[1] |
马兴泰, 辛宝平, 吴莹, 等. 硫化镉纳米膜的生物还原-化学沉淀耦合制备及其性能表征[J]. 无机化学学报, 2011, 27(5): 828-834.
MA X T, XIN B P, WU Y, et al. Preparation and characterization of CdS nano film by CRBRCP-EDTA process[J]. Chinese Journal of Inorganic Chemistry, 2011, 27(5): 828-834 (in Chinese).
|
[2] |
GIRIBABU K, SURESH R, MANIGANDAN R, et al. Cadmium sulphide nanorods: Synthesis, characterization and their photocatalytic activity[J]. Bulletin of the Korean Chemical Society, 2012, 33(9): 2910-2916.
|
[3] |
WU Q, HUANG L X, LI Z, et al. The potential application of raw cadmium sulfide nanoparticles as CT photographic developer[J]. Nanoscale Research Letters, 2016, 11(1): 232. doi: 10.1186/s11671-016-1424-7
|
[4] |
PATIL A B, CHAUDHARY P L, ADHYAPAK P V. Carbon dots-cadmium sulfide quantum dots nanocomposite for ‘on–off’ fluorescence sensing of chromium(VI) ions[J]. RSC Advances, 2024, 14(18): 12923-12934. doi: 10.1039/D4RA00436A
|
[5] |
GAZIZADEH M, DEHGHAN G, SOLEYMANI J. A dual-emission ratiometric fluorescent biosensor for ultrasensitive detection of glibenclamide using S-CDs/CdS quantum dots[J]. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 2023, 297: 122714. doi: 10.1016/j.saa.2023.122714
|
[6] |
SAMAL S K, SOENEN S, PUPPI D, et al. Bio-nanohybrid gelatin/quantum dots for cellular imaging and biosensing applications[J]. International Journal of Molecular Sciences, 2022, 23(19): 11867. doi: 10.3390/ijms231911867
|
[7] |
ABDEL-GALIL A, BALBOUL M R, ALI H E. Synthesis and characterization of γ-irradiated cadmium sulfide/polyvinyl alcohol nanocomposites films[J]. Journal of Electronic Materials, 2020, 49(3): 2222-2232. doi: 10.1007/s11664-019-07926-9
|
[8] |
ALSAGGAF M S, ELBAZ A F, EL BADAWY- S, et al. Anticancer and antibacterial activity of cadmium sulfide nanoparticles by Aspergillus niger[J]. Advances in Polymer Technology, 2020, 2020: 4909054.
|
[9] |
DURGA B, RAZIYA S, RAJAMAHANTI S. Synthesis and characterization of cadmium sulphide nanoparticles using Annona muricata leaf extract as reducing/capping agent[J]. Chemical Science Transactions, 2016, 5(4): 1035-1041.
|
[10] |
QUTUB N, PIRZADA B M, UMAR K, et al. Synthesis of CdS nanoparticles using different sulfide ion precursors: Formation mechanism and photocatalytic degradation of Acid Blue-29[J]. Journal of Environmental Chemical Engineering, 2016, 4(1): 808-817. doi: 10.1016/j.jece.2015.10.031
|
[11] |
HU Y, LIU B, WU Y T, et al. Facile high throughput wet-chemical synthesis approach using a microfluidic-based composition and temperature controlling platform[J]. Frontiers in Chemistry, 2020, 8: 579828. doi: 10.3389/fchem.2020.579828
|
[12] |
CHEN J Z, MA Q L, WU X J, et al. Wet-chemical synthesis and applications of semiconductor nanomaterial-based epitaxial heterostructures[J]. Nano-Micro Letters, 2019, 11(1): 86.
|
[13] |
GARCÍA GUILLÉN G, ZUÑIGA IBARRA V A, MENDIVIL PALMA M I, et al. Effects of liquid medium and ablation wavelength on the properties of cadmium sulfide nanoparticles formed by pulsed-laser ablation[J]. Chemphyschem, 2017, 18(9): 1035-1046. doi: 10.1002/cphc.201601056
|
[14] |
EMAMI MOGHADDAM S A, GHADAM P, RAHIMZADEH F. Biosynthesis of cadmium sulfide nanoparticles using aqueous extract of Lactobacillus acidophilus along with its improvement by response surface methodology[J]. Journal of Cleaner Production, 2022, 356: 131848. doi: 10.1016/j.jclepro.2022.131848
|
[15] |
ROSE M M, SHEELA CHRISTY R, ASENATH BENITTA T, et al. Phase transitions in cadmium sulfide nanoparticles[J]. 2021, 11(8): 085129.
|
[16] |
BHAT I U H, YI Y S. Green synthesis and antibacterial activity of cadmium sulfide nanoparticles (CdS NPs) using Panicum sarmentosum[J]. Asian Journal of Green Chemistry, 2019, 3(4): 455-469.
|
[17] |
ULLAH A, RASHEED S, ALI I, et al. Plant mediated synthesis of CdS nanoparticles, their characterization and application for photocatalytic degradation of toxic organic dye[J]. Chemical Review and Letters, 2021, 4(2): 98-107.
|
[18] |
MUBARAKALI D, GOPINATH V, RAMESHBABU N, et al. Synthesis and characterization of CdS nanoparticles using C-phycoerythrin from the marine cyanobacteria[J]. Materials Letters, 2012, 74: 8-11. doi: 10.1016/j.matlet.2012.01.026
|
[19] |
SANKHLA A, SHARMA R, YADAV R S, et al. Biosynthesis and characterization of cadmium sulfide nanoparticles–An emphasis of Zeta potential behavior due to capping[J]. Materials Chemistry and Physics, 2016, 170: 44-51. doi: 10.1016/j.matchemphys.2015.12.017
|
[20] |
DIKSHIT P, KUMAR J, DAS A, et al. Green synthesis of metallic nanoparticles: Applications and limitations[J]. Catalysts, 2021, 11(8): 902. doi: 10.3390/catal11080902
|
[21] |
BOROVAYA M, PIRKO Y, KRUPODOROVA T, et al. Biosynthesis of cadmium sulphide quantum dots by using Pleurotus ostreatus(Jacq. )P. Kumm[J]. Biotechnology & Biotechnological Equipment, 2015, 29(6): 1156-1163.
|
[22] |
BAI H J, ZHANG Z M, GUO Y, et al. Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris[J]. Colloids and Surfaces. B, Biointerfaces, 2009, 70(1): 142-146. doi: 10.1016/j.colsurfb.2008.12.025
|
[23] |
PERRAULT S D, WALKEY C, JENNINGS T, et al. Mediating tumor targeting efficiency of nanoparticles through design[J]. Nano Letters, 2009, 9(5): 1909-1915. doi: 10.1021/nl900031y
|
[24] |
TANG L, YANG X J, YIN Q, et al. Investigating the optimal size of anticancer nanomedicine[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(43): 15344-15349.
|
[25] |
BLANCO E, SHEN H F, FERRARI M. Principles of nanoparticle design for overcoming biological barriers to drug delivery[J]. Nature Biotechnology, 2015, 33(9): 941-951.
|
[26] |
WANG J Q, MAO W W, LOCK L L, et al. The role of micelle size in tumor accumulation, penetration, and treatment[J]. ACS Nano, 2015, 9(7): 7195-7206. doi: 10.1021/acsnano.5b02017
|
[27] |
LÜ W, CHEN J, WU Y, et al. Graphene-enhanced visible-light photocatalysis of large-sized CdS particles for wastewater treatment[J]. Nanoscale Research Letters, 2014, 9(1): 148. doi: 10.1186/1556-276X-9-148
|
[28] |
SANDOVAL-CÁRDENAS I, GÓMEZ-RAMÍREZ M, ROJAS-AVELIZAPA N G. Use of a sulfur waste for biosynthesis of cadmium sulfide quantum dots with Fusarium oxysporum f. sp. lycopersici[J]. Materials Science in Semiconductor Processing, 2017, 63: 33-39. doi: 10.1016/j.mssp.2017.01.017
|
[29] |
EL-BAZ A F, SOROUR N M, SHETAIA Y M. Trichosporon jirovecii–mediated synthesis of cadmium sulfide nanoparticles[J]. Journal of Basic Microbiology, 2016, 56(5): 520-530. doi: 10.1002/jobm.201500275
|
[30] |
NADAGOUDA M N, SPETH T F, VARMA R S. Microwave-assisted green synthesis of silver nanostructures[J]. Accounts of Chemical Research, 2011, 44(7): 469-478. doi: 10.1021/ar1001457
|
[31] |
VELIKOV K P, ZEGERS G E, van BLAADEREN A. Synthesis and characterization of large colloidal silver particles[J]. Langmuir, 2003, 19(4): 1384-1389. doi: 10.1021/la026610p
|
[32] |
SUN H F, LI Y H, JI Y F, et al. Environmental contamination and health hazard of lead and cadmium around Chatian mercury mining deposit in western Hunan Province, China[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(2): 308-314.
|
[33] |
DADMEHR M, KOROUZHDEHI B, TAVASSOLI A, et al. Photocatalytic activity of green synthesized cadmium sulfide quantum dots on the removal of RhB dye and its cytotoxicity and antibacterial studies[J]. Nanotechnology, 2022, 33(39): 395101. doi: 10.1088/1361-6528/ac79bc
|
[34] |
LI X M, PENG W H, JIA Y Y, et al. Removal of cadmium and zinc from contaminated wastewater using Rhodobacter sphaeroides[J]. Water Science and Technology, 2017, 75(11/12): 2489-2498.
|
[35] |
DETHLEFSEN S, JÄGER C, KLOCKGETHER J, et al. Metabolite profiling of the cold adaptation of Pseudomonas putida KT2440 and cold-sensitive mutants[J]. Environmental Microbiology Reports, 2019, 11(6): 777-783. doi: 10.1111/1758-2229.12793
|
[36] |
陈华民. 微生物检验技术[M]. 北京: 中国中医药出版社, 2013: 207-208.
CHEN H M. Microbiological testing techniques[M]. Beijing: China Press of Traditional Chinese Medicine, 2013: 207-208 (in Chinese).
|
[37] |
周庭银. 临床微生物学诊断与图解[M]. 3版. 上海: 上海科学技术出版社, 2012: 232-233.
ZHOU T Y. Diagnosis and illustration of clinical microbiology[M]. 3rd ed. Shanghai: Shanghai Scientific & Technical Publishers, 2012: 232-233 (in Chinese).
|
[38] |
AGATHOKLEOUS E, KITAO M, CALABRESE E J. Hormesis: A compelling platform for sophisticated plant science[J]. Trends in Plant Science, 2019, 24(4): 318-327.
|
[39] |
DIWU F, SUN J W, LIU C L, et al. Measurement and modeling of hormesis in soil bacteria and fungi under single and combined treatments of Cd and Pb[J]. Science of the Total Environment, 2021, 783: 147494. doi: 10.1016/j.scitotenv.2021.147494
|
[40] |
FERREIRA M L, CASABUONO A C, STACCHIOTTI S T, et al. Chemical characterization of Pseudomonas veronii 2E soluble exopolymer as Cd(II) ligand for the biotreatment of electroplating wastes[J]. International Biodeterioration & Biodegradation, 2017, 119: 605-613.
|
[41] |
NAFAEE Z H, EGYED V, JANCSÓ A, et al. Revisiting the hydrolysis of ampicillin catalyzed by Temoneira-1 β-lactamase, and the effect of Ni(Ⅱ), Cd(Ⅱ) and Hg(Ⅱ)[J]. Protein Science, 2023, 32(12): e4809. doi: 10.1002/pro.4809
|
[42] |
ENSHAEI M, KHANAFARI A, SEPAHEY A A. Metallothionein induction in two species of Pseudomonas exposed to cadmium and copper contamination[J]. Iranian Journal of Environmental Health Science and Engineering, 2010, 7(4): 287-298.
|
[43] |
TRIPATHI M, KUMAR S, MAKARANA G, et al. Metal-tolerant bioinoculant Pseudomonas putida KNP9 mediated enhancement of soybean growth under heavy metal stress suitable for biofuel production at the metal-contaminated site[J]. Energies, 2023, 16(11): 4508. doi: 10.3390/en16114508
|
[44] |
TAYANG A, SONGACHAN L S. Microbial bioremediation of heavy metals[J]. Current Science, 2021, 120(6): 1013. doi: 10.18520/cs/v120/i6/1013-1025
|
[45] |
ULLOA G, QUEZADA C P, ARANEDA M, et al. Phosphate favors the biosynthesis of CdS quantum dots in Acidithiobacillus thiooxidans ATCC 19703 by improving metal uptake and tolerance[J]. Frontiers in Microbiology, 2018, 9: 234.
|
[46] |
RIZVI S B, GHADERI S, KESHTGAR M, et al. Semiconductor quantum dots as fluorescent probes for in vitro and in vivo bio-molecular and cellular imaging[J]. Nano Reviews, 2010, 1: 1.
|
[47] |
JIN S, HU Y X, GU Z J, et al. Application of quantum dots in biological imaging[J]. Journal of Nanomaterials, 2011(2): 834139.
|
[48] |
REZVANI AMIN Z, KHASHYARMANESH Z, FAZLY BAZZAZ B S. Different behavior of Staphylococcus epidermidis in intracellular biosynthesis of silver and cadmium sulfide nanoparticles: More stability and lower toxicity of extracted nanoparticles[J]. World Journal of Microbiology & Biotechnology, 2016, 32(9): 140.
|
[49] |
CHEN Y L, TUAN H Y, TIEN C W, et al. Augmented biosynthesis of cadmium sulfide nanoparticles by genetically engineered Escherichia coli[J]. Biotechnology Progress, 2009, 25(5): 1260-1266. doi: 10.1002/btpr.199
|
[50] |
SWEENEY R Y, MAO C B, GAO X X, et al. Bacterial biosynthesis of cadmium sulfide nanocrystals[J]. Chemistry & Biology, 2004, 11(11): 1553-1559.
|
[51] |
REN X X, ZHAO G L, LI H, et al. The effect of different pH modifier on formation of CdS nanoparticles[J]. Journal of Alloys and Compounds, 2008, 465(1/2): 534-539.
|
[52] |
MIRNAYA T A, ASAULA V N, VOLKOV S V, et al. Synthesis and optical properties of liquid crystalline nanocomposites of cadmium octanoate with CdS quantum dots[J]. Physchem Solid State, 2012, 13(1): 131-135.
|
[53] |
MOHANRAJ V, JAYAPRAKASH R, CHANDRASEKARAN J, et al. Influence of pH on particle size, band-gap and activation energy of CdS nanoparticles synthesized at constant frequency ultrasonic wave irradiation[J]. Materials Science in Semiconductor Processing, 2017, 66: 131-139. doi: 10.1016/j.mssp.2017.04.006
|
[54] |
刘辉, 李文友, 尹洪宗, 等. CdS纳米粒子制备的影响因素及CdS纳米粒子-酚藏花红体系的光谱特性[J]. 化学学报, 2005, 63(4): 301-306,257.
LIU H, LI W Y, YIN H Z, et al. Influence factors for the preparation of CdS nanoparticles and spectroscopic study on the CdS-phenosafranine system[J]. Acta Chimica Sinica, 2005, 63(4): 301-306,257 (in Chinese).
|
[55] |
张宇, 付德刚, 蔡建东, 等. CdS纳米粒子的表面修饰及其对光学性质的影响[J]. 物理化学学报, 2000, 16(5): 431-436.
ZHANG Y, FU D G, CAI J D, et al. Surface-modification of CdS nanoparticle and its optical properties[J]. Acta Physico-Chimica Sinica, 2000, 16(5): 431-436 (in Chinese).
|
[56] |
吴晓春, 汤国庆, 张桂兰, 等. 不同制备条件对纳米Bi2O3发光的影响[J]. 化学学报, 1996, 54(2): 146-151.
WU X C, TANG G Q, ZHANG G L, et al. The effects of synthesis conditions on the luminescence of nanometer-sized Bi2O3 organosols[J]. Acta Chimica Sinica, 1996, 54(2): 146-151 (in Chinese).
|
[57] |
KAMBLE M M, RONDIYA S R, BADE B R, et al. Optical, structural and morphological study of CdS nanoparticles: Role of sulfur source[J]. Nanomaterials and Energy, 2020, 9(1): 72-81. doi: 10.1680/jnaen.19.00041
|
[58] |
ABU S N, MUHAMAD, IBRAHIM A L. The effect of pH, temperature on green synthesis and antibacterial activity of silver nanoparticles from polygonum minus extract[J]. Aip Conf. Proc. 2023, 2625(1): 020005.
|
[59] |
袁盛力, 何德勇, 方洁, 等. 复合纳米材料MoS_(2)@CNTs光电催化降解盐酸四环素的研究[J]. 现代化工, 2024, 44(9): 97-102.
YUAN S L, HE D Y, FANG J, et al. Photocatalytic degradation of tetracycline hydrochloride by composite nanomaterial MoS_(2)@CNTs[J]. Modern Chemical Engineering, 2024, 44(9): 97-102 (in Chinese).
|
[60] |
沈琳玉, 沈丹红, 陈康, 等. 高效降解环境新污染物四环素的复合光催化剂: 从材料设计到降解机制[J]. 环境化学, 2023, 42(9): 2859-2875. doi: 10.7524/j.issn.0254-6108.2022090103
SHEN L Y, SHEN D H, CHEN K, et al. Composite photocatalysts for efficient degradation of emerging contaminant tetracyclines: From material design to degradation mechanisms[J]. Environmental Chemistry, 2023, 42(9): 2859-2875 (in Chinese). doi: 10.7524/j.issn.0254-6108.2022090103
|
[61] |
WANG W X, WANG L, LV Y C, et al. Simple synthesis of CoNi@ZrO2 nanospheres for catalytic degradation of chloramphenicol under visible light[J]. Water, Air, & Soil Pollution, 2024, 235(8): 539.
|
[62] |
ULLAH H, VIGLAŠOVÁ E, GALAMBOŠ M. Visible light-driven photocatalytic rhodamine B degradation using CdS nanorods[J]. Processes, 2021, 9(2): 263. doi: 10.3390/pr9020263
|
[63] |
GURUGUBELLI T R, RAVIKUMAR R V S S N, KOUTAVARAPU R. Enhanced photocatalytic activity of ZnO–CdS composite nanostructures towards the degradation of rhodamine B under solar light[J]. Catalysts, 2022, 12(1): 84.
|
[64] |
刘海涛, 丁颖, 徐丽慧, 等. ZIF-8/CdS复合材料对亚甲基蓝的光催化降解[J]. 环境化学, 2023, 42(1): 288-297. doi: 10.7524/j.issn.0254-6108.2021082903
LIU H T, DING Y, XU L H, et al. Photocatalytic degradation of methylene blue by ZIF-8/CdS composites[J]. Environmental Chemistry, 2023, 42(1): 288-297 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021082903
|