[1] |
VIAROLI S, LANCIA M, RE V. Microplastics contamination of groundwater: Current evidence and future perspectives. A review[J]. Science of the Total Environment, 2022, 824: 153851. doi: 10.1016/j.scitotenv.2022.153851
|
[2] |
张丛林, 刘宝印, 邹秀萍, 等. 我国新污染物治理形势、问题与建议[J]. 环境保护, 2021, 49(10): 20-24.
ZHANG C L, LIU B Y, ZOU X P, et al. Situation, problems and suggestions of new pollutants control in China[J]. Environmental Protection, 2021, 49(10): 20-24 (in Chinese).
|
[3] |
李林云, 段宇婧, 侯捷. 饮用水中新污染物的来源、风险评估和防控治理的研究进展[J]. 应用生态学报, 2023, 34(12): 3447-3456.
LI L Y, DUAN Y J, HOU J. Research progress on source, risk assessment, and management of emerging pollutants in drinking water[J]. Chinese Journal of Applied Ecology, 2023, 34(12): 3447-3456 (in Chinese).
|
[4] |
封涛涛, 王斌, 李江, 等. 城镇污水厂新污染物赋存特征及去除技术研究进展[J]. 科技导报, 2024, 42(11): 36-46.
FENG T T, WANG B, LI J, et al. Research progress on occurrence characteristics and removal technologies of emerging contaminants in urban sewage treatment plants[J]. Science & Technology Review, 2024, 42(11): 36-46 (in Chinese).
|
[5] |
WERKNEH A A, GEBRU S B, REDAE G H, et al. Removal of endocrine disrupters from the contaminated environment: Public health concerns, treatment strategies and future perspectives - A review[J]. Heliyon, 2022, 8(4): e09206. doi: 10.1016/j.heliyon.2022.e09206
|
[6] |
GAO C B, LYU F L, YIN Y D. Encapsulated metal nanoparticles for catalysis[J]. Chemical Reviews, 2021, 121(2): 834-881. doi: 10.1021/acs.chemrev.0c00237
|
[7] |
WANG N, SUN Q M, YU J H. Ultrasmall metal nanoparticles confined within crystalline nanoporous materials: A fascinating class of nanocatalysts[J]. Advanced Materials, 2019, 31(1): e1803966. doi: 10.1002/adma.201803966
|
[8] |
van DEELEN T W, HERNÁNDEZ MEJÍA C, de JONG K P. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity[J]. Nature Catalysis, 2019, 2: 955-970. doi: 10.1038/s41929-019-0364-x
|
[9] |
PRAJAPATI D, SHAH M, YADAV A, et al. A critical review on emerging contaminants: Origin, discernment, and remedies[J]. Sustainable Water Resources Management, 2023, 9(3): 69. doi: 10.1007/s40899-023-00853-y
|
[10] |
ARAVIND KUMAR J, KRITHIGA T, SATHISH S, et al. Persistent organic pollutants in water resources: Fate, occurrence, characterization and risk analysis[J]. Science of the Total Environment, 2022, 831: 154808. doi: 10.1016/j.scitotenv.2022.154808
|
[11] |
ALHARBI O M L, BASHEER A A, KHATTAB R A, et al. Health and environmental effects of persistent organic pollutants[J]. Journal of Molecular Liquids, 2018, 263: 442-453. doi: 10.1016/j.molliq.2018.05.029
|
[12] |
PADMANABHAN V, SONG W H, PUTTABYATAPPA M. Praegnatio perturbatio-impact of endocrine-disrupting chemicals[J]. Endocrine Reviews, 2021, 42(3): 295-353. doi: 10.1210/endrev/bnaa035
|
[13] |
BARRIOS-ESTRADA C, de JESÚS ROSTRO-ALANIS M, MUÑOZ-GUTIÉRREZ B D, et al. Emergent contaminants: Endocrine disruptors and their laccase-assisted degradation–A review[J]. Science of the Total Environment, 2018, 612: 1516-1531. doi: 10.1016/j.scitotenv.2017.09.013
|
[14] |
DeVRIES S L, ZHANG P F. Antibiotics and the terrestrial nitrogen cycle: A review[J]. Current Pollution Reports, 2016, 2(1): 51-67. doi: 10.1007/s40726-016-0027-3
|
[15] |
ANDRADY A L. The plastic in microplastics: A review[J]. Marine Pollution Bulletin, 2017, 119(1): 12-22. doi: 10.1016/j.marpolbul.2017.01.082
|
[16] |
ZHA F G, SHANG M X, OUYANG Z Z, et al. The aging behaviors and release of microplastics: A review[J]. Gondwana Research, 2022, 108: 60-71. doi: 10.1016/j.gr.2021.10.025
|
[17] |
陈婉. 新污染物的前世今生[J]. 环境经济, 2023(17): 12-17.
CHEN W. The past and present of emerging pollutants[J]. Environmental Economy, 2023(17): 12-17 (in Chinese).
|
[18] |
DAS R, VECITIS C D, SCHULZE A, et al. Recent advances in nanomaterials for water protection and monitoring[J]. Chemical Society Reviews, 2017, 46(22): 6946-7020. doi: 10.1039/C6CS00921B
|
[19] |
ALVAREZ P J J, CHAN C K, ELIMELECH M, et al. Emerging opportunities for nanotechnology to enhance water security[J]. Nature Nanotechnology, 2018, 13(8): 634-641. doi: 10.1038/s41565-018-0203-2
|
[20] |
WANG Y, MAO J, MENG X G, et al. Catalysis with two-dimensional materials confining single atoms: Concept, design, and applications[J]. Chemical Reviews, 2019, 119(3): 1806-1854. doi: 10.1021/acs.chemrev.8b00501
|
[21] |
DICHIARANTE V, PIGLIACELLI C, METRANGOLO P, et al. Confined space design by nanoparticle self-assembly[J]. Chemical Science, 2020, 12(5): 1632-1646.
|
[22] |
AGRAWAL K V, SHIMIZU S, DRAHUSHUK L W, et al. Observation of extreme phase transition temperatures of water confined inside isolated carbon nanotubes[J]. Nature Nanotechnology, 2017, 12(3): 267-273. doi: 10.1038/nnano.2016.254
|
[23] |
GROMMET A B, FELLER M, KLAJN R. Chemical reactivity under nanoconfinement[J]. Nature Nanotechnology, 2020, 15(4): 256-271. doi: 10.1038/s41565-020-0652-2
|
[24] |
GALOGAHI F M, ZHU Y, AN H J, et al. Core-shell microparticles: Generation approaches and applications[J]. Journal of Science: Advanced Materials and Devices, 2020, 5(4): 417-435. doi: 10.1016/j.jsamd.2020.09.001
|
[25] |
CHEN W, CHEN S W. Oxygen electroreduction catalyzed by gold nanoclusters: Strong core size effects[J]. Angewandte Chemie (International Ed), 2009, 48(24): 4386-4389. doi: 10.1002/anie.200901185
|
[26] |
YANG X C, XU Q. Encapsulating metal nanocatalysts within porous organic hosts[J]. Trends in Chemistry, 2020, 2(3): 214-226. doi: 10.1016/j.trechm.2019.12.001
|
[27] |
HERNÁNDEZ MEJÍA C, van DEELEN T W, de JONG K P. Activity enhancement of cobalt catalysts by tuning metal-support interactions[J]. Nature Communications, 2018, 9(1): 4459. doi: 10.1038/s41467-018-06903-w
|
[28] |
ZHANG J, ZHANG L, LI Z S, et al. Nanoconfinement effect for signal amplification in electrochemical analysis and sensing[J]. Small, 2021, 17(39): e2101665. doi: 10.1002/smll.202101665
|
[29] |
MA H R, FENG G Q, ZHANG X, et al. New insights into Co3O4-carbon nanotube membrane for enhanced water purification: Regulated peroxymonosulfate activation mechanism via nanoconfinement[J]. Chemosphere, 2024, 347: 140698. doi: 10.1016/j.chemosphere.2023.140698
|
[30] |
SU P, FU W Y, DU X D, et al. Confined Fe0@CNTs for highly efficient and super stable activation of persulfate in wide pH ranges: Radicals and non-radical co-catalytic mechanism[J]. Chemical Engineering Journal, 2021, 420: 129446. doi: 10.1016/j.cej.2021.129446
|
[31] |
WANG M, ZHANG H, LI M, et al. High performance of carbon nanotube-encapsulated CuFe2O4 for peroxonosulfate activation: A process of degradation of sulfamethoxazole in complex matrix water via a singlet oxygen-dominated pathway[J]. Separation and Purification Technology, 2025, 353: 128367. doi: 10.1016/j.seppur.2024.128367
|
[32] |
CHEN L, SHI G S, SHEN J, et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing[J]. Nature, 2017, 550(7676): 380-383. doi: 10.1038/nature24044
|
[33] |
LU M, HAN W J, LI H B, et al. There is plenty of space in the MXene layers: The confinement and fillings[J]. Journal of Energy Chemistry, 2020, 48: 344-363. doi: 10.1016/j.jechem.2020.02.032
|
[34] |
MA Y Y, XIONG D B, LV X F, et al. Rapid and long-lasting acceleration of zero-valent iron nanoparticles@Ti3C2-based MXene/peroxymonosulfate oxidation with bi-active centers toward ranitidine removal[J]. Journal of Materials Chemistry A, 2021, 9(35): 19817-19833. doi: 10.1039/D1TA02046C
|
[35] |
XIE A T, CUI J Y, YANG J, et al. Graphene oxide/Fe(Ⅲ)-based metal-organic framework membrane for enhanced water purification based on synergistic separation and photo-Fenton processes[J]. Applied Catalysis B: Environmental, 2020, 264: 118548. doi: 10.1016/j.apcatb.2019.118548
|
[36] |
DUAN Y, ZHOU S K, DENG L, et al. Enhanced photocatalytic degradation of sulfadiazine via g-C3N4/carbon dots nanosheets under nanoconfinement: Synthesis, biocompatibility and mechanism[J]. Journal of Environmental Chemical Engineering, 2020, 8(6): 104612. doi: 10.1016/j.jece.2020.104612
|
[37] |
MENG C C, DING B F, ZHANG S Z, et al. Angstrom-confined catalytic water purification within Co-TiO x laminar membrane nanochannels[J]. Nature Communications, 2022, 13(1): 4010. doi: 10.1038/s41467-022-31807-1
|
[38] |
JIANG H L, AKITA T, ISHIDA T, et al. Synergistic catalysis of Au@Ag core-shell nanoparticles stabilized on metal-organic framework[J]. Journal of the American Chemical Society, 2011, 133(5): 1304-1306. doi: 10.1021/ja1099006
|
[39] |
ZHANG M, XIAO C M, YAN X, et al. Efficient removal of organic pollutants by metal-organic framework derived Co/C yolk-shell nanoreactors: Size-exclusion and confinement effect[J]. Environmental Science & Technology, 2020, 54(16): 10289-10300.
|
[40] |
ZHANG S W, GAO H H, XU X T, et al. MOF-derived CoN/N-C@SiO2 yolk-shell nanoreactor with dual active sites for highly efficient catalytic advanced oxidation processes[J]. Chemical Engineering Journal, 2020, 381: 122670. doi: 10.1016/j.cej.2019.122670
|
[41] |
ZHANG S, YI J J, CHEN J R, et al. Spatially confined Fe2O3 in hierarchical SiO2@TiO2 hollow sphere exhibiting superior photocatalytic efficiency for degrading antibiotics[J]. Chemical Engineering Journal, 2020, 380: 122583. doi: 10.1016/j.cej.2019.122583
|
[42] |
EVANGELISTA V, ACOSTA B, MIRIDONOV S, et al. Highly active Au-CeO2@ZrO2 yolk–shell nanoreactors for the reduction of 4-nitrophenol to 4-aminophenol[J]. Applied Catalysis B: Environmental, 2015, 166: 518-528.
|
[43] |
WEN L P, ZHANG X Q, TIAN Y, et al. Quantum-confined superfluid: From nature to artificial[J]. Science China Materials, 2018, 61(8): 1027-1032. doi: 10.1007/s40843-018-9289-2
|
[44] |
QIAN J S, GAO X, PAN B C. Nanoconfinement-mediated water treatment: From fundamental to application[J]. Environmental Science & Technology, 2020, 54(14): 8509-8526.
|
[45] |
ZHANG X Q, LIU H L, JIANG L. Wettability and applications of nanochannels[J]. Advanced Materials, 2019, 31(5): e1804508. doi: 10.1002/adma.201804508
|
[46] |
DU D, SHI W, WANG L Z, et al. Yolk-shell structured Fe3O4@void@TiO2 as a photo-Fenton-like catalyst for the extremely efficient elimination of tetracycline[J]. Applied Catalysis B: Environmental, 2017, 200: 484-492. doi: 10.1016/j.apcatb.2016.07.043
|
[47] |
DANG T J, LU G H, JIANG R R, et al. Bi-etched MIL-125 promotes visible-light-driven photocatalytic performance based on the surface plasmon resonance and spatial confinement effects[J]. Separation and Purification Technology, 2023, 306: 122597. doi: 10.1016/j.seppur.2022.122597
|
[48] |
SHI H, HE Y, LI Y B, et al. Confined ultrasmall MOF nanoparticles anchored on a 3D-graphene network as efficient and broad pH-adaptive photo Fenton-like catalysts[J]. Environmental Science: Nano, 2022, 9(3): 1091-1105. doi: 10.1039/D1EN00944C
|
[49] |
ZHANG H C, KANG Z X, HAN J J, et al. Photothermal nanoconfinement reactor: Boosting chemical reactivity with locally high temperature in a confined space[J]. Angewandte Chemie (International Ed), 2022, 61(26): e202200093. doi: 10.1002/anie.202200093
|
[50] |
SU P, FU W Y, DU X D, et al. Cost-effective degradation of pollutants by in situ electrocatalytic process on Fe@BN-C bifunctional cathode: Formation of 1O2 with high selectivity under nanoconfinement[J]. Chemical Engineering Journal, 2023, 452: 139693. doi: 10.1016/j.cej.2022.139693
|
[51] |
GUO D L, WANG Y, LU P, et al. Flow-through electro-Fenton using nanoconfined Fe-Mn bimetallic oxides: Ionization potential-dependent micropollutants degradation mechanism[J]. Applied Catalysis B: Environmental, 2023, 328: 122538. doi: 10.1016/j.apcatb.2023.122538
|
[52] |
ZHANG W, ZHANG S Z, MENG C C, et al. Nanoconfined catalytic membranes assembled by cobalt-functionalized graphitic carbon nitride nanosheets for rapid degradation of pollutants[J]. Applied Catalysis B: Environmental, 2023, 322: 122098. doi: 10.1016/j.apcatb.2022.122098
|
[53] |
CHEN Y, ZHANG G, LIU H J, et al. Confining free radicals in close vicinity to contaminants enables ultrafast Fenton-like processes in the interspacing of MoS2 membranes[J]. Angewandte Chemie (International Ed), 2019, 58(24): 8134-8138. doi: 10.1002/anie.201903531
|
[54] |
ZHANG S, HEDTKE T, WANG L, et al. Engineered nanoconfinement accelerating spontaneous manganese-catalyzed degradation of organic contaminants[J]. Environmental Science & Technology, 2021, 55(24): 16708-16715.
|
[55] |
ZHANG S, HEDTKE T, ZHU Q H, et al. Membrane-confined iron oxychloride nanocatalysts for highly efficient heterogeneous Fenton water treatment[J]. Environmental Science & Technology, 2021, 55(13): 9266-9275.
|
[56] |
LIU B M, SONG W B, ZHANG W W, et al. Fe3O4@CNT as a high-effective and steady chainmail catalyst for tetracycline degradation with peroxydisulfate activation: Performance and mechanism[J]. Separation and Purification Technology, 2021, 273: 118705. doi: 10.1016/j.seppur.2021.118705
|
[57] |
LIU B M, SONG W B, WU H X, et al. Degradation of norfloxacin with peroxymonosulfate activated by nanoconfinement Co3O4@CNT nanocomposite[J]. Chemical Engineering Journal, 2020, 398: 125498. doi: 10.1016/j.cej.2020.125498
|
[58] |
MA H R, WANG G L, XU Z H, et al. Confining peroxymonosulfate activation in carbon nanotube intercalated nitrogen doped reduced graphene oxide membrane for enhanced water treatment: The role of nanoconfinement effect[J]. Journal of Colloid and Interface Science, 2022, 608: 2740-2751. doi: 10.1016/j.jcis.2021.11.007
|
[59] |
GUO D L, YAO Y, YOU S J, et al. Ultrafast degradation of micropollutants in water via electro-periodate activation catalyzed by nanoconfined Fe2O3[J]. Applied Catalysis B: Environmental, 2022, 309: 121289. doi: 10.1016/j.apcatb.2022.121289
|
[60] |
LIU Y, WANG Y Y, LI X, et al. Multi-path accelerating sulfadiazine degradation via peracetic acid oxidation induced by nanoconfined co species: Highlighting electron rearrangement effect[J]. Chemical Engineering Journal, 2024, 494: 153167. doi: 10.1016/j.cej.2024.153167
|