[1] HUNTINK N M, DATTA R N, NOORDERMEER J W M. Addressing durability of rubber compounds[J]. Rubber Chemistry and Technology, 2004, 77(3): 476-511. doi: 10.5254/1.3547833
[2] MAHONEY H, Da SILVA F C Jr, ROBERTS C, et al. Exposure to the tire rubber-derived contaminant 6PPD-quinone causes mitochondrial dysfunction in vitro[J]. Environmental Science & Technology Letters, 2022, 9(9): 765-771.
[3] TIAN Z Y, ZHAO H Q, PETER K T, et al. A ubiquitous tire rubber-derived chemical induces acute mortality in coho salmon[J]. Science, 2021, 371(6525): 185-189. doi: 10.1126/science.abd6951
[4] VARSHNEY S, GORA A H, SIRIYAPPAGOUDER P, et al. Toxicological effects of 6PPD and 6PPD quinone in zebrafish larvae[J]. Journal of Hazardous Materials, 2022, 424: 127623. doi: 10.1016/j.jhazmat.2021.127623
[5] BLAIR S I, BARLOW C H, McINTYRE J K. Acute cerebrovascular effects in juvenile coho salmon exposed to roadway runoff[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2021, 78(2): 103-109. doi: 10.1139/cjfas-2020-0240
[6] LIU Q F, LI L, ZHANG X M, et al. Uncovering global-scale risks from commercial chemicals in air[J]. Nature, 2021, 600(7889): 456-461. doi: 10.1038/s41586-021-04134-6
[7] ZHU J Q, GUO R Y, REN F F, et al. Occurrence and partitioning of p-phenylenediamine antioxidants and their quinone derivatives in water and sediment[J]. Science of the Total Environment, 2024, 914: 170046. doi: 10.1016/j.scitotenv.2024.170046
[8] WANG W, CAO G D, ZHANG J, et al. p-phenylenediamine-derived quinones as new contributors to the oxidative potential of fine particulate matter[J]. Environmental Science & Technology Letters, 2022, 9(9): 712-717.
[9] ZHANG X, PENG Z F, HOU S J, et al. Ubiquitous occurrence of p-Phenylenediamine (PPD) antioxidants and PPD-quinones in fresh atmospheric snow and their amplification effects on associated aqueous contamination[J]. Journal of Hazardous Materials, 2024, 465: 133409. doi: 10.1016/j.jhazmat.2023.133409
[10] CAO G D, WANG W, ZHANG J, et al. New evidence of rubber-derived quinones in water, air, and soil[J]. Environmental Science & Technology, 2022, 56(7): 4142-4150.
[11] WANG H M, LUO Z X, DAI A T, et al. Ascertaining appropriate measuring methods to determine tire wear particle pollution on driving school grounds in China[J]. Journal of Hazardous Materials, 2024, 466: 133657. doi: 10.1016/j.jhazmat.2024.133657
[12] YUAN X Y, HU C Y, WANG Z W. The migration and degradation of N-(1, 3-dimethylbutyl)-N'-phenyl-p-phenylenediamine from rubber hoses in milk lines[J]. International Journal of Dairy Technology, 2023, 76(2): 329-338. doi: 10.1111/1471-0307.12923
[13] 高明, 徐艳林, 盛翔, 等. 超高效液相色谱法测定橡胶中6种橡胶助剂的含量[J]. 理化检验-化学分册, 2020, 56(1): 66-70. doi: 10.11973/lhjy-hx202001011 GAO M, XU Y L, SHENG X, et al. Determination of 6 rubber additives in rubber by UPLC[J]. Physical Testing and Chemical Analysis (Part B (Chemical Analysis), 2020, 56(1): 66-70 (in Chinese). doi: 10.11973/lhjy-hx202001011
[14] HUANG W, SHI Y M, HUANG J L, et al. Occurrence of substituted p-phenylenediamine antioxidants in dusts[J]. Environmental Science & Technology Letters, 2021, 8(5): 381-385.
[15] LIU R Z, LI Y L, LIN Y F, et al. Emerging aromatic secondary amine contaminants and related derivatives in various dust matrices in China[J]. Ecotoxicology and Environmental Safety, 2019, 170: 657-663. doi: 10.1016/j.ecoenv.2018.12.036
[16] WU Y, VENIER M, HITES R A. Broad exposure of the North American environment to phenolic and amino antioxidants and to ultraviolet filters[J]. Environmental Science & Technology, 2020, 54(15): 9345-9355.
[17] DENG C L, HUANG J L, QI Y Q, et al. Distribution patterns of rubber tire-related chemicals with particle size in road and indoor parking lot dust[J]. Science of the Total Environment, 2022, 844: 157144. doi: 10.1016/j.scitotenv.2022.157144
[18] FURUMAI H, JINADASA H K P K, MURAKAMI M, et al. Model description of storage and infiltration functions of infiltration facilities for urban runoff analysis by a distributed model[J]. Water Science and Technology, 2005, 52(5): 53-60. doi: 10.2166/wst.2005.0108
[19] EREJUWA O O, SULAIMAN S A, WAHAB M S. Honey: A novel antidiabetic agent[J]. International Journal of Biological Sciences, 2012, 8(6): 913-934. doi: 10.7150/ijbs.3697
[20] BOMMURAJ V, CHEN Y, KLEIN H, et al. Pesticide and trace element residues in honey and beeswax combs from Israel in association with human risk assessment and honey adulteration[J]. Food Chemistry, 2019, 299: 125123. doi: 10.1016/j.foodchem.2019.125123
[21] ANASTASSIADES M, LEHOTAY S J, STAJNBAHER D, et al. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction”for the determination of pesticide residues in produce[J]. Journal of AOAC International, 2003, 86(2): 412-431. doi: 10.1093/jaoac/86.2.412
[22] CHAMKASEM N, OLLIS L W, HARMON T, et al. Analysis of 136 pesticides in avocado using a modified QuEChERS method with LC-MS/MS and GC-MS/MS[J]. Journal of Agricultural and Food Chemistry, 2013, 61(10): 2315-2329. doi: 10.1021/jf304191c
[23] MAO W L, JIN H B, GUO R Y, et al. Occurrence of p-phenylenediamine antioxidants in human urine[J]. Science of the Total Environment, 2024, 914: 170045. doi: 10.1016/j.scitotenv.2024.170045
[24] PLASSMANN M M, BRACK W, KRAUSS M. Extending analysis of environmental pollutants in human urine towards screening for suspected compounds[J]. Journal of Chromatography A, 2015, 1394: 18-25.
[25] DU B B, LIANG B W, LI Y, et al. First report on the occurrence of N-(1, 3-dimethylbutyl)-N' -phenyl-p-phenylenediamine (6PPD) and 6PPD-quinone as pervasive pollutants in human urine from South China[J]. Environmental Science & Technology Letters, 2022, 9(12): 1056-1062.
[26] SU H, HUANG Y J, HUANG M Z, et al. Using ambient mass spectrometry to explore the origins of phthalate contamination in a mass spectrometry laboratory[J]. Analytica Chimica Acta, 2020, 1105: 128-138. doi: 10.1016/j.aca.2020.01.031
[27] GROSS J H. Direct analysis in real time mass spectrometry: Principles and practices of DART-MS[J]. Analytical and Bioanalytical Chemistry, 2018, 410(27): 6975-6976. doi: 10.1007/s00216-018-1221-5
[28] MONAGHAN J, JAEGER A, AGUA A R, et al. A direct mass spectrometry method for the rapid analysis of ubiquitous tire-derived toxin N-(1, 3-dimethylbutyl)- N' -phenyl- p-phenylenediamine quinone (6-PPD-Q)[J]. Environmental Science & Technology Letters, 2021, 8(12): 1051-1056.
[29] WANG X X, CAO G D, YANG Z Y, et al. DNA and RNA adducts formation from 3, 4-quinone metabolites of bisphenol F[J]. Environmental Science & Technology Letters, 2021, 8(11): 1009-1014.
[30] 王海林, 辛国兴, 朱立敏, 等. 典型橡胶制品业VOCs排放特征及对周边环境影响[J]. 环境科学, 2021, 42(11): 5193-5200. WANG H L, XIN G X, ZHU L M, et al. Emission characteristics and environment impacts of VOCs from typical rubber manufacture[J]. Environmental Science, 2021, 42(11): 5193-5200 (in Chinese).
[31] 赵光贤. 胶鞋喷霜的产生原因及预防措施[J]. 橡胶工业, 2004, 51(12): 753-754. doi: 10.3969/j.issn.1000-890X.2004.12.013 ZHAO G X. Causes for blooming of rubber shoes and their precautions[J]. China Rubber Industry, 2004, 51(12): 753-754 (in Chinese). doi: 10.3969/j.issn.1000-890X.2004.12.013
[32] 李威, 闫福江, 周忠伟. 高效液相色谱法监控胎侧胶中防老剂6PPD的含量[J]. 轮胎工业, 2018, 38(8): 507-510. doi: 10.3969/j.issn.1006-8171.2018.08.015 LI W, YAN F J, ZHOU Z W. Content monitoring of anti-aging agent 6PPD in sidewall by high efficiency liquid chromatography[J]. Tire Industry, 2018, 38(8): 507-510 (in Chinese). doi: 10.3969/j.issn.1006-8171.2018.08.015
[33] 王志伟, 原晓喻, 胡长鹰. 一种高效液相色谱-DAD法测定橡胶中防老剂4020的残留量的方法CN113567591A [P]. 2021-10-29 WANG Z W, YUAN X Y, HU C Y. A method for the determination of antioxidant 4020 residue in rubber by high performance liquid chromatography-DAD method[P]. 2021-10-29 (in Chinese).
[34] 原晓喻, 刘沁芳, 李熠晨, 等. 食品接触用橡胶中防老剂6PPD检测方法建立及适用性[J]. 化学研究与应用, 2024, 36(4): 892-897. doi: 10.3969/j.issn.1004-1656.2024.04.026 YUAN X Y, LIU Q F, LI Y C, et al. Establishment and applicability of detection methods for antioxidant 6PPD in food-contact rubber hoses[J]. Chemical Research and Application, 2024, 36(4): 892-897 (in Chinese). doi: 10.3969/j.issn.1004-1656.2024.04.026
[35] 程畅. 食品接触用橡胶密封垫圈中抗氧化剂的检测与迁移研究[D]. 无锡: 江南大学, 2021. CHENG C. Study on the detection and migration of antioxidants in rubber gaskets for food contact[D]. Wuxi: Jiangnan University, 2021 (in Chinese).
[36] 钱慧敏, 刘艳娜, 姚林林, 等. 非靶标技术在新污染物识别中的应用[J]. 环境化学, 2024, 43(2): 363-376. doi: 10.7524/j.issn.0254-6108.2023021603 QIAN H M, LIU Y N, YAO L L, et al. Recent advances in nontarget discovery of emerging pollutants in the environment[J]. Environmental Chemistry, 2024, 43(2): 363-376 (in Chinese). doi: 10.7524/j.issn.0254-6108.2023021603
[37] 柴佳楦, 王学兵, 于南洋, 等. 基于质谱的高覆盖代谢组学数据采集策略研究进展及在环境毒理学的应用[J]. 环境化学, 2023, 42(8): 2549-2562. doi: 10.7524/j.issn.0254-6108.2022030802 CHAI J X, WANG X B, YU N Y, et al. Research progress of data acquisition strategies for mass spectrometry-based high-coverage metabolomics and its application in environmental toxicology[J]. Environmental Chemistry, 2023, 42(8): 2549-2562 (in Chinese). doi: 10.7524/j.issn.0254-6108.2022030802
[38] CAO G D, ZHANG J, WANG W, et al. Mass spectrometry analysis of a ubiquitous tire rubber-derived quinone in the environment[J]. TrAC Trends in Analytical Chemistry, 2022, 157: 116756. doi: 10.1016/j.trac.2022.116756
[39] 张清智, 吕延延, 黄艳军, 等. 顶空气相色谱-质谱法测定橡胶防老剂4020中的甲基异丁基酮和苯胺[J]. 橡胶科技, 2019, 17(5): 269-272. ZHANG Q Z, LYU Y Y, HUANG Y J, et al. Determination of methyl isobutyl ketone and aniline in antioxidant 4020 by head space gas chromatography-mass spectrometry[J]. Rubber Science and Technology, 2019, 17(5): 269-272 (in Chinese).
[40] 王浩, 李梁, 高杨. 不同老化条件对防老剂6PPD及其应用性能的影响[J]. 轮胎工业, 2022, 42(8): 502-506. WANG H, LI L, GAO Y. Effects of different aging conditions on antioxidant 6PPD and its application performance[J]. Tire Industry, 2022, 42(8): 502-506 (in Chinese).
[41] 彭未娟. 6PPD和IPPD对斑马鱼胚胎的发育毒性效应及机制研究[D]. 武汉: 华中农业大学, 2022. PENG W J. Toxic effects and mechanisms of 6PPD or IPPD on zebrafish (Danio rerio) embryonic development[D]. Wuhan: Huazhong Agricultural University, 2022 (in Chinese).
[42] BOHARA K, TIMILSINA A, ADHIKARI K, et al. A mini review on 6PPD quinone: A new threat to aquaculture and fisheries[J]. Environmental Pollution, 2024, 340: 122828. doi: 10.1016/j.envpol.2023.122828
[43] ZOROUFCHI BENIS K, BEHNAMI A, MINAEI S, et al. Environmental occurrence and toxicity of 6PPD quinone, an emerging tire rubber-derived chemical: A review[J]. Environmental Science & Technology Letters, 2023, 10(10): 815-823.
[44] TIAN Z Y, GONZALEZ M, RIDEOUT C A, et al. 6PPD-quinone: Revised toxicity assessment and quantification with a commercial standard[J]. Environmental Science & Technology Letters, 2022, 9(2): 140-146.
[45] BRINKMANN M, MONTGOMERY D, SELINGER S, et al. Acute toxicity of the tire rubber-derived chemical 6PPD-quinone to four fishes of commercial, cultural, and ecological importance[J]. Environmental Science & Technology Letters, 2022, 9(4): 333-338.
[46] McINTYRE J K, PRAT J, CAMERON J, et al. Treading water: Tire wear particle leachate recreates an urban runoff mortality syndrome in coho but not chum salmon[J]. Environmental Science & Technology, 2021, 55(17): 11767-11774.
[47] MASSET T, FERRARI B J D, DUDEFOI W, et al. Bioaccessibility of organic compounds associated with tire particles using a fish in vitro digestive model: Solubilization kinetics and effects of food coingestion[J]. Environmental Science & Technology, 2022, 56(22): 15607-15616.
[48] JOHANNESSEN C, HELM P, METCALFE C D. Detection of selected tire wear compounds in urban receiving waters[J]. Environmental Pollution, 2021, 287: 117659. doi: 10.1016/j.envpol.2021.117659
[49] JI J W, HUANG J Z, CAO N N, et al. Multiview behavior and neurotransmitter analysis of zebrafish dyskinesia induced by 6PPD and its metabolites[J]. Science of the Total Environment, 2022, 838: 156013. doi: 10.1016/j.scitotenv.2022.156013
[50] HIKI K, YAMAMOTO H. The tire-derived chemical 6PPD-quinone is lethally toxic to the white-spotted char Salvelinus leucomaenis pluvius but not to two other salmonid species[J]. Environmental Science & Technology Letters, 2022, 9(12): 1050-1055.
[51] ZHANG Y H, XU C H, ZHANG W F, et al. p-phenylenediamine antioxidants in PM2.5: The underestimated urban air pollutants[J]. Environmental Science & Technology, 2022, 56(11): 6914-6921.
[52] HIKI K, YAMAMOTO H. Concentration and leachability of N-(1, 3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) and its quinone transformation product (6PPD-Q) in road dust collected in Tokyo, Japan[J]. Environmental Pollution (Barking, Essex, 2022, 302: 119082. doi: 10.1016/j.envpol.2022.119082
[53] JI J W, LI C S, ZHANG B J, et al. Exploration of emerging environmental pollutants 6PPD and 6PPDQ in honey and fish samples[J]. Food Chemistry, 2022, 396: 133640. doi: 10.1016/j.foodchem.2022.133640
[54] ZHANG Y J, XU T T, YE D M, et al. Widespread N-(1,3-dimethylbutyl)-N' -phenyl-p-phenylenediamine quinone in size-fractioned atmospheric particles and dust of different indoor environments[J]. Environmental Science & Technology Letters, 2022, 9(5): 420-425.
[55] KLÖCKNER P, SEIWERT B, WAGNER S, et al. Organic markers of tire and road wear particles in sediments and soils: Transformation products of major antiozonants as promising candidates[J]. Environmental Science & Technology, 2021, 55(17): 11723-11732.
[56] LI X X, CHEN X Y, CHEN B, et al. Tire additives: Evaluation of joint toxicity, design of new derivatives and mechanism analysis of free radical oxidation[J]. Journal of Hazardous Materials, 2024, 465: 133220. doi: 10.1016/j.jhazmat.2023.133220
[57] HU X M, ZHAO H N, TIAN Z Y, et al. Transformation product formation upon heterogeneous ozonation of the tire rubber antioxidant 6PPD (N-(1, 3-dimethylbutyl)-N'-phenyl-p-phenylenediamine)[J]. Environmental Science & Technology Letters, 2022, 9(5): 413-419.
[58] 张泰硕, 商静静, 刘海勇, 等. 不同环境介质轮胎微塑料老化及小粒径微粒释放特征[J]. 环境科学, 2024, 45(6): 3700-3707. ZHANG T S, SHANG J J, LIU H Y, et al. Aging and small-sized particles release characteristics of tire microplastics in various environmental media[J]. Environmental Science, 2024, 45(6): 3700-3707 (in Chinese).
[59] SCHULZE S, PASCHKE H, MEIER T, et al. A rapid method for quantification of persistent and mobile organic substances in water using supercritical fluid chromatography coupled to high-resolution mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 2020, 412(20): 4941-4952. doi: 10.1007/s00216-020-02722-5
[60] YANG F, CHEN Y S, LIU J, et al. Evaluation of matrix effect in determination of mevinphos stereoisomers in tobacco by supercritical fluid chromatography tandem mass spectrometry[J]. Microchemical Journal, 2022, 175: 107174. doi: 10.1016/j.microc.2022.107174
[61] TAKEKANA M, YOSHIDA T, YOSHIDA E, et al. Online SFE-SFC-MS/MS colony screening: A high-throughput approach for optimizing (-)-limonene production[J]. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 2023, 1215: 123588. doi: 10.1016/j.jchromb.2022.123588
[62] 田璐, 马英歌, 谭皓新, 等. 超临界流体萃取技术应用于植物叶片中多环芳烃含量测定[J]. 环境化学, 2020, 39(9): 2450-2458. doi: 10.7524/j.issn.0254-6108.2019062304 TIAN L, MA Y G, TAN H X, et al. Application of supercritical fluid extraction in determination of polycyclic aromatic hydrocarbons content in plant leaves[J]. Environmental Chemistry, 2020, 39(9): 2450-2458 (in Chinese). doi: 10.7524/j.issn.0254-6108.2019062304
[63] 张丹阳. 超临界流体色谱串联质谱技术在植物源食品农药多残留检测中的应用研究[D]. 北京: 中国农业科学院, 2021. ZHANG D Y. Application supercritical fluid chromatography-tandem mass spectrometry in the determination of pesticide residues in plant foods[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021(in Chinese).
[64] 董琨, 宫晓平, 李晓东, 等. 在线超临界流体萃取-超临界流体色谱-串联质谱法快速筛查降糖类中成药及保健品中非法添加五种化学药的方法[J]. 企业科技与发展, 2022(7): 56-59. DONG K, GONG X P, LI X D, et al. On-line supercritical fluid extraction-supercritical fluid chromatography-tandem mass spectrometry rapid screening method for illegally adding five chemicals in hypoglycemic Chinese patent medicines and health care products[J]. Sci-Tech & Development of Enterprise, 2022(7): 56-59 (in Chinese).
[65] DI S S, LIU Z Z, ZHAO H Y, et al. Chiral perspective evaluations: Enantioselective hydrolysis of 6PPD and 6PPD-quinone in water and enantioselective toxicity to Gobiocypris rarus and Oncorhynchus mykiss[J]. Environment International, 2022, 166: 107374. doi: 10.1016/j.envint.2022.107374
[66] Electron Spin Resonance (ESR) Spectroscopy 7.1 Introduction[R].
[67] SAEED S, GILLIES D, WAGNER G, et al. ESR and NMR spectroscopy studies on protein oxidation and formation of dityrosine in emulsions containing oxidised methyl linoleate[J]. Food and Chemical Toxicology, 2006, 44(8): 1385-1392. doi: 10.1016/j.fct.2006.03.005
[68] 林炳丞, 王枭, 王健, 等. 工业热过程中无意生成持久性有机污染物的自由基转化机制[J]. 环境化学, 2024, 43(11): 3665-3677. LIN B C, WANG X, WANG J, et al. Free-radical mediated formation mechanisms of unintentionally produced persistent organic pollutants in industrial thermal processes[J]. Environmental Chemistry, 2024, 43(11): 3665-3677(in Chinese).
[69] CATALDO F. Early stages of p-phenylenediamine antiozonants reaction with ozone: Radical cation and nitroxyl radical formation[J]. Polymer Degradation and Stability, 2018, 147: 132-141. doi: 10.1016/j.polymdegradstab.2017.11.020
[70] CATALDO F. Protection mechanism of rubbers from ozone attack[J]. Ozone: Science & Engineering, 2019, 41(4): 358-368.
[71] CATALDO F. Aminoxyl (nitroxyl or nitroxide) radical formation by the action of ozone on squalene containing secondary aromatic amine antioxidants[J]. Journal of Vinyl and Additive Technology, 2022, 28(2): 379-389. doi: 10.1002/vnl.21862
[72] CATALDO F, FAUCETTE B, HUANG S, et al. On the early reaction stages of ozone with N, N'-substituted p-phenylenediamines (6PPD, 77PD) and N, N', N''-substituted-1, 3, 5-triazine “Durazone®” : An electron spin resonance (ESR) and electronic absorption spectroscopy study[J]. Polymer Degradation and Stability, 2015, 111: 223-231.
[73] CATALDO F. A study on the reaction between N-substituted p-phenylenediamines and ozone: Experimental results and theoretical aspects in relation to their antiozonant activity[J]. European Polymer Journal, 2002, 38(5): 885-893. doi: 10.1016/S0014-3057(01)00248-8