[1] |
何伟, 白泽琳, 李一龙, 等. 溶解性有机质特性分析与来源解析的研究进展[J]. 环境科学学报, 2016, 36(2): 359-372.
|
[2] |
NEBBIOSO A, PICCOLO A. Molecular characterization of dissolved organic matter (DOM): a critical review[J]. Analytical and Bioanalytical Bhemistry, 2013, 405(1): 109-124. doi: 10.1007/s00216-012-6363-2
|
[3] |
何小松, 虞敏达, 黄彩红, 等. 天然有机质的表征及环境效应[C]. 中国环境科学学会2016年学术年会, 海口, 2016.
|
[4] |
UPADHAYAY H R, ZHANG Y, GRANGER S J, et al. Prolonged heavy rainfall and land use drive catchment sediment source dynamics: Appraisal using multiple biotracers[J]. Water Research, 2022, 216: 118348. doi: 10.1016/j.watres.2022.118348
|
[5] |
王爽, 王三秀, 黄清辉. 太湖流域南白荡表层水中溶解有机质赋存特征与来源[J]. 环境科学学报, 2022, 42(11): 139-148.
|
[6] |
吴丰昌, 王立英, 黎文, 等. 天然有机质及其在地表环境中的重要性[J]. 湖泊科学, 2008, 20(1): 1-12. doi: 10.3321/j.issn:1003-5427.2008.01.001
|
[7] |
NELSON N B, SIEGEL D A, MICHAELS A F. Seasonal dynamics of colored dissolved material in the Sargasso Sea[J]. Deep-Sea Research Part I-Oceanographic Research Papers, 1998, 45(6): 931-957. doi: 10.1016/S0967-0637(97)00106-4
|
[8] |
BLANCHET C C, ARZEL C, DAVRANCHE A, et al. Ecology and extent of freshwater browning-What we know and what should be studied next in the context of global change[J]. Science of the Total Environment, 2022, 812: 152420.
|
[9] |
ZHOU L, ZHOU Y, ZHANG Y, et al. Hydrological Controls on Dissolved Organic Matter Composition throughout the Aquatic Continuum of the Watershed of Selin Co, the Largest Lake on the Tibetan Plateau[J]. Environmental Science & Technology, 2023, 57(11): 4668-4678.
|
[10] |
ZHOU Y, CHEN L, ZHOU L, et al. Key factors driving dissolved organic matter composition and bioavailability in lakes situated along the Eastern Route of the South-to-North Water Diversion Project, China[J]. Water Research, 2023, 233: 119782. doi: 10.1016/j.watres.2023.119782
|
[11] |
ZHOU Y Q, YU X Q, ZHOU L, et al. Rainstorms drive export of aromatic and concurrent bio-labile organic matter to a large eutrophic lake and its major tributaries[J]. Water Research, 2023, 229: 119448.
|
[12] |
ZHOU Y Q, ZHOU L, ZHANG Y L, et al. Unraveling the Role of Anthropogenic and Natural Drivers in Shaping the Molecular Composition and Biolability of Dissolved Organic Matter in Non-pristine Lakes[J]. Environmental Science & Technology, 2022, 56(7): 4655-4664.
|
[13] |
马晓妍, 陈文凤, 成芳德, 等. 两种分子量分级下DOM的组分特征及其生物毒性[J]. 中国环境科学, 2021, 41(12): 5885-5895. doi: 10.3969/j.issn.1000-6923.2021.12.045
|
[14] |
李利杰. 天然水体可溶有机质分子组成与分子结构分析方法与应用[D]. 北京: 中国石油大学, 2019.
|
[15] |
王磊, 应蓉蓉, 石佳奇, 等. 土壤矿物对有机质的吸附与固定机制研究进展[J]. 土壤学报, 2017, 54(4): 805-818.
|
[16] |
ZHANG Y L, ZHANG B, WANG X, et al. A study of absorption characteristics of chromophoric dissolved organic matter and particles in Lake Taihu, China[J]. Hydrobiologia, 2007, 592: 105-120. doi: 10.1007/s10750-007-0724-4
|
[17] |
DE LA ROCHA C L, NOWALD N, PASSOW U. Interactions between diatom aggregates, minerals, particulate organic carbon, and dissolved organic matter: Further implications for the ballast hypothesi [J]. Global Biogeochemical Cycles, 2008, 22(4): 1-10.
|
[18] |
LU Q Y, WANG J Y, WANG Z J, et al. Molecular Insights into the Interaction Mechanism Underlying the Aggregation of Humic Acid and Its Adsorption on Clay Minerals[J]. Environmental Science & Technology, 2023, 57(24): 9032-9042.
|
[19] |
陈宇炜, 陈开宁, 胡耀辉. 浮游植物叶绿素a测定的“热乙醇法”及其测定误差的探讨[J]. 湖泊科学, 2006(5): 550-552. doi: 10.3321/j.issn:1003-5427.2006.05.019
|
[20] |
辜佳莉. 腐殖酸/壳聚糖/纳米二氧化硅气凝胶复合吸附剂的制备、理化性能及吸附溴氰菊酯的应用[D]. 四川雅安: 四川农业大学, 2023.
|
[21] |
DENG Z R, HE Q, SAFAR Z, et al. The role of algae in fine sediment flocculation: In-situ and laboratory measurements[J]. Marine Geology, 2019, 413: 71-84. doi: 10.1016/j.margeo.2019.02.003
|
[22] |
曹晶, 高思佳, 储昭升, 等. 鄱阳湖悬浮颗粒物絮凝沉降典型藻类的动力学研究[J]. 环境科学学报, 2015, 35(5): 1325-1332.
|
[23] |
KOWALCZUK P, STON-EGIERT J, COOPER W J, et al. Characterization of chromophoric dissolved organic matter (CDOM) in the Baltic Sea by excitation emission matrix fluorescence spectroscopy[J]. Marine Chemistry, 2005, 96(3-4): 273-292. doi: 10.1016/j.marchem.2005.03.002
|
[24] |
ZHANG Y L, QIN B Q, ZHANG L, et al. Spectral absorption and fluorescence of chromophoric dissolved organic matter in shallow lakes in the middle and lower reaches of the Yangtze River[J]. Journal of Freshwater Ecology, 2005, 20(3): 451-459. doi: 10.1080/02705060.2005.9664760
|
[25] |
ZHANG Y L, YIN Y, FENG L Q, et al. Characterizing chromophoric dissolved organic matter in Lake Tianmuhu and its catchment basin using excitation-emission matrix fluorescence and parallel factor analysis[J]. Water Research, 2011, 45(16): 5110-5122. doi: 10.1016/j.watres.2011.07.014
|
[26] |
YANG L Y, GUO W D, CHEN N W, et al. Influence of a summer storm event on the flux and composition of dissolved organic matter in a subtropical river, China[J]. Applied Geochemistry, 2013, 28: 164-171. doi: 10.1016/j.apgeochem.2012.10.004
|
[27] |
闫丽红, 陈学君, 苏荣国, 等. 2010年秋季长江口口外海域CDOM的三维荧光光谱-平行因子分析[J]. 环境科学, 2013, 34(1): 51-60.
|
[28] |
李素菊, 吴倩, 王学军, 等. 巢湖浮游植物叶绿素含量与反射光谱特征的关系[J]. 湖泊科学, 2002, 14(3): 228-234. doi: 10.3321/j.issn:1003-5427.2002.03.006
|
[29] |
王鑫, 张运林, 张文宗. 太湖北部湖区CDOM光学特性及光降解研究[J]. 环境科学研究, 2008, 21(6): 130-136.
|
[30] |
王志健, 胡霞林, 尹大强. 藻源有机质表征及消毒副产物生成潜能研究进展[J]. 环境化学, 2021, 40(10): 2979-2991. doi: 10.7524/j.issn.0254-6108.2021033001
|
[31] |
林勇新. 形态特征及藻源有机质对改性粘土絮凝有害藻华生物效率的影响[D]. 北京: 中国科学院研究生院, 2013.
|
[32] |
李颖. 水体中重金属、腐殖酸和粘土颗粒物之间的相互作用研究[D]. 济南: 山东大学, 2010.
|
[33] |
章奇, 居琪, 李健欣, 等. 针铁矿对湖泊草、藻来源可溶有机质的非均质吸附[J]. 湖泊科学, 2020, 32(4): 1041-1049. doi: 10.18307/2020.0413
|
[34] |
AVNERI-KATZ S, YOUNG R B, MCKENNA A M, et al. Adsorptive fractionation of dissolved organic matter (DOM) by mineral soil: Macroscale approach and molecular insight[J]. Organic Geochemistry, 2017, 103: 113-124. doi: 10.1016/j.orggeochem.2016.11.004
|
[35] |
胡春明, 张远, 于涛, 等. 太湖典型湖区水体溶解有机质的光谱学特征[J]. 光谱学与光谱分析, 2011, 31(11): 3022-3025. doi: 10.3964/j.issn.1000-0593(2011)11-3022-04
|
[36] |
PEURAVUORI J, PIHLAJA K. Molecular size distribution and spectroscopic properties of aquatic humic substances[J]. Analytica Chimica Acta, 1997, 337(2): 133-149. doi: 10.1016/S0003-2670(96)00412-6
|
[37] |
沈悦, 杜先, 张璐, 等. 藻源性有机质对高原深水湖泊沉积物矿化作用的激发效应[J]. 湖泊科学, 2023, 35(1): 103-119.
|
[38] |
STEDMON C A, BRO R. Characterizing dissolved organic matter fluorescence with parallel factor analysis: A tutorial[J]. Limnology and Oceanography-Methods, 2008, 6: 572-579. doi: 10.4319/lom.2008.6.572
|
[39] |
武俐, 宋百惠, 杨萌, 等. 水沙调控对黄河小浪底水库溶解性有机质的影响研究[J]. 环境科学学报, 2023, 43(3): 216-225.
|
[40] |
江俊武, 李帅东, 沈胤胤, 等. 夏季太湖CDOM光学特性空间差异及其来源解析[J]. 环境科学研究, 2017, 30(7): 1020-1030.
|
[41] |
吕伟伟. 太湖天然有机质的光学特性、来源及生物可利用性研究[D]. 聊城: 聊城大学, 2019.
|
[42] |
彭雨瑶, 李攀武, 高晓波, 等. 黄土絮凝剂对沙湖水质净化及溶解性有机质的去除[J]. 环境工程, 2023, 41(5): 140-146.
|
[43] |
李靖. 改性粘土对几种藻华生物的去除作用及其生态环境效应[D]. 北京: 中国科学院大学, 2018.
|
[44] |
孙扬才. 富营养化饮用水源地遮光控藻技术研究[D]. 上海: 上海交通大学, 2008.
|
[45] |
MURPHY K R, HAMBLY A, SINGH S, et al. Organic matter fluorescence in municipal water recycling schemes: Toward a unified PARAFAC model[J]. Environmental of Science and Technology, 2011, 45(7): 2909-2916. doi: 10.1021/es103015e
|
[46] |
ZHANG Y L, ZHANG E L, YIN Y, et al. Characteristics and sources of chromophoric dissolved organic matter in lakes of the Yungui Plateau, China, differing in trophic state and altitude[J]. Limnology and Oceanography, 2010, 55(6): 2645-2659. doi: 10.4319/lo.2010.55.6.2645
|
[47] |
MCKNIGHT D M, BOYER E W, WESTERHOFF P K, et al. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity[J]. Limnology and Oceanography, 2001, 46(1): 38-48. doi: 10.4319/lo.2001.46.1.0038
|
[48] |
张文浩, 赵铎霖, 王晓毓, 等. 太白山自然保护区水体 CDOM吸收与三维荧光特征[J]. 环境科学, 2020, 41(11): 4958-4969.
|
[49] |
王书航, 王雯雯, 姜霞, 等. 基于三维荧光光谱—平行因子分析技术的蠡湖CDOM分布特征[J]. 中国环境科学, 2016, 36(2): 517-524. doi: 10.3969/j.issn.1000-6923.2016.02.031
|
[50] |
HUGUET A, VACHER L, RELEXANS S, et al. Properties of fluorescent dissolved organic matter in the Gironde Estuary[J]. Organic Geochemistry, 2009, 40(6): 706-719. doi: 10.1016/j.orggeochem.2009.03.002
|
[51] |
PAN G, KROM M D, ZHANG M Y, et al. Impact of Suspended Inorganic Particles on Phosphorus Cycling in the Yellow River (China)[J]. Environmental Science and Technology, 2013, 47(17): 9685-9692. doi: 10.1021/es4005619
|
[52] |
王亚博, 李慧莉, 张洪刚, 等. 极端降水过程对岩口水库入库溪流污染负荷的影响及其对策[J]. 环境工程学报, 2022, 16(6): 2061-2072. doi: 10.12030/j.cjee.202109039
|
[53] |
LUO R D, DONG J F, LUO Y B. pH-Responsive Pickering emulsion stabilized by polymer-coated silica nanoaggregates and applied to recyclable interfacial catalysis[J]. RSC Advances, 2020, 10(69): 42423-42431. doi: 10.1039/D0RA07957J
|
[54] |
XU N, HUANGFU X X, LI Z L, et al. Nanoaggregates of silica with kaolinite and montmorillonite: Sedimentation and transport[J]. Science of the Total Environment, 2019, 669: 893-902. doi: 10.1016/j.scitotenv.2019.03.099
|
[55] |
强涛涛, 朱润桐. 多孔二氧化硅微球对制革工业废水中蛋白质的吸附分离研究[J]. 陕西科技大学学报, 2022, 40(4): 22-29. doi: 10.3969/j.issn.1000-5811.2022.04.004
|
[56] |
刘艺. 三峡库区御临河藻类衰亡驱动的碳行为变化及效应[D]. 重庆: 重庆大学, 2021.
|
[57] |
LIN Y, JIAO C, SHI H, et al. Effects of Algae Blooms on Nutrients in the Water and Sediments of Mochou Lake[J]. Environmental Science and Technology, 2019, 42(2): 1-11.
|
[58] |
高颖超, 杨雪, 林锟, 等. 不同光照条件下浒苔与三种赤潮微藻的竞争[J]. 中国环境科学, 2019, 39(8): 3404-3411. doi: 10.3969/j.issn.1000-6923.2019.08.034
|
[59] |
岳冬梅, 李洁, 肖琳. 营养盐恢复对氮磷饥饿铜绿微囊藻生长的影响[J]. 环境科学, 2016, 37(11): 4220-4227.
|
[60] |
李文权, 蔡阿根, 王宪, 陈然. 光和营养盐对三角褐指藻生化组成的影响[J]. 中国环境科学, 1994, 14(3): 185-189.
|
[61] |
曹晶, 刘建辉, 储昭升, 等. 鄱阳湖水体颗粒物对3种典型藻类的生长及絮凝作用[J]. 环境科学学报, 2015, 35(5): 1318-1324.
|
[62] |
严广寒, 刘德富, 张佳磊, 等. 不同光照条件对浮游植物生物量与多样性的影响[J]. 水生态学杂志, 2018, 39(1): 37-43.
|