challenges[J]. Water Science and Technology, 2006, 53(2): 1-9. doi: 10.2166/wst.2006.033
|
[3] |
李清波, 黄国宏, 王颜红, 等. 阿特拉津生态风险及其检测和修复技术研究进展[J]. 应用生态学报, 2002, 13(5): 625-628.
|
[4] |
赵玲, 滕应, 骆永明. 中国农田土壤农药污染现状和防控对策[J]. 土壤, 2017, 49(3): 417-427.
|
[5] |
MURPHY I J, COATS J R. The capacity of switchgrass (panicum virgatum) to degrade atrazine in a phytoremediation setting[J]. Environmental Toxicology and Chemistry, 2011, 30(3): 715-722. doi: 10.1002/etc.437
|
[6] |
朱兆良, 孙波, 杨林章, 等. 我国农业面源污染的控制政策和措施[J]. 科技导报, 2005, 23(4): 47-51.
|
[7] |
崔键, 马友华, 赵艳萍, 等. 农业面源污染的特性及防治对策[J]. 中国农学通报, 2006, 22(1): 335-340.
|
[8] |
李霆, 李强强, 姜艳军, 等. 二氧化硅纳米花固定化酶及其有机磷农药降解性能[J]. 江苏农业科学, 2022, 50(10): 104-109.
|
[9] |
刘绍雄, 李建英, 刘春丽, 等. 平菇漆酶对农药六六六降解作用研究[J]. 中国食用菌, 2018, 37(5): 66-69.
|
[10] |
HUANG Y, XIAO L, LI F, et al. Microbial degradation of pesticide residues and an emphasis on the degradation of cypermethrin and 3-phenoxy benzoic acid: A review[J]. Molecules, 2018, 23(9): 2313. doi: 10.3390/molecules23092313
|
[11] |
梁春华. 铒掺杂二氧化钛光催化降解甲胺磷农药的研究[J]. 吉林农业大学学报, 2012, 34(5): 536-539.
|
[12] |
SENTHILNATHAN J, PHILIP L. Removal of mixed pesticides from drinking water system by photodegradation using suspended and immobilized TiO2[J]. Journal Of Environmental Science And Health Part B-Pesticides Food Contaminants and Agricultural Wastes, 2009, 44(3): 262-270.
|
[13] |
MATAMOROS V, GARCÍA J, BAYONA J M. Organic micropollutant removal in a full-scale surface flow constructed wetland fed with secondary effluent[J]. Water Research, 2008, 42(3): 653-660. doi: 10.1016/j.watres.2007.08.016
|
[14] |
吴晓磊. 人工湿地废水处理机理[J]. 环境科学, 1995(3): 83-86+96. doi: 10.3321/j.issn:0250-3301.1995.03.024
|
[15] |
LOCKE M A, WEAVER M A, ZABLOTOWICZ R M, et al. Constructed wetlands as a component of the agricultural landscape: Mitigation of herbicides in simulated runoff from upland drainage areas[J]. Chemosphere, 2011, 83(11): 1532-1538. doi: 10.1016/j.chemosphere.2011.01.034
|
[16] |
PASSEPORT E, TOURNEBIZE J, CHAUMONT C, et al. Pesticide contamination interception strategy and removal efficiency in forest buffer and artificial wetland in a tile-drained agricultural watershed[J]. Chemosphere, 2013, 91(9): 1289-1296. doi: 10.1016/j.chemosphere.2013.02.053
|
[17] |
MAILLARD E, PAYRAUDEAU S, FAIVRE E, et al. Removal of pesticide mixtures in a stormwater wetland collecting runoff from a vineyard catchment[J]. Science of the Total Environment, 2011, 409(11): 2317-2324. doi: 10.1016/j.scitotenv.2011.01.057
|
[18] |
丁丽娜, 梁媛, 赵奔. 一株高效阿特拉津降解菌株的筛选及其降解能力和机理[J]. 环境化学, 2023, 42(5): 1623-1632.
|
[19] |
BUCCI P, COPPOTELLI B, MORELLI I, et al. Micronutrients and COD/N ratio as factors influencing granular size and SND in aerobic granular sequencing batch reactors operated at low organic loading[J]. Journal of Water Process Engineering, 2022, 46: 102625. doi: 10.1016/j.jwpe.2022.102625
|
[20] |
YAO D, DAI N, HU X, et al. New insights into the effects of wetland plants on nitrogen removal pathways in constructed wetlands with low C/N ratio wastewater: Contribution of partial denitrification-anammox[J]. Water Research, 2023, 243: 120277. doi: 10.1016/j.watres.2023.120277
|
[21] |
龚深, 巢传鑫, 邹冬生, 等. 人工湿地中植物对污染物去除机理研究进展[J]. 湿地科学, 2023, 21(6): 927-935.
|
[22] |
叶新强, 鲁岩, 张恒. 除草剂阿特拉津的使用与危害[J]. 环境科学与管理, 2006, 32(8): 95-97.
|
[23] |
MOORE M T, BENNETT E R, COOPER C M, et al. Transport and fate of atrazine and lambda-cyhalothrin in an agricultural drainage ditch in the Mississippi Delta, USA[J]. Agriculture, Ecosystems & Environment, 2001, 87(3): 309-314.
|
[24] |
白献宇, 胡小贞, 庞燕. 洱海流域低污染水类型、污染负荷及分布[J]. 湖泊科学, 2015, 27(2): 200-207.
|
[25] |
王宇娜, 国晓春, 卢少勇, 等. 人工湿地对低污染水中氮去除的研究进展: 效果、机制和影响因素[J]. 农业资源与环境学报, 2021, 38(5): 722-734.
|
[26] |
王庆海, 夏凡, 李翠, 等. 黄菖蒲对水中阿特拉津污染的去除贡献研究[J]. 农业环境科学学报, 2020, 39(11): 2613-2620. doi: 10.11654/jaes.2020-0543
|
[27] |
杨凯, DMITRY B, 李成云, 等. 固液萃取-高效液相色谱-串联质谱法同时测定土壤中阿特拉津及其降解产物[J]. 分析科学学报, 2017, 33(4): 478-482.
|
[28] |
武淑文, 侯磊, 刘云根, 等. 湿地植物香蒲根系抗氧化酶活性和根系分泌物对阿特拉津胁迫的响应[J]. 农业环境科学学报, 2021, 40(12): 2751-2760. doi: 10.11654/jaes.2021-0205
|
[29] |
KNAUERT S, SINGER H, HOLLENDER J, et al. Phytotoxicity of atrazine, isoproturon, and diuron to submersed macrophytes in outdoor mesocosms[J]. Environmental Pollution, 2010, 158(1): 167-174. doi: 10.1016/j.envpol.2009.07.023
|
[30] |
LYTLE J S, LYTLE T F. Atrazine effects on estuarine macrophytes Spartina alterniflora and Juncus roemerianus[J]. Environmental Toxicology and Chemistry, 1998, 17(10): 1972-1978. doi: 10.1002/etc.5620171012
|
[31] |
王庆海, 李翠, 陈超, 等. 芦苇对阿特拉津胁迫的生理响应及其与耐受性的关系[J]. 农业环境科学学报, 2017, 36(10): 1968-1977.
|
[32] |
LI Y, LU J, DONG C, et al. Physiological and biochemical characteristics and microbial responses of Medicago sativa (Fabales: Fabaceae) varieties with different resistance to atrazine stress[J]. Frontiers in Microbiology, 2024, 15: 1447348. doi: 10.3389/fmicb.2024.1447348
|
[33] |
董静. AMF-美人蕉共生系统降解水中阿特拉津特性的研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
|
[34] |
DONG J, WANG L, MA F, et al. Effects of funnelliformis mosseae inoculation on alleviating atrazine damage in canna indica l. Var. Flava roxb[J]. International Journal of Phytoremediation, 2017, 19(1): 46-55. doi: 10.1080/15226514.2016.1216079
|
[35] |
WANG Z, SUN X, RU S, et al. Effects of co-exposure of the triazine herbicides atrazine, prometryn and terbutryn on Phaeodactylum tricornutum photosynthesis and nutritional value[J]. Science of the Total Environment, 2022, 807: 150609. doi: 10.1016/j.scitotenv.2021.150609
|
[36] |
符东, 付馨烈, 王成端, 等. 稳定表流-潜流组合人工湿地系统处理生活污水的研究[J]. 环境工程技术学报, 2020, 10(4): 598-605.
|
[37] |
LAND M, GRANÉLI W, GRIMVALL A, et al. How effective are created or restored freshwater wetlands for nitrogen and phosphorus removal? A systematic review protocol[J]. Environmental Evidence, 2013, 2(1): 16. doi: 10.1186/2047-2382-2-16
|
[38] |
李林锋, 年跃刚, 蒋高明. 植物吸收在人工湿地脱氮除磷中的贡献[J]. 环境科学研究, 2009, 22(3): 337-342.
|
[39] |
丁怡, 王玮, 王宇晖, 等. 溶解氧和碳源在人工湿地脱氮中的耦合关系分析[J]. 工业水处理, 2015, 35(1): 5-8.
|
[40] |
MEUTIA A A. Treatment of laboratory wastewater in a tropical constructed wetland comparing surface and subsurface flow[J]. Water Science and Technology, 2001, 44(11/12): 499-506.
|
[41] |
潘傲, 张智, 孙磊, 等. 种植不同植物的表面流人工湿地净化效果和微生物群落差异分析[J]. 环境工程学报, 2019, 13(8): 1918-1929. doi: 10.12030/j.cjee.201812182
|
[42] |
VYMAZAL J, BFEZINOVA T. The use of constructed wetlands for removal of pesticides from agricultural runoff and drainage: A review[J]. Environment International, 2015, 75: 11-20. doi: 10.1016/j.envint.2014.10.026
|
[43] |
IMFELD G, LEFRANCQ M, MAILLARD E, et al. Transport and attenuation of dissolved glyphosate and AMPA in a stormwater wetland[J]. Chemosphere, 2013, 90(4): 1333-1339. doi: 10.1016/j.chemosphere.2012.04.054
|
[44] |
XIN X, XIE J, LI W, et al. New insights into microbial fuel cells for saline wastewater treatment: Bioelectrogenesis evaluation, microbial interactions and salinity resource reuse[J]. Process Safety and Environmental Protection, 2022, 168: 314-323. doi: 10.1016/j.psep.2022.09.077
|
[45] |
FANG Y, WANG H, HAN J, et al. Enhanced nitrogen removal of constructed wetlands by coupling with the bioelectrochemical system under low temperature: Performance and mechanism[J]. Journal of Cleaner Production, 2022, 350: 131365. doi: 10.1016/j.jclepro.2022.131365
|
[46] |
RAZA S, KANG K H, SHIN J, et al. Variations in antibiotic resistance genes and microbial community in sludges passing through biological nutrient removal and anaerobic digestion processes in municipal wastewater treatment plants[J]. Chemosphere, 2023, 313: 137362. doi: 10.1016/j.chemosphere.2022.137362
|
[47] |
YANG Z, LIU J, CAO J, et al. A comparative study of pilot-scale bio-trickling filters with counter- and cross-current flow patterns in the treatment of emissions from chemical fibre wastewater treatment plant[J]. Bioresource Technology, 2017, 243: 78-84. doi: 10.1016/j.biortech.2017.06.060
|
[48] |
XIE F, Thiri M, WANG H. Simultaneous heterotrophic nitrification and aerobic denitrification by a novel isolated Pseudomonas mendocina X49[J]. Bioresource Technology, 2021, 319: 124198. doi: 10.1016/j.biortech.2020.124198
|
[49] |
YUN L, YU Z, LI Y, et al. Ammonia nitrogen and nitrite removal by a heterotrophic Sphingomonas sp. strain LPN080 and its potential application in aquaculture[J]. Aquaculture, 2019, 500: 477-484. doi: 10.1016/j.aquaculture.2018.10.054
|
[50] |
LI Y, PAN Z, LIAO J, et al. Micro-aeration and low influent C/N are key environmental factors for achieving Anammox in livestock farming wastewater treatment plants[J]. Water Research, 2023: 120141.
|
[51] |
QIAO Z, SUN R, WU Y, et al. Characteristics and metabolic pathway of the bacteria for heterotrophic nitrification and aerobic denitrification in aquatic ecosystems[J]. Environmental Research, 2020, 191: 110069. doi: 10.1016/j.envres.2020.110069
|
[52] |
李娜, 吉莉, 张桂香. 除草剂阿特拉津生物降解研究进展[J]. 太原科技大学学报, 2020, 41(2): 158-164.
|
[53] |
于凡, 谭凤训, 罗从伟, 等. 日光/氯氧化体系降解阿特拉津的效能及机理研究[J]. 工业水处理, 2023, 43(5): 77-84.
|