[1] BUCK R C, FRANKLIN J, BERGER U, et al. Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins[J]. Integrated Environmental Assessment and Management, 2011, 7(4): 513-541. doi: 10.1002/ieam.258
[2] ARVANITI O S, ANDERSEN H R, THOMAIDIS N S, et al. Sorption of perfluorinated compounds onto different types of sewage sludge and assessment of its importance during wastewater treatment[J]. Chemosphere, 2014, 111: 405-411. doi: 10.1016/j.chemosphere.2014.03.087
[3] WANG T, WANG Y W, LIAO C Y, et al. Perspectives on the inclusion of perfluorooctane sulfonate into the Stockholm Convention on Persistent Organic Pollutants[J]. Environmental Science & Technology, 2009, 43(14): 5171-5175.
[4] LU Y, LIANG Y, ZHOU Z, et al. Possible fluorinated alternatives of PFOS and PFOA: Ready to go?[J]. Environmental Science & Technology, 2019, 53(24): 14091-14092.
[5] MAHONEY H, XIE Y W, BRINKMANN M, et al. Next generation per- and poly-fluoroalkyl substances: Status and trends, aquatic toxicity, and risk assessment[J]. Eco-Environment & Health, 2022, 1(2): 117-131.
[6] WANG Y, CHANG W G, WANG L, et al. A review of sources, multimedia distribution and health risks of novel fluorinated alternatives[J]. Ecotoxicology and Environmental Safety, 2019, 182: 109402. doi: 10.1016/j.ecoenv.2019.109402
[7] LIU F Q, PIGNATELLO J J, SUN R Z, et al. A comprehensive review of novel adsorbents for per- and polyfluoroalkyl substances in water[J]. ACS ES& T Water, 2024, 4(4): 1191-1205.
[8] ZHANG B, HE Y, YANG G, et al. Legacy and emerging poly- and perfluoroalkyl substances in finless porpoises from East China Sea: Temporal trends and tissue-specific accumulation[J]. Environmental Science & Technology, 2022, 56(10): 6113-6122.
[9] 刘梦琳, 王冰菁, 宿琪, 等. 六氟环氧丙烷三聚体羧酸(HFPO-TA)污染现状和生物毒性研究进展[J]. 环境化学, 2024, 43(5): 1415-1428. doi: 10.7524/j.issn.0254-6108.2022111102 LIU M L, WANG B J, SU Q, et al. A review of contamination status and and biotoxicity of hexafluoropropylene oxide trimer acid(HFPO-TA)[J]. Environmental Chemistry, 2024, 43(5): 1415-1428 (in Chinese). doi: 10.7524/j.issn.0254-6108.2022111102
[10] SINCLAIR E, KANNAN K. Mass loading and fate of perfluoroalkyl surfactants in wastewater treatment plants[J]. Environmental Science & Technology, 2006, 40(5): 1408-1414.
[11] LAU C, ANITOLE K, HODES C, et al. Perfluoroalkyl acids: A review of monitoring and toxicological findings[J]. Toxicological Sciences, 2007, 99(2): 366-394. doi: 10.1093/toxsci/kfm128
[12] LU G H, GAI N, ZHANG P, et al. Perfluoroalkyl acids in surface waters and tapwater in the Qiantang River watershed-Influences from paper, textile, and leather industries[J]. Chemosphere, 2017, 185: 610-617. doi: 10.1016/j.chemosphere.2017.06.139
[13] WANG Z Y, DeWITT J C, HIGGINS C P, et al. A never-ending story of per- and polyfluoroalkyl substances (PFASs)?[J]. Environmental Science & Technology, 2017, 51(5): 2508-2518.
[14] KOTTHOFF M, MÜLLER J, JÜRLING H, et al. Perfluoroalkyl and polyfluoroalkyl substances in consumer products[J]. Environmental Science and Pollution Research International, 2015, 22(19): 14546-14559. doi: 10.1007/s11356-015-4202-7
[15] BARZEN-HANSON K A, ROBERTS S C, CHOYKE S, et al. Discovery of 40 classes of per- and polyfluoroalkyl substances in historical aqueous film-forming foams (AFFFs) and AFFF-impacted groundwater[J]. Environmental Science & Technology, 2017, 51(4): 2047-2057.
[16] PREVEDOUROS K, COUSINS I T, BUCK R C, et al. Sources, fate and transport of perfluorocarboxylates[J]. Environmental Science & Technology, 2006, 40(1): 32-44.
[17] WANG T Y, WANG P, MENG J, et al. A review of sources, multimedia distribution and health risks of perfluoroalkyl acids (PFAAs) in China[J]. Chemosphere, 2015, 129: 87-99. doi: 10.1016/j.chemosphere.2014.09.021
[18] FENTON S E, DUCATMAN A, BOOBIS A, et al. Per- and polyfluoroalkyl substance toxicity and human health review: Current state of knowledge and strategies for informing future research[J]. Environmental Toxicology and Chemistry, 2021, 40(3): 606-630. doi: 10.1002/etc.4890
[19] SUNDERLAND E M, HU X C, DASSUNCAO C, et al. A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects[J]. Journal of Exposure Science & Environmental Epidemiology, 2019, 29(2): 131-147.
[20] AHRENS L, BUNDSCHUH M. Fate and effects of poly- and perfluoroalkyl substances in the aquatic environment: A review[J]. Environmental Toxicology and Chemistry, 2014, 33(9): 1921-1929. doi: 10.1002/etc.2663
[21] SAVOCA D, PACE A. Bioaccumulation, biodistribution, toxicology and biomonitoring of organofluorine compounds in aquatic organisms[J]. International Journal of Molecular Sciences, 2021, 22(12): 6276. doi: 10.3390/ijms22126276
[22] MA T T, YE C R, WANG T T, et al. Toxicity of per- and polyfluoroalkyl substances to aquatic invertebrates, planktons, and microorganisms[J]. International Journal of Environmental Research and Public Health, 2022, 19(24): 16729. doi: 10.3390/ijerph192416729
[23] SCHMALE M C, NAIRN R S, WINN R N. Aquatic animal models of human disease[J]. Comparative Biochemistry and Physiology. Toxicology & Pharmacology, 2007, 145(1): 1-4.
[24] DAI Z N, XIA X H, GUO J, et al. Bioaccumulation and uptake routes of perfluoroalkyl acids in Daphnia magna[J]. Chemosphere, 2013, 90(5): 1589-1596. doi: 10.1016/j.chemosphere.2012.08.026
[25] 黄柳青, 王雯冉, 张浴曈, 等. 地表水中全氟及多氟烷基化合物(PFASs)的污染现状研究进展[J]. 环境化学, 2024, 43(3): 693-710. doi: 10.7524/j.issn.0254-6108.2022090901 HUANG L Q, WANG W R, ZHANG Y T, et al. Research progress on the pollution status of per-and polyfluoroalkyl substances(PFASs) in surface water: A review[J]. Environmental Chemistry, 2024, 43(3): 693-710 (in Chinese). doi: 10.7524/j.issn.0254-6108.2022090901
[26] GUILLETTE T C, McCORD J, GUILLETTE M, et al. Elevated levels of per- and polyfluoroalkyl substances in Cape Fear River Striped Bass (Morone saxatilis) are associated with biomarkers of altered immune and liver function[J]. Environment International, 2020, 136: 105358. doi: 10.1016/j.envint.2019.105358
[27] HUANG J, LIU Y, WANG Q Y, et al. Concentration-dependent toxicokinetics of novel PFOS alternatives and their chronic combined toxicity in adult zebrafish[J]. Science of the Total Environment, 2022, 839: 156388. doi: 10.1016/j.scitotenv.2022.156388
[28] YANG H B, ZHAO Y Z, TANG Y, et al. Antioxidant defence system is responsible for the toxicological interactions of mixtures: A case study on PFOS and PFOA in Daphnia magna[J]. Science of the Total Environment, 2019, 667: 435-443. doi: 10.1016/j.scitotenv.2019.02.418
[29] JEONG T Y, YUK M S, JEON J, et al. Multigenerational effect of perfluorooctane sulfonate (PFOS) on the individual fitness and population growth of Daphnia magna[J]. Science of the Total Environment, 2016, 569/570: 1553-1560. doi: 10.1016/j.scitotenv.2016.06.249
[30] MOJIRI A, NAZARI VISHKAEI M, ANSARI H K, et al. Toxicity effects of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) on two green microalgae species[J]. International Journal of Molecular Sciences, 2023, 24(3): 2446. doi: 10.3390/ijms24032446
[31] LIU X L, LI Y Y, ZHENG X W, et al. Anti-oxidant mechanisms of Chlorella pyrenoidosa under acute GenX exposure[J]. Science of the Total Environment, 2021, 797: 149005. doi: 10.1016/j.scitotenv.2021.149005
[32] BENIGNI R, GIULIANI A. Putting the predictive toxicology challenge into perspective: Reflections on the results[J]. Bioinformatics, 2003, 19(10): 1194-1200. doi: 10.1093/bioinformatics/btg099
[33] MURATOV E N, BAJORATH J, SHERIDAN R P, et al. QSAR without borders[J]. Chemical Society Reviews, 2020, 49(11): 3525-3564. doi: 10.1039/D0CS00098A
[34] LIN X Q, LI X, LIN X B. A review on applications of computational methods in drug screening and design[J]. Molecules, 2020, 25(6): 1375. doi: 10.3390/molecules25061375
[35] YANG X H, LYAKURWA F, XIE H B, et al. Different binding mechanisms of neutral and anionic poly-/ perfluorinated chemicals to human transthyretin revealed by in silico models[J]. Chemosphere, 2017, 182: 574-583. doi: 10.1016/j.chemosphere.2017.05.016
[36] ZHANG J W, ZHANG M T, TAO H Y, et al. A QSAR-ICE-SSD model prediction of the PNECs for per- and polyfluoroalkyl substances and their ecological risks in an area of electroplating factories[J]. Molecules, 2021, 26(21): 6574. doi: 10.3390/molecules26216574
[37] PAVIĆ Z, NOVOSELAC V. Notes on TOPSIS method[J]. International Journal of Research in Engineering and Science, 2013(2): 5-12.
[38] GU W W, LI X X, DU M J, et al. Identification and regulation of ecotoxicity of polychlorinated naphthalenes to aquatic food Chain (green algae-Daphnia magna-fish)[J]. Aquatic Toxicology, 2021, 233: 105774. doi: 10.1016/j.aquatox.2021.105774
[39] 覃礼堂, 刘树深, 肖乾芬, 等. QSAR模型内部和外部验证方法综述[J]. 环境化学, 2013, 32(7): 1205-1211. doi: 10.7524/j.issn.0254-6108.2013.07.012 QIN L T, LIU S S, XIAO Q F, et al. Internal and external validtions of QSAR model: Review[J]. Environmental Chemistry, 2013, 32(7): 1205-1211 (in Chinese). doi: 10.7524/j.issn.0254-6108.2013.07.012
[40] KARELSON M, LOBANOV V S, KATRITZKY A R. Quantum-chemical descriptors in QSAR/QSPR studies[J]. Chemical Reviews, 1996, 96(3): 1027-1044. doi: 10.1021/cr950202r
[41] TUPPURAINEN K. Frontier orbital energies, hydrophobicity and steric factors as physical qsar descriptors of molecular mutagenicity. A review with a case study: MX compounds[J]. Chemosphere, 1999, 38(13): 3015-3030. doi: 10.1016/S0045-6535(98)00503-7
[42] MENGER F, POHL J, AHRENS L, et al. Behavioural effects and bioconcentration of per- and polyfluoroalkyl substances (PFASs) in zebrafish (Danio rerio) embryos[J]. Chemosphere, 2020, 245: 125573. doi: 10.1016/j.chemosphere.2019.125573
[43] ZHONG W J, ZHANG L Y, CUI Y N, et al. Probing mechanisms for bioaccumulation of perfluoroalkyl acids in carp (Cyprinus carpio): Impacts of protein binding affinities and elimination pathways[J]. Science of the Total Environment, 2019, 647: 992-999. doi: 10.1016/j.scitotenv.2018.08.099
[44] FLEMING I. Molecular orbitals and organic chemical reactions[M]. New York: Wiley, 2010.
[45] GALLAGHER A, KAR S, SEPÚLVEDA M S. Computational modeling of human serum albumin binding of per- and polyfluoroalkyl substances employing QSAR, read-across, and docking[J]. Molecules, 2023, 28(14): 5375. doi: 10.3390/molecules28145375
[46] 丁蕊, 陈景文, 于洋, 等. 基于集成学习算法构建有机化学品鱼体生物富集因子的QSAR预测模型[J]. 环境化学, 2021, 40(5): 1295-1304. doi: 10.7524/j.issn.0254-6108.2021011304 DING R, CHEN J W, YU Y, et al. Using ensemble learning algorithms to develop QSAR models on bioconcentration factors of organic chemicals in multispecies fish[J]. Environmental Chemistry, 2021, 40(5): 1295-1304 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021011304
[47] LEVET A, BORDES C, CLÉMENT Y, et al. Acute aquatic toxicity of organic solvents modeled by QSARs[J]. Journal of Molecular Modeling, 2016, 22(12): 288. doi: 10.1007/s00894-016-3156-0