[1] |
ZHANG W L, SHARIFAN H, MA X M. Editorial: Occurrence, fate, and treatment of perfluoroalkyl and polyfluoroalkyl substances in the environment and engineered systems[J]. Frontiers in Environmental Science, 2022, 10: 880059. doi: 10.3389/fenvs.2022.880059
|
[2] |
JOHNSON M S, BUCK R C, COUSINS I T, et al. Estimating environmental hazard and risks from exposure to per- and polyfluoroalkyl substances (PFASs): Outcome of a SETAC focused topic meeting[J]. Environmental Toxicology and Chemistry, 2021, 40(3): 543-549. doi: 10.1002/etc.4784
|
[3] |
GHAREHVERAN M M, WALUS A M, ANDERSON T A, et al. Per- and polyfluoroalkyl substances (PFAS)-free aqueous film forming foam formulations: Chemical composition and biodegradation in an aerobic environment[J]. Journal of Environmental Chemical Engineering, 2022, 10(6): 108953. doi: 10.1016/j.jece.2022.108953
|
[4] |
KURWADKAR S, DANE J, KANEL S R, et al. Per- and polyfluoroalkyl substances in water and wastewater: A critical review of their global occurrence and distribution[J]. Science of the Total Environment, 2022, 809: 151003. doi: 10.1016/j.scitotenv.2021.151003
|
[5] |
RICO C M, WAGNER D C, OFOEGBU P C, et al. Toxicity assessment of perfluorooctanesulfonic acid (PFOS) on a spontaneous plant, velvetleaf (Abutilon theophrasti), via metabolomics[J]. Science of the Total Environment, 2024, 907: 167894. doi: 10.1016/j.scitotenv.2023.167894
|
[6] |
LI P Y, SUN J, XIE X C, et al. Stress response and tolerance to perfluorooctane sulfonate (PFOS) in lettuce (Lactuca sativa)[J]. Journal of Hazardous Materials, 2021, 404: 124213. doi: 10.1016/j.jhazmat.2020.124213
|
[7] |
ZHANG R Y, YU G Q, LUO T Y, et al. Transcriptomic and metabolomic profile changes in the liver of Sprague Dawley rat offspring after maternal PFOS exposure during gestation and lactation[J]. Ecotoxicology and Environmental Safety, 2024, 270: 115862. doi: 10.1016/j.ecoenv.2023.115862
|
[8] |
GUO S W, GUO Y, HUANG M W, et al. Synthesis, surface activity, and foamability of two short-chain fluorinated sulfonate surfactants with ether bonds[J]. Langmuir, 2023, 39(41): 14519-14527. doi: 10.1021/acs.langmuir.3c01623
|
[9] |
URTIAGA A, SORIANO A, CARRILLO-ABAD J. BDD anodic treatment of 6: 2 fluorotelomer sulfonate (6: 2 FTSA). evaluation of operating variables and by-product formation[J]. Chemosphere, 2018, 201: 571-577. doi: 10.1016/j.chemosphere.2018.03.027
|
[10] |
CARRILLO-ABAD J, PÉREZ-HERRANZ V, URTIAGA A. Electrochemical oxidation of 6: 2 fluorotelomer sulfonic acid (6: 2 FTSA) on BDD: electrode characterization and mechanistic investigation[J]. Journal of Applied Electrochemistry, 2018, 48(6): 589-596. doi: 10.1007/s10800-018-1180-8
|
[11] |
中华人民共和国工业和信息化部, 科学技术部, 环境保护部. 《国家鼓励的有毒有害原料(产品) 替代品目录(2016年版)》 [EB/OL]. 2016-12-14.
Chinese Ministry of Industry and Information Technology, Ministry of Science And Technology, Ministry of Environmental Protection. List of toxic and hazardous raw materials (products) alternatives encouraged by the state [EB/OL]. 2016-12-14.
|
[12] |
CHU C, ZHOU Y, LI Q Q, et al. Are perfluorooctane sulfonate alternatives safer? New insights from a birth cohort study[J]. Environment International, 2020, 135: 105365. doi: 10.1016/j.envint.2019.105365
|
[13] |
ZHANG S H, CHEN K, LI W M, et al. Varied thyroid disrupting effects of perfluorooctanoic acid (PFOA) and its novel alternatives hexafluoropropylene-oxide-dimer-acid (GenX) and ammonium 4, 8-dioxa-3H-perfluorononanoate (ADONA) in vitro[J]. Environment International, 2021, 156: 106745. doi: 10.1016/j.envint.2021.106745
|
[14] |
BAQAR M, SALEEM R, ZHAO M S, et al. Combustion of high-calorific industrial waste in conventional brick kilns: An emerging source of PFAS emissions to agricultural soils[J]. Science of the Total Environment, 2024, 906: 167612. doi: 10.1016/j.scitotenv.2023.167612
|
[15] |
LASTERS R, GROFFEN T, EENS M, et al. Dynamic spatiotemporal changes of per- and polyfluoroalkyl substances (PFAS) in soil and eggs of private gardens at different distances from a fluorochemical plant[J]. Environmental Pollution, 2024, 346: 123613. doi: 10.1016/j.envpol.2024.123613
|
[16] |
LI Z M, ROOS A, SERFASS T L, et al. Concentrations of 45 per- and polyfluoroalkyl substances in North American River otters (Lontra canadensis) from west Virginia, USA[J]. Environmental Science & Technology, 2024, 58(4): 2089-2101.
|
[17] |
HEIMSTAD E S, NYGÅRD T, MOE B, et al. New insights from an eight-year study on per- and polyfluoroalkyl substances in an urban terrestrial ecosystem[J]. Environmental Pollution, 2024, 347: 123735. doi: 10.1016/j.envpol.2024.123735
|
[18] |
FORSTER A L B, GEIGER T C, PANSARI G O, et al. Identifying PFAS hotspots in surface waters of South Carolina using a new optimized total organic fluorine method and target LC-MS/MS[J]. Water Research, 2024, 256: 121570. doi: 10.1016/j.watres.2024.121570
|
[19] |
YANG L, WANG Z, SHI Y, et al. Human placental transfer of perfluoroalkyl acid precursors: Levels and profiles in paired maternal and cord serum[J]. Chemosphere, 2016, 144: 1631-1638. doi: 10.1016/j.chemosphere.2015.10.063
|
[20] |
WITT C C, GADEK C R, CARTRON J L E, et al. Extraordinary levels of per- and polyfluoroalkyl substances (PFAS) in vertebrate animals at a new Mexico desert oasis: Multiple pathways for wildlife and human exposure[J]. Environmental Research, 2024, 249: 118229. doi: 10.1016/j.envres.2024.118229
|
[21] |
WANG G G, XING Z A, LIU S H, et al. Emerging and legacy per- and polyfluoroalkyl substances in Daling River and its estuary, Northern China[J]. Marine Pollution Bulletin, 2024, 199: 115953. doi: 10.1016/j.marpolbul.2023.115953
|
[22] |
KOBAN L A, KING T, HUFF T B, et al. Passive biomonitoring for per- and polyfluoroalkyl substances using invasive clams, C. fluminea[J]. Journal of Hazardous Materials, 2024, 472: 134463. doi: 10.1016/j.jhazmat.2024.134463
|
[23] |
SHEN N, TANG J L, CHEN J H, et al. Occurrence and prevalence of per- and polyfluoroalkyl substances in the sediment pore water of mariculture sites: Novel findings of PFASs from the Bohai and Yellow Seas using a newly established analytical method[J]. Journal of Hazardous Materials, 2024, 471: 134256. doi: 10.1016/j.jhazmat.2024.134256
|
[24] |
MARCHIANDI J, SZABO D, DAGNINO S, et al. Occurrence and fate of legacy and novel per- and polyfluoroalkyl substances (PFASs) in freshwater after an industrial fire of unknown chemical stockpiles[J]. Environmental Pollution, 2021, 278: 116839. doi: 10.1016/j.envpol.2021.116839
|
[25] |
TAN X, SHI Y, MA C F, et al. Fluoro-functionalized plant biomass adsorbent: Preparation and application in extraction of trace perfluorinated compounds from environmental water samples[J]. Journal of Environmental Sciences, 2024, 137: 703-715. doi: 10.1016/j.jes.2023.03.023
|
[26] |
LIU T, MA C F, HU Z, et al. Novel pillar[n]arenes magnetic nanoparticles: Preparation and application in quantitative analysis of trace perfluorinated compounds from aqueous samples[J]. Analytica Chimica Acta, 2024, 1323: 343067. doi: 10.1016/j.aca.2024.343067
|
[27] |
SO M K, MIYAKE Y, YEUNG W Y, et al. Perfluorinated compounds in the Pearl River and Yangtze River of China[J]. Chemosphere, 2007, 68(11): 2085-2095. doi: 10.1016/j.chemosphere.2007.02.008
|
[28] |
WANG Q, TSUI M M P, RUAN Y F, et al. Occurrence and distribution of per- and polyfluoroalkyl substances (PFASs) in the seawater and sediment of the South China sea coastal region[J]. Chemosphere, 2019, 231: 468-477. doi: 10.1016/j.chemosphere.2019.05.162
|
[29] |
ZHENG H Y, WANG F, ZHAO Z, et al. Distribution profiles of per- and poly fluoroalkyl substances (PFASs) and their re-regulation by ocean currents in the East and South China Sea[J]. Marine Pollution Bulletin, 2017, 125(1-2): 481-486. doi: 10.1016/j.marpolbul.2017.08.009
|
[30] |
ZHAO Z, TANG J H, MI L J, et al. Perfluoroalkyl and polyfluoroalkyl substances in the lower atmosphere and surface waters of the Chinese Bohai Sea, Yellow Sea, and Yangtze River estuary[J]. Science of the Total Environment, 2017, 599-600: 114-123. doi: 10.1016/j.scitotenv.2017.04.147
|
[31] |
PAN Y T, ZHANG H X, CUI Q, et al. Worldwide distribution of novel perfluoroether carboxylic and sulfonic acids in surface water[J]. Environmental Science & Technology, 2018, 52(14): 7621-7629.
|
[32] |
ZHAO Z, CHENG X H, HUA X, et al. Emerging and legacy per- and polyfluoroalkyl substances in water, sediment, and air of the Bohai Sea and its surrounding rivers[J]. Environmental Pollution, 2020, 263: 114391. doi: 10.1016/j.envpol.2020.114391
|
[33] |
WANG S Q, DING G H, LIU Y H, et al. Legacy and emerging persistent organic pollutants in the marginal seas of China: Occurrence and phase partitioning[J]. Science of the Total Environment, 2022, 827: 154274. doi: 10.1016/j.scitotenv.2022.154274
|
[34] |
MUNOZ G, LABADIE P, BOTTA F, et al. Occurrence survey and spatial distribution of perfluoroalkyl and polyfluoroalkyl surfactants in groundwater, surface water, and sediments from tropical environments[J]. Science of the Total Environment, 2017, 607-608: 243-252. doi: 10.1016/j.scitotenv.2017.06.146
|
[35] |
LIU J J, ZHANG Y H, LI F, et al. Contamination status, partitioning behavior, ecological risks assessment of legacy and emerging per- and polyfluoroalkyl substances in a typical heavily polluted semi-enclosed bay, China[J]. Environmental Research, 2024, 247: 118214. doi: 10.1016/j.envres.2024.118214
|
[36] |
KOTTHOFF M, FLIEDNER A, RÜDEL H, et al. Per- and polyfluoroalkyl substances in the German environment–Levels and patterns in different matrices[J]. Science of the Total Environment, 2020, 740: 140116. doi: 10.1016/j.scitotenv.2020.140116
|
[37] |
LAN Z H, YAO Y M, XU J Y, et al. Novel and legacy per- and polyfluoroalkyl substances (PFASs) in a farmland environment: Soil distribution and biomonitoring with plant leaves and locusts[J]. Environmental Pollution, 2020, 263: 114487. doi: 10.1016/j.envpol.2020.114487
|
[38] |
ZHENG G M, BOOR B E, SCHREDER E, et al. Indoor exposure to per- and polyfluoroalkyl substances (PFAS) in the childcare environment[J]. Environmental Pollution, 2020, 258: 113714. doi: 10.1016/j.envpol.2019.113714
|
[39] |
WU Y, ROMANAK K, BRUTON T, et al. Per- and polyfluoroalkyl substances in paired dust and carpets from childcare centers[J]. Chemosphere, 2020, 251: 126771. doi: 10.1016/j.chemosphere.2020.126771
|
[40] |
ERIKSSON U, KÄRRMAN A. World-wide indoor exposure to polyfluoroalkyl phosphate esters (PAPs) and other PFASs in household dust[J]. Environmental Science & Technology, 2015, 49(24): 14503-14511.
|
[41] |
JUHASZ A L, KEITH A, JONES R, et al. Impact of precursors and bioaccessibility on childhood PFAS exposure from house dust[J]. Science of the Total Environment, 2023, 889: 164306. doi: 10.1016/j.scitotenv.2023.164306
|
[42] |
KOURTCHEV I, HELLEBUST S, HEFFERNAN E, et al. A new on-line SPE LC-HRMS method for the analysis of Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) in PM2.5 and its application for screening atmospheric particulates from Dublin and Enniscorthy, Ireland[J]. Science of the Total Environment, 2022, 835: 155496. doi: 10.1016/j.scitotenv.2022.155496
|
[43] |
KOURTCHEV I, SEBBEN B G, BOGUSH A, et al. Per- and polyfluoroalkyl substances (PFASs) in urban PM2.5 samples from Curitiba, Brazil[J]. Atmospheric Environment, 2023, 309: 119911. doi: 10.1016/j.atmosenv.2023.119911
|
[44] |
DUEÑAS-MAS M J, BALLESTEROS-GÓMEZ A, de BOER J. Determination of several PFAS groups in food packaging material from fast-food restaurants in France[J]. Chemosphere, 2023, 339: 139734. doi: 10.1016/j.chemosphere.2023.139734
|
[45] |
LU Y, MENG L Y, MA D H, et al. The occurrence of PFAS in human placenta and their binding abilities to human serum albumin and organic anion transporter 4[J]. Environmental Pollution, 2021, 273: 116460. doi: 10.1016/j.envpol.2021.116460
|
[46] |
KABORÉ H A, GOEURY K, DESROSIERS M, et al. Novel and legacy per- and polyfluoroalkyl substances (PFAS) in freshwater sporting fish from background and firefighting foam impacted ecosystems in Eastern Canada[J]. Science of the Total Environment, 2022, 816: 151563. doi: 10.1016/j.scitotenv.2021.151563
|
[47] |
CARRIZO J C, MUNOZ G, VO DUY S, et al. PFAS in fish from AFFF-impacted environments: Analytical method development and field application at a Canadian international civilian airport[J]. Science of the Total Environment, 2023, 879: 163103. doi: 10.1016/j.scitotenv.2023.163103
|
[48] |
HERZKE D, NIKIFOROV V, YEUNG L W Y, et al. Targeted PFAS analyses and extractable organofluorine–Enhancing our understanding of the presence of unknown PFAS in Norwegian wildlife[J]. Environment International, 2023, 171: 107640. doi: 10.1016/j.envint.2022.107640
|
[49] |
LANGBERG H A, BREEDVELD G D, GRØNNING H M, et al. Bioaccumulation of fluorotelomer sulfonates and perfluoroalkyl acids in marine organisms living in aqueous film-forming foam impacted waters[J]. Environmental Science & Technology, 2019, 53(18): 10951-10960.
|
[50] |
SIMONNET-LAPRADE C, BUDZINSKI H, MACIEJEWSKI K, et al. Biomagnification of perfluoroalkyl acids (PFAAs) in the food web of an urban river: Assessment of the trophic transfer of targeted and unknown precursors and implications[J]. Environmental Science. Processes & Impacts, 2019, 21(11): 1864-1874.
|
[51] |
ZHANG L L, ZHENG X W, LIU X L, et al. Toxic effects of three perfluorinated or polyfluorinated compounds (PFCs) on two strains of freshwater algae: Implications for ecological risk assessments[J]. Journal of Environmental Sciences, 2023, 131: 48-58. doi: 10.1016/j.jes.2022.10.042
|
[52] |
DAVIS S N, KLUMKER S M, MITCHELL A A, et al. Life in the PFAS lane: The impact of perfluoroalkyl substances on photosynthesis, cellular exudates, nutrient cycling, and composition of a marine microbial community[J]. Science of the Total Environment, 2024, 927: 171977. doi: 10.1016/j.scitotenv.2024.171977
|
[53] |
YANG S H, SHAN L B, CHU K H. Fate and transformation of 6: 2 fluorotelomer sulfonic acid affected by plant, nutrient, bioaugmentation, and soil microbiome interactions[J]. Environmental Science & Technology, 2022, 56(15): 10721-10731.
|
[54] |
ECKE F, GOLOVKO O, HÖRNFELDT B, et al. Trophic fate and biomagnification of organic micropollutants from staple food to a specialized predator[J]. Environmental Research, 2024, 261: 119686. doi: 10.1016/j.envres.2024.119686
|
[55] |
CHENG H X, LV C H, LI J H, et al. Bioaccumulation and biomagnification of emerging poly- and perfluoroalkyl substances in marine organisms[J]. Science of the Total Environment, 2022, 851: 158117. doi: 10.1016/j.scitotenv.2022.158117
|
[56] |
MENGER F, POHL J, AHRENS L, et al. Behavioural effects and bioconcentration of per- and polyfluoroalkyl substances (PFASs) in zebrafish (Danio rerio) embryos[J]. Chemosphere, 2020, 245: 125573. doi: 10.1016/j.chemosphere.2019.125573
|
[57] |
PASCAL P. Guidance on Information Requirements and Chemical Safety Assessment Chapter R. 11: PBT/vPvB assessment | Policy Commons[R/OL]. [2024-09-02].
|
[58] |
FLYNN R W, HOSKINS T D, IACCHETTA M, et al. Dietary exposure and accumulation of per- and polyfluoroalkyl substances alters growth and reduces body condition of post-metamorphic salamanders[J]. Science of the Total Environment, 2021, 765: 142730. doi: 10.1016/j.scitotenv.2020.142730
|
[59] |
ZHANG W L, LIANG Y N. Interactions between Lemna minor (common duckweed) and PFAS intermediates: Perfluorooctanesulfonamide (PFOSA) and 6: 2 fluorotelomer sulfonate (6: 2 FTSA)[J]. Chemosphere, 2021, 276: 130165. doi: 10.1016/j.chemosphere.2021.130165
|
[60] |
WANG L, CHEN S Y, HOU H X, et al. Early stage exposure of 1H, 1H, 2H, 2H-perfluorooctanesulfonate-induced cardiovascular abnormality in zebrafish embryos and larvae[J]. ACS ES& T Water, 2023, 3(1): 106-117.
|
[61] |
ZHANG J, REN Z M, CHEN M. Immunotoxicity and transcriptome analyses of zebrafish (Danio rerio) embryos exposed to 6: 2 FTSA[J]. Toxics, 2023, 11(5): 459. doi: 10.3390/toxics11050459
|
[62] |
ABERCROMBIE S A, de PERRE C, IACCHETTA M, et al. Sublethal effects of dermal exposure to poly- and perfluoroalkyl substances on postmetamorphic amphibians[J]. Environmental Toxicology and Chemistry, 2021, 40(3): 717-726. doi: 10.1002/etc.4711
|
[63] |
BOHANNON M E, NARIZZANO A M, GUIGNI B A, et al. Next-generation PFAS 6: 2 fluorotelomer sulfonate reduces plaque formation in exposed white-footed mice[J]. Toxicological Sciences, 2023, 192(1): 97-105. doi: 10.1093/toxsci/kfad006
|
[64] |
SHENG N, ZHOU X J, ZHENG F, et al. Comparative hepatotoxicity of 6: 2 fluorotelomer carboxylic acid and 6: 2 fluorotelomer sulfonic acid, two fluorinated alternatives to long-chain perfluoroalkyl acids, on adult male mice[J]. Archives of Toxicology, 2017, 91(8): 2909-2919. doi: 10.1007/s00204-016-1917-2
|
[65] |
SHENG N, CUI R N, WANG J H, et al. Cytotoxicity of novel fluorinated alternatives to long-chain perfluoroalkyl substances to human liver cell line and their binding capacity to human liver fatty acid binding protein[J]. Archives of Toxicology, 2018, 92(1): 359-369. doi: 10.1007/s00204-017-2055-1
|
[66] |
LEE H, SUNG E J, SEO S, et al. Integrated multi-omics analysis reveals the underlying molecular mechanism for developmental neurotoxicity of perfluorooctanesulfonic acid in zebrafish[J]. Environment International, 2021, 157: 106802. doi: 10.1016/j.envint.2021.106802
|
[67] |
WANG Q, WU Y L, ZHANG W J, et al. Lipidomics and transcriptomics insight into impacts of microplastics exposure on hepatic lipid metabolism in mice[J]. Chemosphere, 2022, 308: 136591. doi: 10.1016/j.chemosphere.2022.136591
|
[68] |
SHI C C, CHENG L, YU Y, et al. Multi-omics integration analysis: Tools and applications in environmental toxicology[J]. Environmental Pollution, 2024, 360: 124675. doi: 10.1016/j.envpol.2024.124675
|
[69] |
WANG N, LIU J X, BUCK R C, et al. 6: 2 Fluorotelomer sulfonate aerobic biotransformation in activated sludge of waste water treatment plants[J]. Chemosphere, 2011, 82(6): 853-858. doi: 10.1016/j.chemosphere.2010.11.003
|
[70] |
ZHANG S, LU X X, WANG N, et al. Biotransformation potential of 6: 2 fluorotelomer sulfonate (6: 2 FTSA) in aerobic and anaerobic sediment[J]. Chemosphere, 2016, 154: 224-230. doi: 10.1016/j.chemosphere.2016.03.062
|
[71] |
YANG S H, SHI Y, STRYNAR M, et al. Desulfonation and defluorination of 6: 2 fluorotelomer sulfonic acid (6: 2 FTSA) by Rhodococcus jostii RHA1: Carbon and sulfur sources, enzymes, and pathways[J]. Journal of Hazardous Materials, 2022, 423: 127052. doi: 10.1016/j.jhazmat.2021.127052
|
[72] |
YAN P F, DONG S, MANZ K E, et al. Aerobic biotransformation of 6: 2 fluorotelomer sulfonate in soils from two aqueous film-forming foam (AFFF)-impacted sites[J]. Water Research, 2024, 249: 120941. doi: 10.1016/j.watres.2023.120941
|
[73] |
MÉNDEZ V, HOLLAND S, BHARDWAJ S, et al. Aerobic biotransformation of 6: 2 fluorotelomer sulfonate by Dietzia aurantiaca J3 under sulfur-limiting conditions[J]. Science of the Total Environment, 2022, 829: 154587. doi: 10.1016/j.scitotenv.2022.154587
|
[74] |
HAMID H, LI L Y, GRACE J R. Aerobic biotransformation of fluorotelomer compounds in landfill leachate-sediment[J]. Science of the Total Environment, 2020, 713: 136547. doi: 10.1016/j.scitotenv.2020.136547
|
[75] |
GRIMBERG F, HOLSEN T M, FERNANDO S, et al. Biotransformation of 6: 2 fluorotelomer sulfonate (6: 2 FTS) in sulfur-rich media by Trametopsis cervina[J]. Frontiers of Environmental Science & Engineering, 2024, 18(9): 107.
|
[76] |
YIN T R, TRAN N H, CHEN H T, et al. Biotransformation of polyfluoroalkyl substances by microbial consortia from constructed wetlands under aerobic and anoxic conditions[J]. Chemosphere, 2019, 233: 101-109. doi: 10.1016/j.chemosphere.2019.05.227
|
[77] |
HAMID H, LI L Y, GRACE J R. Effect of substrate concentrations on aerobic biotransformation of 6: 2 fluorotelomer sulfonate (6: 2 FTS) in landfill leachate[J]. Chemosphere, 2020, 261: 128108. doi: 10.1016/j.chemosphere.2020.128108
|
[78] |
PARK S, LEE L S, MEDINA V F, et al. Heat-activated persulfate oxidation of PFOA, 6: 2 fluorotelomer sulfonate, and PFOS under conditions suitable for in situ groundwater remediation[J]. Chemosphere, 2016, 145: 376-383. doi: 10.1016/j.chemosphere.2015.11.097
|
[79] |
LONDHE K, LEE C S, GRDANOVSKA S, et al. Application of electron beam technology to decompose per- and polyfluoroalkyl substances in water[J]. Environmental Pollution, 2024, 348: 123770. doi: 10.1016/j.envpol.2024.123770
|
[80] |
BANAYAN ESFAHANI E, ASADI ZEIDABADI F, MOHSENI M. Vacuum-UV radiation capable of catalyst-free decomposition of 6: 2 FTSA: The transformation mechanism and impacts of the water matrix[J]. ACS ES& T Water, 2023, 3(11): 3614-3625.
|
[81] |
JIANG L L, HONG Y J, XIE G S, et al. Comprehensive multi-omics approaches reveal the hepatotoxic mechanism of perfluorohexanoic acid (PFHxA) in mice[J]. Science of the Total Environment, 2021, 790: 148160. doi: 10.1016/j.scitotenv.2021.148160
|
[82] |
YANG X L, HUANG J, ZHANG K L, et al. Stability of 6: 2 fluorotelomer sulfonate in advanced oxidation processes: Degradation kinetics and pathway[J]. Environmental Science and Pollution Research International, 2014, 21(6): 4634-4642. doi: 10.1007/s11356-013-2389-z
|
[83] |
LIU Z K, BENTEL M J, YU Y C, et al. Near-quantitative defluorination of perfluorinated and fluorotelomer carboxylates and sulfonates with integrated oxidation and reduction[J]. Environmental Science & Technology, 2021, 55(10): 7052-7062.
|
[84] |
TENORIO R, LIU J Y, XIAO X, et al. Destruction of per- and polyfluoroalkyl substances (PFASs) in aqueous film-forming foam (AFFF) with UV-sulfite photoreductive treatment[J]. Environmental Science & Technology, 2020, 54(11): 6957-6967.
|